1 | /*
|
---|
2 | ---- Delphes ----
|
---|
3 | A Fast Simulator for general purpose LHC detector
|
---|
4 | S. Ovyn ~~~~ severine.ovyn@uclouvain.be
|
---|
5 |
|
---|
6 | Center for Particle Physics and Phenomenology (CP3)
|
---|
7 | Universite Catholique de Louvain (UCL)
|
---|
8 | Louvain-la-Neuve, Belgium
|
---|
9 | */
|
---|
10 |
|
---|
11 | /// \file SmearUtil.cc
|
---|
12 | /// \brief RESOLution class, and some generic definitions
|
---|
13 |
|
---|
14 |
|
---|
15 | #include "SmearUtil.h"
|
---|
16 | #include "TRandom.h"
|
---|
17 |
|
---|
18 | #include <iostream>
|
---|
19 | #include <fstream>
|
---|
20 | #include <sstream>
|
---|
21 | #include <iomanip>
|
---|
22 | using namespace std;
|
---|
23 |
|
---|
24 |
|
---|
25 | ParticleUtil::ParticleUtil(const TLorentzVector &genMomentum, int pid) {
|
---|
26 | _pid=pid;
|
---|
27 | _e = genMomentum.E();
|
---|
28 | _px = genMomentum.Px();
|
---|
29 | _py = genMomentum.Py();
|
---|
30 | _pz = genMomentum.Pz();
|
---|
31 | _pt = genMomentum.Pt();
|
---|
32 |
|
---|
33 | //_e, _px, _py, _pz, _pt;
|
---|
34 | //float _eta, _etaCalo, _phi, _phiCalo;
|
---|
35 | //int _pid;
|
---|
36 | }
|
---|
37 |
|
---|
38 | //------------------------------------------------------------------------------
|
---|
39 |
|
---|
40 | RESOLution::RESOLution() {
|
---|
41 |
|
---|
42 | // Detector characteristics
|
---|
43 | CEN_max_tracker = 2.5; // Maximum tracker coverage
|
---|
44 | CEN_max_calo_cen = 3.0; // central calorimeter coverage
|
---|
45 | CEN_max_calo_fwd = 5.0; // forward calorimeter pseudorapidity coverage
|
---|
46 | CEN_max_mu = 2.4; // muon chambers pseudorapidity coverage
|
---|
47 |
|
---|
48 | // Energy resolution for electron/photon
|
---|
49 | // \sigma/E = C + N/E + S/\sqrt{E}
|
---|
50 | ELG_Scen = 0.05; // S term for central ECAL
|
---|
51 | ELG_Ncen = 0.25; // N term for central ECAL
|
---|
52 | ELG_Ccen = 0.005; // C term for central ECAL
|
---|
53 | ELG_Cfwd = 0.107; // S term for forward ECAL
|
---|
54 | ELG_Sfwd = 2.084; // C term for forward ECAL
|
---|
55 | ELG_Nfwd = 0.0; // N term for central ECAL
|
---|
56 |
|
---|
57 | // Energy resolution for hadrons in ecal/hcal/hf
|
---|
58 | // \sigma/E = C + N/E + S/\sqrt{E}
|
---|
59 | HAD_Shcal = 1.5; // S term for central HCAL // hadronic calorimeter
|
---|
60 | HAD_Nhcal = 0.; // N term for central HCAL
|
---|
61 | HAD_Chcal = 0.05; // C term for central HCAL
|
---|
62 | HAD_Shf = 2.7; // S term for HF // forward calorimeter
|
---|
63 | HAD_Nhf = 0.; // N term for HF
|
---|
64 | HAD_Chf = 0.13; // C term for HF
|
---|
65 |
|
---|
66 | // Muon smearing
|
---|
67 | MU_SmearPt = 0.01;
|
---|
68 |
|
---|
69 | // Tracking efficiencies
|
---|
70 | TRACK_ptmin = 0.9; // minimal pt needed to reach the calorimeter in GeV
|
---|
71 | TRACK_eff = 100; // efficiency associated to the tracking
|
---|
72 |
|
---|
73 | // Calorimetric towers
|
---|
74 | TOWER_number = 40;
|
---|
75 | const float tower_eta_edges[41] = {
|
---|
76 | 0., 0.087, 0.174, 0.261, 0.348, 0.435, 0.522, 0.609, 0.696, 0.783, 0.870, 0.957, 1.044, 1.131, 1.218, 1.305, 1.392, 1.479, 1.566,
|
---|
77 | 1.653, 1.740, 1.830, 1.930, 2.043, 2.172, 2.322, 2.500, 2.650, 2.868, 2.950, 3.125, 3.300, 3.475, 3.650, 3.825, 4.000, 4.175,
|
---|
78 | 4.350, 4.525, 4.700, 5.000}; // temporary object
|
---|
79 | TOWER_eta_edges = new float[TOWER_number+1];
|
---|
80 | for(unsigned int i=0; i<TOWER_number +1; i++) TOWER_eta_edges[i] = tower_eta_edges[i];
|
---|
81 |
|
---|
82 | const float tower_dphi[40] = {
|
---|
83 | 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 10,
|
---|
84 | 10,10,10,10,10, 10,10,10,10,10, 10,10,10,10,10, 10,10,10,20, 20 }; // temporary object
|
---|
85 | TOWER_dphi = new float[TOWER_number];
|
---|
86 | for(unsigned int i=0; i<TOWER_number; i++) TOWER_dphi[i] = tower_dphi[i];
|
---|
87 |
|
---|
88 |
|
---|
89 | // Thresholds for reconstructed objetcs
|
---|
90 | PTCUT_elec = 10.0;
|
---|
91 | PTCUT_muon = 10.0;
|
---|
92 | PTCUT_jet = 20.0;
|
---|
93 | PTCUT_gamma = 10.0;
|
---|
94 | PTCUT_taujet = 10.0;
|
---|
95 |
|
---|
96 | // General jet variable
|
---|
97 | JET_coneradius = 0.7; // generic jet radius ; not for tau's !!!
|
---|
98 | JET_jetalgo = 1; // 1 for Cone algorithm, 2 for MidPoint algorithm, 3 for SIScone algorithm, 4 for kt algorithm
|
---|
99 | JET_seed = 1.0; // minimum seed to start jet reconstruction
|
---|
100 |
|
---|
101 | // Tagging definition
|
---|
102 | BTAG_b = 40;
|
---|
103 | BTAG_mistag_c = 10;
|
---|
104 | BTAG_mistag_l = 1;
|
---|
105 |
|
---|
106 | // FLAGS
|
---|
107 | FLAG_bfield = 1; //1 to run the bfield propagation else 0
|
---|
108 | FLAG_vfd = 1; //1 to run the very forward detectors else 0
|
---|
109 | FLAG_trigger = 1; //1 to run the trigger selection else 0
|
---|
110 | FLAG_frog = 1; //1 to run the FROG event display
|
---|
111 |
|
---|
112 | // In case BField propagation allowed
|
---|
113 | TRACK_radius = 129; //radius of the BField coverage
|
---|
114 | TRACK_length = 300; //length of the BField coverage
|
---|
115 | TRACK_bfield_x = 0; //X composant of the BField
|
---|
116 | TRACK_bfield_y = 0; //Y composant of the BField
|
---|
117 | TRACK_bfield_z = 3.8; //Z composant of the BField
|
---|
118 |
|
---|
119 | // In case Very forward detectors allowed
|
---|
120 | VFD_min_calo_vfd = 5.2; // very forward calorimeter (if any) like CASTOR
|
---|
121 | VFD_max_calo_vfd = 6.6;
|
---|
122 | VFD_min_zdc = 8.3;
|
---|
123 | VFD_s_zdc = 140; // distance of the Zero Degree Calorimeter, from the Interaction poin, in [m]
|
---|
124 |
|
---|
125 | RP_220_s = 220; // distance of the RP to the IP, in meters
|
---|
126 | RP_220_x = 0.002; // distance of the RP to the beam, in meters
|
---|
127 | RP_420_s = 420; // distance of the RP to the IP, in meters
|
---|
128 | RP_420_x = 0.004; // distance of the RP to the beam, in meters
|
---|
129 | RP_beam1Card = "data/LHCB1IR5_v6.500.tfs";
|
---|
130 | RP_beam2Card = "data/LHCB1IR5_v6.500.tfs";
|
---|
131 |
|
---|
132 | // In case FROG event display allowed
|
---|
133 | NEvents_Frog = 10;
|
---|
134 |
|
---|
135 | //********************************************
|
---|
136 | //jet stuffs not defined in the input datacard
|
---|
137 | //********************************************
|
---|
138 |
|
---|
139 | JET_overlap = 0.75;
|
---|
140 | // MidPoint algorithm definition
|
---|
141 | JET_M_coneareafraction = 0.25;
|
---|
142 | JET_M_maxpairsize = 2;
|
---|
143 | JET_M_maxiterations = 100;
|
---|
144 | // Define Cone algorithm.
|
---|
145 | JET_C_adjacencycut = 2;
|
---|
146 | JET_C_maxiterations = 100;
|
---|
147 | JET_C_iratch = 1;
|
---|
148 | //Define SISCone algorithm.
