[2] | 1 | /*
|
---|
| 2 | ---- Delphes ----
|
---|
| 3 | A Fast Simulator for general purpose LHC detector
|
---|
| 4 | S. Ovyn ~~~~ severine.ovyn@uclouvain.be
|
---|
| 5 |
|
---|
| 6 | Center for Particle Physics and Phenomenology (CP3)
|
---|
| 7 | Universite Catholique de Louvain (UCL)
|
---|
| 8 | Louvain-la-Neuve, Belgium
|
---|
| 9 | */
|
---|
| 10 |
|
---|
| 11 | /// \file SmearUtil.cc
|
---|
| 12 | /// \brief RESOLution class, and some generic definitions
|
---|
| 13 |
|
---|
| 14 |
|
---|
| 15 | #include "interface/SmearUtil.h"
|
---|
| 16 | #include "TRandom.h"
|
---|
| 17 |
|
---|
| 18 | #include <iostream>
|
---|
| 19 | #include <sstream>
|
---|
| 20 | #include <fstream>
|
---|
[44] | 21 | #include <iomanip>
|
---|
| 22 |
|
---|
| 23 |
|
---|
| 24 |
|
---|
[2] | 25 | using namespace std;
|
---|
| 26 |
|
---|
| 27 | //------------------------------------------------------------------------------
|
---|
| 28 |
|
---|
| 29 | RESOLution::RESOLution() {
|
---|
| 30 |
|
---|
| 31 | MAX_TRACKER = 2.5; // tracker coverage
|
---|
| 32 | MAX_CALO_CEN = 3.0; // central calorimeter coverage
|
---|
| 33 | MAX_CALO_FWD = 5.0; // forward calorimeter pseudorapidity coverage
|
---|
| 34 | MAX_MU = 2.4; // muon chambers pseudorapidity coverage
|
---|
| 35 | MIN_CALO_VFWD= 5.2; // very forward calorimeter (if any), like CASTOR
|
---|
| 36 | MAX_CALO_VFWD= 6.6; // very forward calorimeter (if any), like CASTOR
|
---|
| 37 | MIN_ZDC = 8.3; // zero-degree calorimeter, coverage
|
---|
| 38 |
|
---|
| 39 | ZDC_S = 140.; // ZDC distance to IP
|
---|
| 40 | RP220_S = 220; // distance of the RP to the IP, in meters
|
---|
| 41 | RP220_X = 0.002;// distance of the RP to the beam, in meters
|
---|
| 42 | FP420_S = 420; // distance of the RP to the IP, in meters
|
---|
| 43 | FP420_X = 0.004;// distance of the RP to the beam, in meters
|
---|
| 44 |
|
---|
[62] | 45 | TRACKING_RADIUS = 129; //radius of the BField coverage
|
---|
| 46 | TRACKING_LENGTH = 300; //length of the BField coverage
|
---|
| 47 | BFIELD_X = 0.0;
|
---|
| 48 | BFIELD_Y = 0.0;
|
---|
| 49 | BFIELD_Z = 3.8;
|
---|
[2] | 50 |
|
---|
[48] | 51 | ELG_Scen = 0.05; // S term for central ECAL
|
---|
| 52 | ELG_Ncen = 0.25 ; // N term for central ECAL
|
---|
| 53 | ELG_Ccen = 0.0055 ; // C term for central ECAL
|
---|
[71] | 54 | ELG_Cfwd = 0.107 ; // S term for forward ECAL
|
---|
| 55 | ELG_Sfwd = 2.084 ; // C term for forward ECAL
|
---|
| 56 | ELG_Nfwd = 0.0 ; // N term for central ECAL
|
---|
[2] | 57 |
|
---|
[48] | 58 | HAD_Shcal = 1.5 ; // S term for central HCAL // hadronic calorimeter
|
---|
| 59 | HAD_Nhcal = 0.0 ; // N term for central HCAL
|
---|
| 60 | HAD_Chcal = 0.05 ; // C term for central HCAL
|
---|
[2] | 61 | HAD_Shf = 2.7 ; // S term for central HF // forward calorimeter
|
---|
[48] | 62 | HAD_Nhf = 0.0 ; // N term for central HF
|
---|
[2] | 63 | HAD_Chf = 0.13 ; // C term for central HF
|
---|
| 64 |
|
---|
| 65 | MU_SmearPt = 0.01 ;
|
---|
| 66 |
|
---|
[33] | 67 | ELEC_pt = 10.0;
|
---|
| 68 | MUON_pt = 10.0;
|
---|
| 69 | JET_pt = 20.0;
|
---|
[74] | 70 | GAMMA_pt = 10.0;
|
---|
[33] | 71 | TAUJET_pt = 10.0;
|
---|
| 72 |
|
---|
| 73 |
|
---|
[2] | 74 | TAU_CONE_ENERGY = 0.15 ; // Delta R = radius of the cone // for "electromagnetic collimation"
|
---|
| 75 | TAU_EM_COLLIMATION = 0.95;
|
---|
| 76 | TAU_CONE_TRACKS= 0.4 ; //Delta R for tracker isolation for tau's
|
---|
| 77 | PT_TRACK_TAU = 2.0 ; // GeV // 6 GeV ????