|
---|
149 | JET_S_npass = 0;
|
---|
150 | JET_S_protojet_ptmin= 0.0;
|
---|
151 |
|
---|
152 | //For Tau-jet definition
|
---|
153 | TAU_energy_scone = 0.15; // radius R of the cone for tau definition, based on energy threshold
|
---|
154 | TAU_track_scone = 0.4; // radius R of the cone for tau definition, based on track number
|
---|
155 | TAU_track_pt = 2; // minimal pt [GeV] for tracks to be considered in tau definition
|
---|
156 | TAU_energy_frac = 0.95; // fraction of energy required in the central part of the cone, for tau jets
|
---|
157 |
|
---|
158 | PT_QUARKS_MIN = 2.0 ; // minimal pt needed by quarks to do b-tag
|
---|
159 |
|
---|
160 | //for very forward detectors
|
---|
161 | RP_offsetEl_s = 120;
|
---|
162 | RP_offsetEl_x = 0.097;
|
---|
163 |
|
---|
164 |
|
---|
165 | }
|
---|
166 |
|
---|
167 |
|
---|
168 | RESOLution::RESOLution(const RESOLution & DET) {
|
---|
169 | // Detector characteristics
|
---|
170 | CEN_max_tracker = DET.CEN_max_tracker;
|
---|
171 | CEN_max_calo_cen = DET.CEN_max_calo_cen;
|
---|
172 | CEN_max_calo_fwd = DET.CEN_max_calo_fwd;
|
---|
173 | CEN_max_mu = DET.CEN_max_mu;
|
---|
174 |
|
---|
175 | // Energy resolution for electron/photon
|
---|
176 | ELG_Scen = DET.ELG_Scen;
|
---|
177 | ELG_Ncen = DET.ELG_Ncen;
|
---|
178 | ELG_Ccen = DET.ELG_Ccen;
|
---|
179 | ELG_Cfwd = DET.ELG_Cfwd;
|
---|
180 | ELG_Sfwd = DET.ELG_Sfwd;
|
---|
181 | ELG_Nfwd = DET.ELG_Nfwd;
|
---|
182 |
|
---|
183 | // Energy resolution for hadrons in ecal/hcal/hf
|
---|
184 | HAD_Shcal = DET.HAD_Shcal;
|
---|
185 | HAD_Nhcal = DET.HAD_Nhcal;
|
---|
186 | HAD_Chcal = DET.HAD_Chcal;
|
---|
187 | HAD_Shf = DET.HAD_Shf;
|
---|
188 | HAD_Nhf = DET.HAD_Nhf;
|
---|
189 | HAD_Chf = DET.HAD_Chf;
|
---|
190 |
|
---|
191 | // Muon smearing
|
---|
192 | MU_SmearPt = DET.MU_SmearPt;
|
---|
193 |
|
---|
194 | // Tracking efficiencies
|
---|
195 | TRACK_ptmin = DET.TRACK_ptmin;
|
---|
196 | TRACK_eff = DET.TRACK_eff;
|
---|
197 |
|
---|
198 | // Calorimetric towers
|
---|
199 | TOWER_number = DET.TOWER_number;
|
---|
200 | TOWER_eta_edges = new float[TOWER_number+1];
|
---|
201 | for(unsigned int i=0; i<TOWER_number +1; i++) TOWER_eta_edges[i] = DET.TOWER_eta_edges[i];
|
---|
202 |
|
---|
203 | TOWER_dphi = new float[TOWER_number];
|
---|
204 | for(unsigned int i=0; i<TOWER_number; i++) TOWER_dphi[i] = DET.TOWER_dphi[i];
|
---|
205 |
|
---|
206 | // Thresholds for reconstructed objetcs
|
---|
207 | PTCUT_elec = DET.PTCUT_elec;
|
---|
208 | PTCUT_muon = DET.PTCUT_muon;
|
---|
209 | PTCUT_jet = DET.PTCUT_jet;
|
---|
210 | PTCUT_gamma = DET.PTCUT_gamma;
|
---|
211 | PTCUT_taujet = DET.PTCUT_taujet;
|
---|
212 |
|
---|
213 | // General jet variable
|
---|
214 | JET_coneradius = DET.JET_coneradius;
|
---|
215 | JET_jetalgo = DET.JET_jetalgo;
|
---|
216 | JET_seed = DET.JET_seed;
|
---|
217 |
|
---|
218 | // Tagging definition
|
---|
219 | BTAG_b = DET.BTAG_b;
|
---|
220 | BTAG_mistag_c = DET.BTAG_mistag_c;
|
---|
221 | BTAG_mistag_l = DET.BTAG_mistag_l;
|
---|
222 |
|
---|
223 | // FLAGS
|
---|
224 | FLAG_bfield = DET.FLAG_bfield;
|
---|
225 | FLAG_vfd = DET.FLAG_vfd;
|
---|
226 | FLAG_trigger = DET.FLAG_trigger;
|
---|
227 | FLAG_frog = DET.FLAG_frog;
|
---|
228 |
|
---|
229 | // In case BField propagation allowed
|
---|
230 | TRACK_radius = DET.TRACK_radius;
|
---|
231 | TRACK_length = DET.TRACK_length;
|
---|
232 | TRACK_bfield_x = DET.TRACK_bfield_x;
|
---|
233 | TRACK_bfield_y = DET.TRACK_bfield_y;
|
---|
234 | TRACK_bfield_z = DET.TRACK_bfield_z;
|
---|
235 |
|
---|
236 | // In case Very forward detectors allowed
|
---|
237 | VFD_min_calo_vfd = DET.VFD_min_calo_vfd;
|
---|
238 | VFD_max_calo_vfd = DET.VFD_max_calo_vfd;
|
---|
239 | VFD_min_zdc = DET.VFD_min_zdc;
|
---|
240 | VFD_s_zdc = DET.VFD_s_zdc;
|
---|
241 |
|
---|
242 | RP_220_s = DET.RP_220_s;
|
---|
243 | RP_220_x = DET.RP_220_x;
|
---|
244 | RP_420_s = DET.RP_420_s;
|
---|
245 | RP_420_x = DET.RP_420_x;
|
---|
246 | RP_beam1Card = DET.RP_beam1Card;
|
---|
247 | RP_beam2Card = DET.RP_beam2Card;
|
---|
248 | RP_offsetEl_s = DET.RP_offsetEl_s;
|
---|
249 | RP_offsetEl_x = DET.RP_offsetEl_x;
|
---|
250 |
|
---|
251 | // In case FROG event display allowed
|
---|
252 | NEvents_Frog = DET.NEvents_Frog;
|
---|
253 |
|
---|
254 | JET_overlap = DET.JET_overlap;
|
---|
255 | // MidPoint algorithm definition
|
---|
256 | JET_M_coneareafraction = DET.JET_M_coneareafraction;
|
---|
257 | JET_M_maxpairsize = DET.JET_M_maxpairsize;
|
---|
258 | JET_M_maxiterations = DET.JET_M_maxiterations;
|
---|
259 | // Define Cone algorithm.
|
---|
260 | JET_C_adjacencycut = DET.JET_C_adjacencycut;
|
---|
261 | JET_C_maxiterations = DET.JET_C_maxiterations;
|
---|
262 | JET_C_iratch = DET.JET_C_iratch;
|
---|
263 | //Define SISCone algorithm.
|
---|
264 | JET_S_npass = DET.JET_S_npass;
|
---|
265 | JET_S_protojet_ptmin = DET.JET_S_protojet_ptmin;
|
---|
266 |
|
---|
267 | //For Tau-jet definition
|
---|
268 | TAU_energy_scone = DET.TAU_energy_scone;
|
---|
269 | TAU_track_scone = DET.TAU_track_scone;
|
---|
270 | TAU_track_pt = DET.TAU_track_pt;
|
---|
271 | TAU_energy_frac = DET.TAU_energy_frac;
|
---|
272 |
|
---|
273 | PT_QUARKS_MIN = DET.PT_QUARKS_MIN;
|
---|
274 | }
|
---|
275 |
|
---|
276 | RESOLution& RESOLution::operator=(const RESOLution& DET) {
|
---|
277 | if(this==&DET) return *this;
|
---|
278 | // Detector characteristics
|
---|
279 | CEN_max_tracker = DET.CEN_max_tracker;
|
---|
280 | CEN_max_calo_cen = DET.CEN_max_calo_cen;
|
---|
281 | CEN_max_calo_fwd = DET.CEN_max_calo_fwd;
|
---|
282 | CEN_max_mu = DET.CEN_max_mu;
|
---|
283 |
|
---|
284 | // Energy resolution for electron/photon
|
---|
285 | ELG_Scen = DET.ELG_Scen;
|
---|
286 | ELG_Ncen = DET.ELG_Ncen;
|
---|
287 | ELG_Ccen = DET.ELG_Ccen;
|
---|
288 | ELG_Cfwd = DET.ELG_Cfwd;
|
---|
289 | ELG_Sfwd = DET.ELG_Sfwd;
|
---|
290 | ELG_Nfwd = DET.ELG_Nfwd;
|
---|
291 |
|
---|
292 | // Energy resolution for hadrons in ecal/hcal/hf
|
---|
293 | HAD_Shcal = DET.HAD_Shcal;
|
---|
294 | HAD_Nhcal = DET.HAD_Nhcal;
|
---|
295 | HAD_Chcal = DET.HAD_Chcal;
|
---|
296 | HAD_Shf = DET.HAD_Shf;
|
---|
297 | HAD_Nhf = DET.HAD_Nhf;
|
---|
298 | HAD_Chf = DET.HAD_Chf;
|
---|
299 |
|
---|
300 | // Muon smearing
|
---|
301 | MU_SmearPt = DET.MU_SmearPt;
|
---|
302 |
|
---|
303 | // Tracking efficiencies
|
---|
304 | TRACK_ptmin = DET.TRACK_ptmin;
|
---|
305 | TRACK_eff = DET.TRACK_eff;
|
---|
306 |
|
---|
307 | // Calorimetric towers
|
---|
308 | TOWER_number = DET.TOWER_number;
|
---|
309 | TOWER_eta_edges = new float[TOWER_number+1];
|
---|
310 | for(unsigned int i=0; i<TOWER_number +1; i++) TOWER_eta_edges[i] = DET.TOWER_eta_edges[i];
|
---|
311 |
|
---|
312 | TOWER_dphi = new float[TOWER_number];
|
---|
313 | for(unsigned int i=0; i<TOWER_number; i++) TOWER_dphi[i] = DET.TOWER_dphi[i];
|
---|
314 |
|
---|
315 | // Thresholds for reconstructed objetcs
|
---|
316 | PTCUT_elec = DET.PTCUT_elec;
|
---|
317 | PTCUT_muon = DET.PTCUT_muon;
|
---|
318 | PTCUT_jet = DET.PTCUT_jet;
|
---|
319 | PTCUT_gamma = DET.PTCUT_gamma;
|
---|
320 | PTCUT_taujet = DET.PTCUT_taujet;
|
---|
321 |
|
---|
322 | // General jet variable
|
---|
323 | JET_coneradius = DET.JET_coneradius;
|
---|
324 | JET_jetalgo = DET.JET_jetalgo;
|
---|
325 | JET_seed = DET.JET_seed;
|
---|
326 |
|
---|
327 | // Tagging definition
|
---|
328 | BTAG_b = DET.BTAG_b;
|
---|
329 | BTAG_mistag_c = DET.BTAG_mistag_c;
|
---|
330 | BTAG_mistag_l = DET.BTAG_mistag_l;
|
---|
331 |
|
---|
332 | // FLAGS
|
---|
333 | FLAG_bfield = DET.FLAG_bfield;
|
---|
334 | FLAG_vfd = DET.FLAG_vfd;
|
---|
335 | FLAG_trigger = DET.FLAG_trigger;
|
---|
336 | FLAG_frog = DET.FLAG_frog;
|
---|
337 |
|
---|
338 | // In case BField propagation allowed
|
---|
339 | TRACK_radius = DET.TRACK_radius;
|
---|
340 | TRACK_length = DET.TRACK_length;
|
---|
341 | TRACK_bfield_x = DET.TRACK_bfield_x;
|
---|
342 | TRACK_bfield_y = DET.TRACK_bfield_y;
|
---|
343 | TRACK_bfield_z = DET.TRACK_bfield_z;
|
---|
344 |
|
---|
345 | // In case Very forward detectors allowed
|
---|
346 | VFD_min_calo_vfd = DET.VFD_min_calo_vfd;
|
---|
347 | VFD_max_calo_vfd = DET.VFD_max_calo_vfd;
|
---|
348 | VFD_min_zdc = DET.VFD_min_zdc;
|
---|
349 | VFD_s_zdc = DET.VFD_s_zdc;
|
---|
350 |
|
---|
351 | RP_220_s = DET.RP_220_s;
|
---|
352 | RP_220_x = DET.RP_220_x;
|
---|
353 | RP_420_s = DET.RP_420_s;
|
---|
354 | RP_420_x = DET.RP_420_x;
|
---|
355 | RP_offsetEl_s = DET.RP_offsetEl_s;
|
---|
356 | RP_offsetEl_x = DET.RP_offsetEl_x;
|
---|
357 | RP_beam1Card = DET.RP_beam1Card;
|
---|
358 | RP_beam2Card = DET.RP_beam2Card;
|
---|
359 |
|
---|
360 |
|
---|
361 | // In case FROG event display allowed
|
---|
362 | NEvents_Frog = DET.NEvents_Frog;
|
---|
363 |
|
---|
364 | JET_overlap = DET.JET_overlap;
|
---|
365 | // MidPoint algorithm definition
|
---|
366 | JET_M_coneareafraction = DET.JET_M_coneareafraction;
|
---|
367 | JET_M_maxpairsize = DET.JET_M_maxpairsize;
|
---|
368 | JET_M_maxiterations = DET.JET_M_maxiterations;
|
---|
369 | // Define Cone algorithm.
|
---|
370 | JET_C_adjacencycut = DET.JET_C_adjacencycut;
|
---|
371 | JET_C_maxiterations = DET.JET_C_maxiterations;
|
---|
372 | JET_C_iratch = DET.JET_C_iratch;
|
---|
373 | //Define SISCone algorithm.
|
---|
374 | JET_S_npass = DET.JET_S_npass;
|
---|
375 | JET_S_protojet_ptmin = DET.JET_S_protojet_ptmin;
|
---|
376 |
|
---|
377 | //For Tau-jet definition
|
---|
378 | TAU_energy_scone = DET.TAU_energy_scone;
|
---|
379 | TAU_track_scone = DET.TAU_track_scone;
|
---|
380 | TAU_track_pt = DET.TAU_track_pt;
|
---|
381 | TAU_energy_frac = DET.TAU_energy_frac;
|
---|
382 |
|
---|
383 | PT_QUARKS_MIN = DET.PT_QUARKS_MIN;
|
---|
384 | return *this;
|
---|
385 | }
|
---|
386 |
|
---|
387 |
|
---|
388 |
|
---|
389 |
|
---|
390 | //------------------------------------------------------------------------------
|
---|
391 | void RESOLution::ReadDataCard(const string datacard) {
|
---|
392 |
|
---|
393 | string temp_string;
|
---|
394 | istringstream curstring;
|
---|
395 |
|
---|
396 | ifstream fichier_a_lire(datacard.c_str());
|
---|
397 | if(!fichier_a_lire.good()) {
|
---|
398 | cout <<"** WARNING: Datadard not found, use default values **" << endl;
|
---|
399 | return;
|
---|
400 | }
|
---|
401 |
|
---|
402 | while (getline(fichier_a_lire,temp_string)) {
|
---|
403 | curstring.clear(); // needed when using several times istringstream::str(string)
|
---|
404 | curstring.str(temp_string);
|
---|
405 | string varname;
|
---|
406 | float value; int ivalue; string svalue;
|
---|
407 |
|
---|
408 | if(strstr(temp_string.c_str(),"#")) { }
|
---|
409 | else if(strstr(temp_string.c_str(),"CEN_max_tracker")) {curstring >> varname >> value; CEN_max_tracker = value;}
|
---|
410 | else if(strstr(temp_string.c_str(),"CEN_max_calo_cen")) {curstring >> varname >> value; CEN_max_calo_cen = value;}
|
---|
411 | else if(strstr(temp_string.c_str(),"CEN_max_calo_fwd")) {curstring >> varname >> value; CEN_max_calo_fwd = value;}
|
---|
412 | else if(strstr(temp_string.c_str(),"CEN_max_mu")) {curstring >> varname >> value; CEN_max_mu = value;}
|
---|
413 |
|
---|
414 | else if(strstr(temp_string.c_str(),"VFD_min_calo_vfd")) {curstring >> varname >> value; VFD_min_calo_vfd = value;}
|
---|
415 | else if(strstr(temp_string.c_str(),"VFD_max_calo_vfd")) {curstring >> varname >> value; VFD_max_calo_vfd = value;}
|
---|
416 | else if(strstr(temp_string.c_str(),"VFD_min_zdc")) {curstring >> varname >> value; VFD_min_zdc = value;}
|
---|
417 | else if(strstr(temp_string.c_str(),"VFD_s_zdc")) {curstring >> varname >> value; VFD_s_zdc = value;}
|
---|
418 |
|
---|
419 | else if(strstr(temp_string.c_str(),"RP_220_s")) {curstring >> varname >> value; RP_220_s = value;}
|
---|
420 | else if(strstr(temp_string.c_str(),"RP_220_x")) {curstring >> varname >> value; RP_220_x = value;}
|
---|
421 | else if(strstr(temp_string.c_str(),"RP_420_s")) {curstring >> varname >> value; RP_420_s = value;}
|
---|
422 | else if(strstr(temp_string.c_str(),"RP_420_x")) {curstring >> varname >> value; RP_420_x = value;}
|
---|
423 | //else if(strstr(temp_string.c_str(),"Beam1Card")) {curstring >> varname >> svalue;Beam1Card = svalue;}
|
---|
424 | //else if(strstr(temp_string.c_str(),"Beam2Card")) {curstring >> varname >> svalue;Beam2Card = svalue;}
|
---|
425 |
|
---|
426 | else if(strstr(temp_string.c_str(),"ELG_Scen")) {curstring >> varname >> value; ELG_Scen = value;}
|
---|
427 | else if(strstr(temp_string.c_str(),"ELG_Ncen")) {curstring >> varname >> value; ELG_Ncen = value;}
|
---|
428 | else if(strstr(temp_string.c_str(),"ELG_Ccen")) {curstring >> varname >> value; ELG_Ccen = value;}
|
---|
429 | else if(strstr(temp_string.c_str(),"ELG_Sfwd")) {curstring >> varname >> value; ELG_Sfwd = value;}
|
---|
430 | else if(strstr(temp_string.c_str(),"ELG_Cfwd")) {curstring >> varname >> value; ELG_Cfwd = value;}
|
---|
431 | else if(strstr(temp_string.c_str(),"ELG_Nfwd")) {curstring >> varname >> value; ELG_Nfwd = value;}
|
---|
432 | else if(strstr(temp_string.c_str(),"HAD_Shcal")) {curstring >> varname >> value; HAD_Shcal = value;}
|
---|
433 | else if(strstr(temp_string.c_str(),"HAD_Nhcal")) {curstring >> varname >> value; HAD_Nhcal = value;}
|
---|
434 | else if(strstr(temp_string.c_str(),"HAD_Chcal")) {curstring >> varname >> value; HAD_Chcal = value;}
|
---|
435 | else if(strstr(temp_string.c_str(),"HAD_Shf")) {curstring >> varname >> value; HAD_Shf = value;}
|
---|
436 | else if(strstr(temp_string.c_str(),"HAD_Nhf")) {curstring >> varname >> value; HAD_Nhf = value;}
|
---|
437 | else if(strstr(temp_string.c_str(),"HAD_Chf")) {curstring >> varname >> value; HAD_Chf = value;}
|
---|
438 | else if(strstr(temp_string.c_str(),"MU_SmearPt")) {curstring >> varname >> value; MU_SmearPt = value;}
|
---|
439 |
|
---|
440 | else if(strstr(temp_string.c_str(),"TRACK_radius")) {curstring >> varname >> ivalue;TRACK_radius = ivalue;}
|
---|
441 | else if(strstr(temp_string.c_str(),"TRACK_length")) {curstring >> varname >> ivalue;TRACK_length = ivalue;}
|
---|
442 | else if(strstr(temp_string.c_str(),"TRACK_bfield_x")) {curstring >> varname >> value; TRACK_bfield_x = value;}
|
---|
443 | else if(strstr(temp_string.c_str(),"TRACK_bfield_y")) {curstring >> varname >> value; TRACK_bfield_y = value;}
|
---|
444 | else if(strstr(temp_string.c_str(),"TRACK_bfield_z")) {curstring >> varname >> value; TRACK_bfield_z = value;}
|
---|
445 | else if(strstr(temp_string.c_str(),"FLAG_bfield")) {curstring >> varname >> ivalue; FLAG_bfield = ivalue;}
|
---|
446 | else if(strstr(temp_string.c_str(),"TRACK_ptmin")) {curstring >> varname >> value; TRACK_ptmin = value;}
|
---|
447 | else if(strstr(temp_string.c_str(),"TRACK_eff")) {curstring >> varname >> ivalue;TRACK_eff = ivalue;}
|
---|
448 |
|
---|
449 | else if(strstr(temp_string.c_str(),"TOWER_number")) {curstring >> varname >> ivalue;TOWER_number = ivalue;}
|
---|
450 | else if(strstr(temp_string.c_str(),"TOWER_eta_edges")){
|
---|
451 | curstring >> varname; for(unsigned int i=0; i<TOWER_number+1; i++) {curstring >> value; TOWER_eta_edges[i] = value;} }
|
---|
452 | else if(strstr(temp_string.c_str(),"TOWER_dphi")){
|
---|
453 | curstring >> varname; for(unsigned int i=0; i<TOWER_number; i++) {curstring >> value; TOWER_dphi[i] = value;} }
|
---|
454 |
|
---|
455 | else if(strstr(temp_string.c_str(),"PTCUT_elec")) {curstring >> varname >> value; PTCUT_elec = value;}
|
---|
456 | else if(strstr(temp_string.c_str(),"PTCUT_muon")) {curstring >> varname >> value; PTCUT_muon = value;}
|
---|
457 | else if(strstr(temp_string.c_str(),"PTCUT_jet")) {curstring >> varname >> value; PTCUT_jet = value;}
|
---|
458 | else if(strstr(temp_string.c_str(),"PTCUT_gamma")) {curstring >> varname >> value; PTCUT_gamma = value;}
|
---|
459 | else if(strstr(temp_string.c_str(),"PTCUT_taujet")) {curstring >> varname >> value; PTCUT_taujet = value;}
|
---|
460 |
|
---|
461 | else if(strstr(temp_string.c_str(),"JET_coneradius")) {curstring >> varname >> value; JET_coneradius = value;}
|
---|
462 | else if(strstr(temp_string.c_str(),"JET_jetalgo")) {curstring >> varname >> ivalue;JET_jetalgo = ivalue;}
|
---|
463 | else if(strstr(temp_string.c_str(),"JET_seed")) {curstring >> varname >> value; JET_seed = value;}
|
---|
464 |
|
---|
465 | else if(strstr(temp_string.c_str(),"BTAG_b")) {curstring >> varname >> ivalue;BTAG_b = ivalue;}
|
---|
466 | else if(strstr(temp_string.c_str(),"BTAG_mistag_c")) {curstring >> varname >> ivalue;BTAG_mistag_c = ivalue;}
|
---|
467 | else if(strstr(temp_string.c_str(),"BTAG_mistag_l")) {curstring >> varname >> ivalue;BTAG_mistag_l = ivalue;}
|
---|
468 |
|
---|
469 | else if(strstr(temp_string.c_str(),"FLAG_vfd")) {curstring >> varname >> ivalue; FLAG_vfd = ivalue;}
|
---|
470 | else if(strstr(temp_string.c_str(),"FLAG_trigger")) {curstring >> varname >> ivalue; FLAG_trigger = ivalue;}
|
---|
471 | else if(strstr(temp_string.c_str(),"FLAG_frog")) {curstring >> varname >> ivalue; FLAG_frog = ivalue;}
|
---|
472 | else if(strstr(temp_string.c_str(),"NEvents_Frog")) {curstring >> varname >> ivalue; NEvents_Frog = ivalue;}
|
---|
473 | }
|
---|
474 |
|
---|
475 | //jet stuffs not defined in the input datacard
|
---|
476 | JET_overlap = 0.75;
|
---|
477 | // MidPoint algorithm definition
|
---|
478 | JET_M_coneareafraction = 0.25;
|
---|
479 | JET_M_maxpairsize = 2;
|
---|
480 | JET_M_maxiterations = 100;
|
---|
481 | // Define Cone algorithm.
|
---|
482 | JET_C_adjacencycut = 2;
|
---|
483 | JET_C_maxiterations = 100;
|
---|
484 | JET_C_iratch = 1;
|
---|
485 | //Define SISCone algorithm.
|
---|
486 | JET_S_npass = 0;
|
---|
487 | JET_S_protojet_ptmin= 0.0;
|
---|
488 |
|
---|
489 | //For Tau-jet definition
|
---|
490 | TAU_energy_scone = 0.15; // radius R of the cone for tau definition, based on energy threshold
|
---|
491 | TAU_track_scone = 0.4; // radius R of the cone for tau definition, based on track number
|
---|
492 | TAU_track_pt = 2; // minimal pt [GeV] for tracks to be considered in tau definition
|
---|
493 | TAU_energy_frac = 0.95; // fraction of energy required in the central part of the cone, for tau jets
|
---|
494 |
|
---|
495 | }
|
---|
496 |
|
---|
497 | void RESOLution::Logfile(const string& LogName) {
|
---|
498 | //void RESOLution::Logfile(string outputfilename) {
|
---|
499 |
|
---|
500 | ofstream f_out(LogName.c_str());
|
---|
501 |
|
---|
502 | f_out<<"#*********************************************************************"<<"\n";
|
---|
503 | f_out<<"# *"<<"\n";
|
---|
504 | f_out<<"# ---- DELPHES release 1.0 ---- *"<<"\n";
|
---|
505 | f_out<<"# *"<<"\n";
|
---|
506 | f_out<<"# A Fast Simulator for general purpose LHC detector *"<<"\n";
|
---|
507 | f_out<<"# Written by S. Ovyn and X. Rouby *"<<"\n";
|
---|
508 | f_out<<"# severine.ovyn@uclouvain.be *"<<"\n";
|
---|
509 | f_out<<"# *"<<"\n";
|
---|
510 | f_out<<"# http: *"<<"\n";
|
---|
511 | f_out<<"# *"<<"\n";
|
---|
512 | f_out<<"# Center for Particle Physics and Phenomenology (CP3) *"<<"\n";
|
---|
513 | f_out<<"# Universite Catholique de Louvain (UCL) *"<<"\n";
|
---|
514 | f_out<<"# Louvain-la-Neuve, Belgium *"<<"\n";
|
---|
515 | f_out<<"# *"<<"\n";
|
---|
516 | f_out<<"#....................................................................*"<<"\n";
|
---|
517 | f_out<<"# *"<<"\n";
|
---|
518 | f_out<<"# This package uses: *"<<"\n";
|
---|
519 | f_out<<"# FastJet algorithm: Phys. Lett. B641 (2006) [hep-ph/0512210] *"<<"\n";
|
---|
520 | f_out<<"# Hector: JINST 2:P09005 (2007) [physics.acc-ph:0707.1198v2] *"<<"\n";
|
---|
521 | f_out<<"# ExRootAnalysis *"<<"\n";
|
---|
522 | f_out<<"# *"<<"\n";
|
---|
523 | f_out<<"#....................................................................*"<<"\n";
|
---|
524 | f_out<<"# *"<<"\n";
|
---|
525 | f_out<<"# This file contains all the running parameters (detector and cuts) *"<<"\n";
|
---|
526 | f_out<<"# necessary to reproduce the detector simulation *"<<"\n";
|
---|
527 | f_out<<"# *"<<"\n";
|
---|
528 | f_out<<"#....................................................................*"<<"\n";
|
---|
529 | f_out<<"#>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>"<<"\n";
|
---|
530 | f_out<<"* *"<<"\n";
|
---|
531 | f_out<<"#******************************** *"<<"\n";
|
---|
532 | f_out<<"# Central detector caracteristics *"<<"\n";
|
---|
533 | f_out<<"#******************************** *"<<"\n";
|
---|
534 | f_out<<"* *"<<"\n";
|
---|
535 | f_out << left << setw(30) <<"* Maximum tracking system: "<<""
|
---|
536 | << left << setw(10) <<CEN_max_tracker <<""<< right << setw(15)<<"*"<<"\n";
|
---|
537 | f_out << left << setw(30) <<"* Maximum central calorimeter: "<<""
|
---|
538 | << left << setw(10) <<CEN_max_calo_cen <<""<< right << setw(15)<<"*"<<"\n";
|
---|
539 | f_out << left << setw(30) <<"* Maximum forward calorimeter: "<<""
|
---|
540 | << left << setw(10) <<CEN_max_calo_fwd <<""<< right << setw(15)<<"*"<<"\n";
|
---|
541 | f_out << left << setw(30) <<"* Muon chambers coverage: "<<""
|
---|
542 | << left << setw(10) <<CEN_max_mu <<""<< right << setw(15)<<"*"<<"\n";
|
---|
543 | f_out<<"* *"<<"\n";
|
---|
544 | if(FLAG_vfd==1){
|
---|
545 | f_out<<"#********************************** *"<<"\n";
|
---|
546 | f_out<<"# Very forward detector switches on *"<<"\n";
|
---|
547 | f_out<<"#********************************** *"<<"\n";
|
---|
548 | f_out<<"* *"<<"\n";
|
---|
549 | f_out << left << setw(55) <<"* Minimum very forward calorimeter: "<<""
|
---|
550 | << left << setw(5) <<VFD_min_calo_vfd <<""<< right << setw(10)<<"*"<<"\n";
|
---|
551 | f_out << left << setw(55) <<"* Maximum very forward calorimeter: "<<""
|
---|
552 | << left << setw(5) <<VFD_max_calo_vfd <<""<< right << setw(10)<<"*"<<"\n";
|
---|
553 | f_out << left << setw(55) <<"* Minimum coverage zero_degree calorimeter "<<""
|
---|
554 | << left << setw(5) <<VFD_min_zdc <<""<< right << setw(10)<<"*"<<"\n";
|
---|
555 | f_out << left << setw(55) <<"* Distance of the ZDC to the IP, in meters: "<<""
|
---|
556 | << left << setw(5) <<VFD_s_zdc <<""<< right << setw(10)<<"*"<<"\n";
|
---|
557 | f_out << left << setw(55) <<"* Distance of the RP to the IP, in meters: "<<""
|
---|
558 | << left << setw(5) <<RP_220_s <<""<< right << setw(10)<<"*"<<"\n";
|
---|
559 | f_out << left << setw(55) <<"* Distance of the RP to the beam, in meters: "<<""
|
---|
560 | << left << setw(5) <<RP_220_x <<""<< right << setw(10)<<"*"<<"\n";
|
---|
561 | f_out << left << setw(55) <<"* Distance of the RP to the IP, in meters: "<<""
|
---|
562 | << left << setw(5) <<RP_420_s <<""<< right << setw(10)<<"*"<<"\n";
|
---|
563 | f_out << left << setw(55) <<"* Distance of the RP to the beam, in meters: "<<""
|
---|
564 | << left << setw(5) <<RP_420_x <<""<< right << setw(10)<<"*"<<"\n";
|
---|
565 | f_out << left << setw(35) <<"* Datacard for beam 1: "<<""
|
---|
566 | << left << setw(25) <<RP_beam1Card <<""<< right << setw(10)<<"*"<<"\n";
|
---|
567 | f_out << left << setw(35) <<"* Datacard for beam 2: "<<""
|
---|
568 | << left << setw(25) <<RP_beam2Card <<""<< right << setw(10)<<"*"<<"\n";
|
---|
569 | f_out << left << setw(40) <<"* Beam separation, in meters: "<<""
|
---|
570 | << left << setw(10) << RP_offsetEl_x <<""<< right << setw(20)<<"! not in datacard *"<<"\n";
|
---|
571 | f_out << left << setw(44) <<"* Distance from IP for Beam separation (m):"<<""
|
---|
572 | << left << setw(6) <<RP_offsetEl_s <<""<< right << setw(20)<<"! not in datacard *"<<"\n";
|
---|
573 |
|
---|
574 |
|
---|
575 |
|
---|
576 | f_out<<"* *"<<"\n";
|
---|
577 | }
|
---|
578 | else {
|
---|
579 | f_out<<"#*********************************** *"<<"\n";
|
---|
580 | f_out<<"# Very forward detector switches off *"<<"\n";
|
---|
581 | f_out<<"#*********************************** *"<<"\n";
|
---|
582 | f_out<<"* *"<<"\n";
|
---|
583 | }
|
---|
584 | f_out<<"#************************************ *"<<"\n";
|
---|
585 | f_out<<"# Electromagnetic smearing parameters *"<<"\n";
|
---|
586 | f_out<<"#************************************ *"<<"\n";
|
---|
587 | f_out<<"* *"<<"\n";
|
---|
588 | //# \sigma/E = C + N/E + S/\sqrt{E}
|
---|
589 | f_out << left << setw(30) <<"* S term for central ECAL: "<<""
|
---|
590 | << left << setw(30) <<ELG_Scen <<""<< right << setw(10)<<"*"<<"\n";
|
---|
591 | f_out << left << setw(30) <<"* N term for central ECAL: "<<""
|
---|
592 | << left << setw(30) <<ELG_Ncen <<""<< right << setw(10)<<"*"<<"\n";
|
---|
593 | f_out << left << setw(30) <<"* C term for central ECAL: "<<""
|
---|
594 | << left << setw(30) <<ELG_Ccen <<""<< right << setw(10)<<"*"<<"\n";
|
---|
595 | f_out << left << setw(30) <<"* S term for forward ECAL: "<<""
|
---|
596 | << left << setw(30) <<ELG_Sfwd <<""<< right << setw(10)<<"*"<<"\n";
|
---|
597 | f_out << left << setw(30) <<"* N term for forward ECAL: "<<""
|
---|
598 | << left << setw(30) <<ELG_Nfwd <<""<< right << setw(10)<<"*"<<"\n";
|
---|
599 | f_out << left << setw(30) <<"* C term for forward ECAL: "<<""
|
---|
600 | << left << setw(30) <<ELG_Cfwd <<""<< right << setw(10)<<"*"<<"\n";
|
---|
601 | f_out<<"* *"<<"\n";
|
---|
602 | f_out<<"#***************************** *"<<"\n";
|
---|
603 | f_out<<"# Hadronic smearing parameters *"<<"\n";
|
---|
604 | f_out<<"#***************************** *"<<"\n";
|
---|
605 | f_out<<"* *"<<"\n";
|
---|
606 | f_out << left << setw(30) <<"* S term for central HCAL: "<<""
|
---|
607 | << left << setw(30) <<HAD_Shcal <<""<< right << setw(10)<<"*"<<"\n";
|
---|
608 | f_out << left << setw(30) <<"* N term for central HCAL: "<<""
|
---|
609 | << left << setw(30) <<HAD_Nhcal <<""<< right << setw(10)<<"*"<<"\n";
|
---|
610 | f_out << left << setw(30) <<"* C term for central HCAL: "<<""
|
---|
611 | << left << setw(30) <<HAD_Chcal <<""<< right << setw(10)<<"*"<<"\n";
|
---|
612 | f_out << left << setw(30) <<"* S term for forward HCAL: "<<""
|
---|
613 | << left << setw(30) <<HAD_Shf <<""<< right << setw(10)<<"*"<<"\n";
|
---|
614 | f_out << left << setw(30) <<"* N term for forward HCAL: "<<""
|
---|
615 | << left << setw(30) <<HAD_Nhf <<""<< right << setw(10)<<"*"<<"\n";
|
---|
616 | f_out << left << setw(30) <<"* C term for forward HCAL: "<<""
|
---|
617 | << left << setw(30) <<HAD_Chf <<""<< right << setw(10)<<"*"<<"\n";
|
---|
618 | f_out<<"* *"<<"\n";
|
---|
619 | f_out<<"#************************* *"<<"\n";
|
---|
620 | f_out<<"# Muon smearing parameters *"<<"\n";
|
---|
621 | f_out<<"#************************* *"<<"\n";
|
---|
622 | f_out<<"* *"<<"\n";
|
---|
623 | f_out << left << setw(55) <<"* PT resolution for muons : "<<""
|
---|
624 | << left << setw(5) <<MU_SmearPt <<""<< right << setw(10)<<"*"<<"\n";
|
---|
625 | f_out<<"* *"<<"\n";
|
---|
626 | if(FLAG_bfield==1){
|
---|
627 | f_out<<"#*************************** *"<<"\n";
|
---|
628 | f_out<<"# Magnetic field switches on *"<<"\n";
|
---|
629 | f_out<<"#*************************** *"<<"\n";
|
---|
630 | f_out<<"* *"<<"\n";
|
---|
631 | f_out << left << setw(55) <<"* Radius of the BField coverage: "<<""
|
---|
632 | << left << setw(5) <<TRACK_radius <<""<< right << setw(10)<<"*"<<"\n";
|
---|
633 | f_out << left << setw(55) <<"* Length of the BField coverage: "<<""
|
---|
634 | << left << setw(5) <<TRACK_length <<""<< right << setw(10)<<"*"<<"\n";
|
---|
635 | f_out << left << setw(55) <<"* BField X component: "<<""
|
---|
636 | << left << setw(5) <<TRACK_bfield_x <<""<< right << setw(10)<<"*"<<"\n";
|
---|
637 | f_out << left << setw(55) <<"* BField Y component: "<<""
|
---|
638 | << left << setw(5) <<TRACK_bfield_y <<""<< right << setw(10)<<"*"<<"\n";
|
---|
639 | f_out << left << setw(55) <<"* BField Z component: "<<""
|
---|
640 | << left << setw(5) <<TRACK_bfield_z <<""<< right << setw(10)<<"*"<<"\n";
|
---|
641 | f_out << left << setw(55) <<"* Minimal pT needed to reach the calorimeter [GeV]: "<<""
|
---|
642 | << left << setw(10) <<TRACK_ptmin <<""<< right << setw(5)<<"*"<<"\n";
|
---|
643 | f_out << left << setw(55) <<"* Efficiency associated to the tracking: "<<""
|
---|
644 | << left << setw(10) <<TRACK_eff <<""<< right << setw(5)<<"*"<<"\n";
|
---|
645 | f_out<<"* *"<<"\n";
|
---|
646 | }
|
---|
647 | else {
|
---|
648 | f_out<<"#**************************** *"<<"\n";
|
---|
649 | f_out<<"# Magnetic field switches off *"<<"\n";
|
---|
650 | f_out<<"#**************************** *"<<"\n";
|
---|
651 | f_out << left << setw(55) <<"* Minimal pT needed to reach the calorimeter [GeV]: "<<""
|
---|
652 | << left << setw(10) <<TRACK_ptmin <<""<< right << setw(5)<<"*"<<"\n";
|
---|
653 | f_out << left << setw(55) <<"* Efficiency associated to the tracking: "<<""
|
---|
654 | << left << setw(10) <<TRACK_eff <<""<< right << setw(5)<<"*"<<"\n";
|
---|
655 | f_out<<"* *"<<"\n";
|
---|
656 | }
|
---|
657 | f_out<<"#******************** *"<<"\n";
|
---|
658 | f_out<<"# Calorimetric Towers *"<<"\n";
|
---|
659 | f_out<<"#******************** *"<<"\n";
|
---|
660 | f_out << left << setw(55) <<"* Number of calorimetric towers in eta, for eta>0: "<<""
|
---|
661 | << left << setw(5) << TOWER_number <<""<< right << setw(10)<<"*"<<"\n";
|
---|
662 | f_out << left << setw(55) <<"* Tower edges in eta, for eta>0: "<<"" << right << setw(15)<<"*"<<"\n";
|
---|
663 | f_out << "* ";
|
---|
664 | for (unsigned int i=0; i<TOWER_number+1; i++) {
|
---|
665 | f_out << left << setw(7) << TOWER_eta_edges[i];
|
---|
666 | if(!( (i+1) %9 )) f_out << right << setw(3) << "*" << "\n" << "* ";
|
---|
667 | }
|
---|
668 | for (unsigned int i=(TOWER_number+1)%9; i<9; i++) f_out << left << setw(7) << "";
|
---|
669 | f_out << right << setw(3)<<"*"<<"\n";
|
---|
670 | f_out << left << setw(55) <<"* Tower sizes in phi, for eta>0 [degree]:"<<"" << right << setw(15)<<"*"<<"\n";
|
---|
671 | f_out << "* ";
|
---|
672 | for (unsigned int i=0; i<TOWER_number; i++) {
|
---|
673 | f_out << left << setw(7) << TOWER_dphi[i];
|
---|
674 | if(!( (i+1) %9 )) f_out << right << setw(3) << "*" << "\n" << "* ";
|
---|
675 | }
|
---|
676 | for (unsigned int i=(TOWER_number)%9; i<9; i++) f_out << left << setw(7) << "";
|
---|
677 | f_out << right << setw(3)<<"*"<<"\n";
|
---|
678 | f_out<<"* *"<<"\n";
|
---|
679 | f_out<<"#******************* *"<<"\n";
|
---|
680 | f_out<<"# Minimum pT's [GeV] *"<<"\n";
|
---|
681 | f_out<<"#******************* *"<<"\n";
|
---|
682 | f_out<<"* *"<<"\n";
|
---|
683 | f_out << left << setw(40) <<"* Minimum pT for electrons: "<<""
|
---|
684 | << left << setw(20) <<PTCUT_elec <<""<< right << setw(10)<<"*"<<"\n";
|
---|
685 | f_out << left << setw(40) <<"* Minimum pT for muons: "<<""
|
---|
686 | << left << setw(20) <<PTCUT_muon <<""<< right << setw(10)<<"*"<<"\n";
|
---|
687 | f_out << left << setw(40) <<"* Minimum pT for jets: "<<""
|
---|
688 | << left << setw(20) <<PTCUT_jet <<""<< right << setw(10)<<"*"<<"\n";
|
---|
689 | f_out << left << setw(40) <<"* Minimum pT for Tau-jets: "<<""
|
---|
690 | << left << setw(20) <<PTCUT_taujet <<""<< right << setw(10)<<"*"<<"\n";
|
---|
691 | f_out << left << setw(40) <<"* Minimum pT for photons: "<<""
|
---|
692 | << left << setw(20) <<PTCUT_gamma <<""<< right << setw(10)<<"*"<<"\n";
|
---|
693 | f_out<<"* *"<<"\n";
|
---|
694 | f_out<<"#*************** *"<<"\n";
|
---|
695 | f_out<<"# Jet definition *"<<"\n";
|
---|
696 | f_out<<"#*************** *"<<"\n";
|
---|
697 | f_out<<"* *"<<"\n";
|
---|
698 | f_out<<"* Six algorithms are currently available: *"<<"\n";
|
---|
699 | f_out<<"* - 1) CDF cone algorithm, *"<<"\n";
|
---|
700 | f_out<<"* - 2) CDF MidPoint algorithm, *"<<"\n";
|
---|
701 | f_out<<"* - 3) SIScone algorithm, *"<<"\n";
|
---|
702 | f_out<<"* - 4) kt algorithm, *"<<"\n";
|
---|
703 | f_out<<"* - 5) Cambrigde/Aachen algorithm, *"<<"\n";
|
---|
704 | f_out<<"* - 6) Anti-kt algorithm. *"<<"\n";
|
---|
705 | f_out<<"* *"<<"\n";
|
---|
706 | f_out<<"* You have chosen *"<<"\n";
|
---|
707 | switch(JET_jetalgo) {
|
---|
708 | default:
|
---|
709 | case 1: {
|
---|
710 | f_out<<"* CDF JetClu jet algorithm with parameters: *"<<"\n";
|
---|
711 | f_out << left << setw(40) <<"* - Seed threshold: "<<""
|
---|
712 | << left << setw(10) <<JET_seed <<""<< right << setw(20)<<"! not in datacard *"<<"\n";
|
---|
713 | f_out << left << setw(40) <<"* - Cone radius: "<<""
|
---|
714 | << left << setw(10) <<JET_coneradius <<""<< right << setw(20)<<"*"<<"\n";
|
---|
715 | f_out << left << setw(40) <<"* - Adjacency cut: "<<""
|
---|
716 | << left << setw(10) <<JET_C_adjacencycut <<""<< right << setw(20)<<"! not in datacard *"<<"\n";
|
---|
717 | f_out << left << setw(40) <<"* - Max iterations: "<<""
|
---|
718 | << left << setw(10) <<JET_C_maxiterations <<""<< right << setw(20)<<"! not in datacard *"<<"\n";
|
---|
719 | f_out << left << setw(40) <<"* - Iratch: "<<""
|
---|
720 | << left << setw(10) <<JET_C_iratch <<""<< right << setw(20)<<"! not in datacard *"<<"\n";
|
---|
721 | f_out << left << setw(40) <<"* - Overlap threshold: "<<""
|
---|
722 | << left << setw(10) <<JET_overlap <<""<< right << setw(20)<<"! not in datacard *"<<"\n";
|
---|
723 | }
|
---|
724 | break;
|
---|
725 | case 2: {
|
---|
726 | f_out<<"* CDF midpoint jet algorithm with parameters: *"<<"\n";
|
---|
727 | f_out << left << setw(40) <<"* - Seed threshold: "<<""
|
---|
728 | << left << setw(20) <<JET_seed <<""<< right << setw(10)<<"! not in datacard *"<<"\n";
|
---|
729 | f_out << left << setw(40) <<"* - Cone radius: "<<""
|
---|
730 | << left << setw(20) <<JET_coneradius <<""<< right << setw(10)<<"*"<<"\n";
|
---|
731 | f_out << left << setw(40) <<"* - Cone area fraction:"<<""
|
---|
732 | << left << setw(20) <<JET_M_coneareafraction <<""<< right << setw(10)<<"! not in datacard *"<<"\n";
|
---|
733 | f_out << left << setw(40) <<"* - Maximum pair size: "<<""
|
---|
734 | << left << setw(20) <<JET_M_maxpairsize <<""<< right << setw(10)<<"! not in datacard *"<<"\n";
|
---|
735 | f_out << left << setw(40) <<"* - Max iterations: "<<""
|
---|
736 | << left << setw(20) <<JET_M_maxiterations <<""<< right << setw(10)<<"! not in datacard *"<<"\n";
|
---|
737 | f_out << left << setw(40) <<"* - Overlap threshold: "<<""
|
---|
738 | << left << setw(20) <<JET_overlap <<""<< right << setw(10)<<"! not in datacard *"<<"\n";
|
---|
739 | }
|
---|
740 | break;
|
---|
741 | case 3: {
|
---|
742 | f_out <<"* SISCone jet algorithm with parameters: *"<<"\n";
|
---|
743 | f_out << left << setw(40) <<"* - Cone radius: "<<""
|
---|
744 | << left << setw(20) <<JET_coneradius <<""<< right << setw(10)<<"*"<<"\n";
|
---|
745 | f_out << left << setw(40) <<"* - Overlap threshold: "<<""
|
---|
746 | << left << setw(20) <<JET_overlap <<""<< right << setw(10)<<"! not in datacard *"<<"\n";
|
---|
747 | f_out << left << setw(40) <<"* - Number pass max: "<<""
|
---|
748 | << left << setw(20) <<JET_S_npass <<""<< right << setw(10)<<"! not in datacard *"<<"\n";
|
---|
749 | f_out << left << setw(40) <<"* - Minimum pT for protojet: "<<""
|
---|
750 | << left << setw(20) <<JET_S_protojet_ptmin <<""<< right << setw(10)<<"! not in datacard *"<<"\n";
|
---|
751 | }
|
---|
752 | break;
|
---|
753 | case 4: {
|
---|
754 | f_out <<"* KT jet algorithm with parameters: *"<<"\n";
|
---|
755 | f_out << left << setw(40) <<"* - Cone radius: "<<""
|
---|
756 | << left << setw(20) <<JET_coneradius <<""<< right << setw(10)<<"*"<<"\n";
|
---|
757 | }
|
---|
758 | break;
|
---|
759 | case 5: {
|
---|
760 | f_out <<"* Cambridge/Aachen jet algorithm with parameters: *"<<"\n";
|
---|
761 | f_out << left << setw(40) <<"* - Cone radius: "<<""
|
---|
762 | << left << setw(20) <<JET_coneradius <<""<< right << setw(10)<<"*"<<"\n";
|
---|
763 | }
|
---|
764 | break;
|
---|
765 | case 6: {
|
---|
766 | f_out <<"* Anti-kt jet algorithm with parameters: *"<<"\n";
|
---|
767 | f_out << left << setw(40) <<"* - Cone radius: "<<""
|
---|
768 | << left << setw(20) <<JET_coneradius <<""<< right << setw(10)<<"*"<<"\n";
|
---|
769 | }
|
---|
770 | break;
|
---|
771 | }
|
---|
772 | f_out<<"* *"<<"\n";
|
---|
773 | f_out<<"#****************************** *"<<"\n";
|
---|
774 | f_out<<"# Tau-jet definition parameters *"<<"\n";
|
---|
775 | f_out<<"#****************************** *"<<"\n";
|
---|
776 | f_out<<"* *"<<"\n";
|
---|
777 | f_out << left << setw(45) <<"* Cone radius for calorimeter tagging: "<<""
|
---|
778 | << left << setw(5) <<TAU_energy_scone <<""<< right << setw(20)<<"*"<<"\n";
|
---|
779 | f_out << left << setw(45) <<"* Fraction of energy in the small cone: "<<""
|
---|
780 | << left << setw(5) <<TAU_energy_frac*100 <<""<< right << setw(20)<<"! not in datacard *"<<"\n";
|
---|
781 | f_out << left << setw(45) <<"* Cone radius for tracking tagging: "<<""
|
---|
782 | << left << setw(5) <<TAU_track_scone <<""<< right << setw(20)<<"*"<<"\n";
|
---|
783 | f_out << left << setw(45) <<"* Minimum track pT [GeV]: "<<""
|
---|
784 | << left << setw(5) <<TAU_track_pt <<""<< right << setw(20)<<"*"<<"\n";
|
---|
785 | f_out<<"* *"<<"\n";
|
---|
786 | f_out<<"#*************************** *"<<"\n";
|
---|
787 | f_out<<"# B-tagging efficiencies [%] *"<<"\n";
|
---|
788 | f_out<<"#*************************** *"<<"\n";
|
---|
789 | f_out<<"* *"<<"\n";
|
---|
790 | f_out << left << setw(50) <<"* Efficiency to tag a \"b\" as a b-jet: "<<""
|
---|
791 | << left << setw(10) <<BTAG_b <<""<< right << setw(10)<<"*"<<"\n";
|
---|
792 | f_out << left << setw(50) <<"* Efficiency to mistag a c-jet as a b-jet: "<<""
|
---|
793 | << left << setw(10) <<BTAG_mistag_c <<""<< right << setw(10)<<"*"<<"\n";
|
---|
794 | f_out << left << setw(50) <<"* Efficiency to mistag a light jet as a b-jet: "<<""
|
---|
795 | << left << setw(10) <<BTAG_mistag_l <<""<< right << setw(10)<<"*"<<"\n";
|
---|
796 | f_out<<"* *"<<"\n";
|
---|
797 | f_out<<"* *"<<"\n";
|
---|
798 | f_out<<"#....................................................................*"<<"\n";
|
---|
799 | f_out<<"#>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>"<<"\n";
|
---|
800 |
|
---|
801 | }
|
---|
802 |
|
---|
803 | // **********Provides the smeared TLorentzVector for the electrons********
|
---|
804 | // Smears the electron energy, and changes the 4-momentum accordingly
|
---|
805 | // different smearing if the electron is central (eta < 2.5) or forward
|
---|
806 | void RESOLution::SmearElectron(TLorentzVector &electron) {
|
---|
807 | // the 'electron' variable will be changed by the function
|
---|
808 | float energy = electron.E(); // before smearing
|
---|
809 | float energyS = 0.0; // after smearing // \sigma/E = C + N/E + S/\sqrt{E}
|
---|
810 |
|
---|
811 | if(fabs(electron.Eta()) < CEN_max_tracker) { // if the electron is inside the tracker
|
---|
812 | energyS = gRandom->Gaus(energy, sqrt(
|
---|
813 | pow(ELG_Ncen,2) +
|
---|
814 | pow(ELG_Ccen*energy,2) +
|
---|
815 | pow(ELG_Scen*sqrt(energy),2) ));
|
---|
816 | }
|
---|
817 | if(fabs(electron.Eta()) > CEN_max_tracker && fabs(electron.Eta()) < CEN_max_calo_fwd){
|
---|
818 | energyS = gRandom->Gaus(energy, sqrt(
|
---|
819 | pow(ELG_Nfwd,2) +
|
---|
820 | pow(ELG_Cfwd*energy,2) +
|
---|
821 | pow(ELG_Sfwd*sqrt(energy),2) ) );
|
---|
822 | }
|
---|
823 | electron.SetPtEtaPhiE(energyS/cosh(electron.Eta()), electron.Eta(), electron.Phi(), energyS);
|
---|
824 | if(electron.E() < 0)electron.SetPxPyPzE(0,0,0,0); // no negative values after smearing !
|
---|
825 | }
|
---|
826 |
|
---|
827 |
|
---|
828 | // **********Provides the smeared TLorentzVector for the muons********
|
---|
829 | // Smears the muon pT and changes the 4-momentum accordingly
|
---|
830 | void RESOLution::SmearMu(TLorentzVector &muon) {
|
---|
831 | // the 'muon' variable will be changed by the function
|
---|
832 | float pt = muon.Pt(); // before smearing
|
---|
833 | float ptS=pt;
|
---|
834 |
|
---|
835 | if(fabs(muon.Eta()) < CEN_max_mu )
|
---|
836 | {
|
---|
837 | ptS = gRandom->Gaus(pt, MU_SmearPt*pt ); // after smearing // \sigma/E = C + N/E + S/\sqrt{E}
|
---|
838 | }
|
---|
839 | muon.SetPtEtaPhiE(ptS, muon.Eta(), muon.Phi(), ptS*cosh(muon.Eta()));
|
---|
840 |
|
---|
841 | if(muon.E() < 0)muon.SetPxPyPzE(0,0,0,0); // no negative values after smearing !
|
---|
842 | }
|
---|
843 |
|
---|
844 |
|
---|
845 | // **********Provides the smeared TLorentzVector for the hadrons********
|
---|
846 | // Smears the hadron 4-momentum
|
---|
847 | void RESOLution::SmearHadron(TLorentzVector &hadron, const float frac)
|
---|
848 | // the 'hadron' variable will be changed by the function
|
---|
849 | // the 'frac' variable describes the long-living particles. Should be 0.7 for K0S and Lambda, 1. otherwise
|
---|
850 | {
|
---|
851 | float energy = hadron.E(); // before smearing
|
---|
852 | float energyS = 0.0; // after smearing // \sigma/E = C + N/E + S/\sqrt{E}
|
---|
853 | float energy_ecal = (1.0 - frac)*energy; // electromagnetic calorimeter
|
---|
854 | float energy_hcal = frac*energy; // hadronic calorimeter
|
---|
855 | // frac takes into account the decay of long-living particles, that decay in the calorimeters
|
---|
856 | // some of the particles decay mostly in the ecal, some mostly in the hcal
|
---|
857 |
|
---|
858 | float energyS1,energyS2;
|
---|
859 | if(fabs(hadron.Eta()) < CEN_max_calo_cen) {
|
---|
860 | energyS1 = gRandom->Gaus(energy_hcal, sqrt(
|
---|
861 | pow(HAD_Nhcal,2) +
|
---|
862 | pow(HAD_Chcal*energy_hcal,2) +
|
---|
863 | pow(HAD_Shcal*sqrt(energy_hcal),2) )) ;
|
---|
864 |
|
---|
865 |
|
---|
866 | energyS2 = gRandom->Gaus(energy_ecal, sqrt(
|
---|
867 | pow(ELG_Ncen,2) +
|
---|
868 | pow(ELG_Ccen*energy_ecal,2) +
|
---|
869 | pow(ELG_Scen*sqrt(energy_ecal),2) ) );
|
---|
870 |
|
---|
871 | energyS = ((energyS1>0)?energyS1:0) + ((energyS2>0)?energyS2:0);
|
---|
872 | }
|
---|
873 | if(fabs(hadron.Eta()) > CEN_max_calo_cen && fabs(hadron.Eta()) < CEN_max_calo_fwd){
|
---|
874 | energyS = gRandom->Gaus(energy, sqrt(
|
---|
875 | pow(HAD_Nhf,2) +
|
---|
876 | pow(HAD_Chf*energy,2) +
|
---|
877 | pow(HAD_Shf*sqrt(energy),2) ));
|
---|
878 | }
|
---|
879 |
|
---|
880 |
|
---|
881 |
|
---|
882 | hadron.SetPtEtaPhiE(energyS/cosh(hadron.Eta()),hadron.Eta(), hadron.Phi(), energyS);
|
---|
883 |
|
---|
884 | if(hadron.E() < 0)hadron.SetPxPyPzE(0,0,0,0);
|
---|
885 | }
|
---|
886 |
|
---|
887 | //******************************************************************************************
|
---|
888 |
|
---|
889 | void RESOLution::SortedVector(vector<ParticleUtil> &vect)
|
---|
890 | {
|
---|
891 | int i,j = 0;
|
---|
892 | TLorentzVector tmp;
|
---|
893 | bool en_desordre = true;
|
---|
894 | int entries=vect.size();
|
---|
895 | for(i = 0 ; (i < entries) && en_desordre; i++)
|
---|
896 | {
|
---|
897 | en_desordre = false;
|
---|
898 | for(j = 1 ; j < entries - i ; j++)
|
---|
899 | {
|
---|
900 | if ( vect[j].Pt() > vect[j-1].Pt() )
|
---|
901 | {
|
---|
902 | ParticleUtil tmp = vect[j-1];
|
---|
903 | vect[j-1] = vect[j];
|
---|
904 | vect[j] = tmp;
|
---|
905 | en_desordre = true;
|
---|
906 | }
|
---|
907 | }
|
---|
908 | }
|
---|
909 | }
|
---|
910 |
|
---|
911 | // **********Provides the energy in the cone of radius TAU_CONE_ENERGY for the tau identification********
|
---|
912 | // to be taken into account, a calo tower should
|
---|
913 | // 1) have a transverse energy \f$ E_T = \sqrt{E_X^2 + E_Y^2} \f$ above a given threshold
|
---|
914 | // 2) be inside a cone with a radius R and the axis defined by (eta,phi)
|
---|
915 | double RESOLution::EnergySmallCone(const vector<PhysicsTower> &towers, const float eta, const float phi) {
|
---|
916 | double Energie=0;
|
---|
917 | for(unsigned int i=0; i < towers.size(); i++) {
|
---|
918 | if(towers[i].fourVector.pt() < JET_seed) continue;
|
---|
919 | if((DeltaR(phi,eta,towers[i].fourVector.phi(),towers[i].fourVector.eta()) < TAU_energy_scone)) {
|
---|
920 | Energie += towers[i].fourVector.E;
|
---|
921 | }
|
---|
922 | }
|
---|
923 | return Energie;
|
---|
924 | }
|
---|
925 |
|
---|
926 |
|
---|
927 | // **********Provides the number of tracks in the cone of radius TAU_CONE_TRACKS for the tau identification********
|
---|
928 | // to be taken into account, a track should
|
---|
929 | // 1) avec a transverse momentum \$f p_T \$ above a given threshold
|
---|
930 | // 2) be inside a cone with a radius R and the axis defined by (eta,phi)
|
---|
931 | // IMPORTANT REMARK !!!!!
|
---|
932 | // previously, the argument 'phi' was before the argument 'eta'
|
---|
933 | // this has been changed for consistency with the other functions
|
---|
934 | // double check your running code that uses NumTracks !
|
---|
935 | unsigned int RESOLution::NumTracks(const vector<TLorentzVector> &tracks, const float pt_track, const float eta, const float phi) {
|
---|
936 | unsigned int numtrack=0;
|
---|
937 | for(unsigned int i=0; i < tracks.size(); i++) {
|
---|
938 | if((tracks[i].Pt() < pt_track )||
|
---|
939 | (DeltaR(phi,eta,tracks[i].Phi(),tracks[i].Eta()) > TAU_track_scone)
|
---|
940 | )continue;
|
---|
941 | numtrack++;
|
---|
942 | }
|
---|
943 | return numtrack;
|
---|
944 | }
|
---|
945 |
|
---|
946 |
|
---|
947 | //*** Returns the PID of the particle with the highest energy, in a cone with a radius CONERADIUS and an axis (eta,phi) *********
|
---|
948 | //used by Btaggedjet
|
---|
949 | ///// Attention : bug removed => CONERADIUS/2 -> CONERADIUS !!
|
---|
950 | int RESOLution::Bjets(const TSimpleArray<TRootGenParticle> &subarray, const float eta, const float phi) {
|
---|
951 | float emax=0;
|
---|
952 | int Ppid=0;
|
---|
953 | if(subarray.GetEntries()>0) {
|
---|
954 | for(int i=0; i < subarray.GetEntries();i++) { // should have pt>PT_JETMIN and a small cone radius (r<CONE_JET)
|
---|
955 | float genDeltaR = DeltaR(subarray[i]->Phi,subarray[i]->Eta,phi,eta);
|
---|
956 | if(genDeltaR < JET_coneradius && subarray[i]->E > emax) {
|
---|
957 | emax=subarray[i]->E;
|
---|
958 | Ppid=abs(subarray[i]->PID);
|
---|
959 | }
|
---|
960 | }
|
---|
961 | }
|
---|
962 | return Ppid;
|
---|
963 | }
|
---|
964 |
|
---|
965 |
|
---|
966 | //******************** Simulates the b-tagging efficiency for real bjet, or the misendentification for other jets****************
|
---|
967 | bool RESOLution::Btaggedjet(const TLorentzVector &JET, const TSimpleArray<TRootGenParticle> &subarray) {
|
---|
968 | if( rand()%100 < (BTAG_b+1) && Bjets(subarray,JET.Eta(),JET.Phi())==pB ) return true; // b-tag of b-jets is 40%
|
---|
969 | else if( rand()%100 < (BTAG_mistag_c+1) && Bjets(subarray,JET.Eta(),JET.Phi())==pC ) return true; // b-tag of c-jets is 10%
|
---|
970 | else if( rand()%100 < (BTAG_mistag_l+1) && Bjets(subarray,JET.Eta(),JET.Phi())!=0) return true; // b-tag of light jets is 1%
|
---|
971 | return false;
|
---|
972 | }
|
---|
973 |
|
---|
974 | //***********************Isolation criteria***********************
|
---|
975 | //****************************************************************
|
---|
976 | bool RESOLution::Isolation(const float phi, const float eta,const vector<TLorentzVector> &tracks, const float pt_second_track)
|
---|
977 | {
|
---|
978 | bool isolated = false;
|
---|
979 | float deltar=5000.; // Initial value; should be high; no further repercussion
|
---|
980 | // loop on all final charged particles, with p_t >2, close enough from the electron
|
---|
981 | for(unsigned int i=0; i < tracks.size(); i++)
|
---|
982 | {
|
---|
983 | if(tracks[i].Pt() < pt_second_track)continue;
|
---|
984 | float genDeltaR = DeltaR(phi,eta,tracks[i].Phi(),tracks[i].Eta());
|
---|
985 | if(
|
---|
986 | (genDeltaR > deltar) ||
|
---|
987 | (genDeltaR==0)
|
---|
988 | ) continue ;
|
---|
989 | deltar=genDeltaR;
|
---|
990 | }
|
---|
991 | if(deltar > 0.5) isolated = true;
|
---|
992 | return isolated;
|
---|
993 | }
|
---|
994 |
|
---|
995 |
|
---|
996 | //********** returns a segmented value for eta and phi, for calo towers *****
|
---|
997 | void RESOLution::BinEtaPhi(const float phi, const float eta, float& iPhi, float& iEta){
|
---|
998 | iEta = -100;
|
---|
999 | int index=-100;
|
---|
1000 | for (unsigned int i=1; i< TOWER_number+1; i++) {
|
---|
1001 | if(fabs(eta)>TOWER_eta_edges[i-1] && fabs(eta)<TOWER_eta_edges[i]) {
|
---|
1002 | iEta = (eta>0) ? TOWER_eta_edges[i-1] : -TOWER_eta_edges[i];
|
---|
1003 | index = i-1;
|
---|
1004 | //cout << setw(15) << left << eta << "\t" << iEta << endl;
|
---|
1005 | break;
|
---|
1006 | }
|
---|
1007 | }
|
---|
1008 | if(index==-100) return;
|
---|
1009 | iPhi = -100;
|
---|
1010 | float dphi = TOWER_dphi[index]*pi/180.;
|
---|
1011 | for (unsigned int i=1; i < 360/TOWER_dphi[index]; i++ ) {
|
---|
1012 | float low = -pi+(i-1)*dphi;
|
---|
1013 | float high= low+dphi;
|
---|
1014 | if(phi > low && phi < high ){
|
---|
1015 | iPhi = low;
|
---|
1016 | break;
|
---|
1017 | }
|
---|
1018 | }
|
---|
1019 | if (phi > pi-dphi) iPhi = pi-dphi;
|
---|
1020 | }
|
---|
1021 |
|
---|
1022 | //**************************** Returns the delta Phi ****************************
|
---|
1023 | float DeltaPhi(const float phi1, const float phi2) {
|
---|
1024 | float deltaphi=phi1-phi2; // in here, -pi < phi < pi
|
---|
1025 | if(fabs(deltaphi) > pi) {
|
---|
1026 | deltaphi=2.*pi -fabs(deltaphi);// put deltaphi between 0 and pi
|
---|
1027 | }
|
---|
1028 | else deltaphi=fabs(deltaphi);
|
---|
1029 |
|
---|
1030 | return deltaphi;
|
---|
1031 | }
|
---|
1032 |
|
---|
1033 | //**************************** Returns the delta R****************************
|
---|
1034 | float DeltaR(const float phi1, const float eta1, const float phi2, const float eta2) {
|
---|
1035 | return sqrt(pow(DeltaPhi(phi1,phi2),2) + pow(eta1-eta2,2));
|
---|
1036 | }
|
---|
1037 |
|
---|
1038 | int sign(const int myint) {
|
---|
1039 | if (myint >0) return 1;
|
---|
1040 | else if (myint <0) return -1;
|
---|
1041 | else return 0;
|
---|
1042 | }
|
---|
1043 |
|
---|
1044 | int sign(const float myfloat) {
|
---|
1045 | if (myfloat >0) return 1;
|
---|
1046 | else if (myfloat <0) return -1;
|
---|
1047 | else return 0;
|
---|
1048 | }
|
---|
1049 |
|
---|
1050 | int Charge(const int pid)
|
---|
1051 | {
|
---|
1052 | int charge;
|
---|
1053 | if(
|
---|
1054 | (pid == pGAMMA) ||
|
---|
1055 | (pid == pPI0) ||
|
---|
1056 | (pid == pK0L) ||
|
---|
1057 | (pid == pN) ||
|
---|
1058 | (pid == pSIGMA0) ||
|
---|
1059 | (pid == pDELTA0) ||
|
---|
1060 | (pid == pK0S) // not charged particles : invisible by tracker
|
---|
1061 | )
|
---|
1062 | charge = 0;
|
---|
1063 | else charge = (sign(pid));
|
---|
1064 | return charge;
|
---|
1065 |
|
---|
1066 | }
|
---|