|
---|
| 78 |
|
---|
| 79 |
|
---|
| 80 | PT_TRACKS_MIN = 0.9 ; // minimal pt needed to reach the calorimeter, in GeV
|
---|
| 81 | PT_QUARKS_MIN = 2.0 ; // minimal pt needed by quarks to reach the tracker, in GeV (??????)
|
---|
| 82 | TRACKING_EFF = 90;
|
---|
| 83 |
|
---|
| 84 |
|
---|
| 85 | TAGGING_B = 40;
|
---|
| 86 | MISTAGGING_C = 10;
|
---|
| 87 | MISTAGGING_L = 1;
|
---|
| 88 |
|
---|
[72] | 89 | //Trigger flag
|
---|
| 90 | DOTRIGGER = 1;
|
---|
[2] | 91 |
|
---|
| 92 | CONERADIUS = 0.7; // generic jet radius ; not for tau's !!!
|
---|
[11] | 93 | JETALGO = 1; // 1 for Cone algorithm, 2 for MidPoint algorithm, 3 for SIScone algorithm, 4 for kt algorithm
|
---|
[43] | 94 |
|
---|
| 95 | //General jet parameters
|
---|
| 96 | SEEDTHRESHOLD = 1.0;
|
---|
| 97 | OVERLAPTHRESHOLD = 0.75;
|
---|
| 98 |
|
---|
[2] | 99 | // Define Cone algorithm.
|
---|
| 100 | C_ADJACENCYCUT = 2;
|
---|
| 101 | C_MAXITERATIONS = 100;
|
---|
| 102 | C_IRATCH = 1;
|
---|
| 103 |
|
---|
| 104 | //Define MidPoint algorithm.
|
---|
| 105 | M_CONEAREAFRACTION = 0.25;
|
---|
| 106 | M_MAXPAIRSIZE = 2;
|
---|
| 107 | M_MAXITERATIONS = 100;
|
---|
| 108 |
|
---|
[71] | 109 | // Define Calorimeter Towers
|
---|
| 110 | NTOWERS = 40;
|
---|
| 111 |
|
---|
| 112 | const float tower_eta_edges[41] = {
|
---|
| 113 | 0., 0.087, 0.174, 0.261, 0.348, 0.435, 0.522, 0.609, 0.696, 0.783, 0.870, 0.957, 1.044, 1.131, 1.218, 1.305, 1.392, 1.479, 1.566,
|
---|
| 114 | 1.653, 1.740, 1.830, 1.930, 2.043, 2.172, 2.322, 2.500, 2.650, 2.868, 2.950, 3.125, 3.300, 3.475, 3.650, 3.825, 4.000, 4.175,
|
---|
| 115 | 4.350, 4.525, 4.700, 5.000}; // temporary object
|
---|
| 116 | TOWER_ETA_EDGES = new float[NTOWERS+1];
|
---|
| 117 | for(unsigned int i=0; i<NTOWERS+1; i++) TOWER_ETA_EDGES[i] = tower_eta_edges[i];
|
---|
| 118 |
|
---|
| 119 | const float tower_dphi[40] = {
|
---|
| 120 | 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 10,
|
---|
| 121 | 10,10,10,10,10, 10,10,10,10,10, 10,10,10,10,10, 10,10,10,20, 20 }; // temporary object
|
---|
| 122 | TOWER_DPHI = new float[NTOWERS];
|
---|
| 123 | for(unsigned int i=0; i<NTOWERS; i++) TOWER_DPHI[i] = tower_dphi[i];
|
---|
| 124 |
|
---|
[2] | 125 | }
|
---|
| 126 |
|
---|
| 127 | //------------------------------------------------------------------------------
|
---|
| 128 | void RESOLution::ReadDataCard(const string datacard) {
|
---|
| 129 |
|
---|
| 130 | string temp_string;
|
---|
| 131 | istringstream curstring;
|
---|
| 132 |
|
---|
| 133 | ifstream fichier_a_lire(datacard.c_str());
|
---|
| 134 | if(!fichier_a_lire.good()) {
|
---|
| 135 | cout << datacard << "Datadard " << datacard << " not found, use default values" << endl;
|
---|
| 136 | return;
|
---|
| 137 | }
|
---|
| 138 |
|
---|
| 139 | while (getline(fichier_a_lire,temp_string)) {
|
---|
| 140 | curstring.clear(); // needed when using several times istringstream::str(string)
|
---|
| 141 | curstring.str(temp_string);
|
---|
| 142 | string varname;
|
---|
[71] | 143 | float value; int ivalue;
|
---|
[2] | 144 |
|
---|
| 145 | if(strstr(temp_string.c_str(),"#")) { }
|
---|
| 146 | else if(strstr(temp_string.c_str(),"MAX_TRACKER")){curstring >> varname >> value; MAX_TRACKER = value;}
|
---|
| 147 | else if(strstr(temp_string.c_str(),"MAX_CALO_CEN")){curstring >> varname >> value; MAX_CALO_CEN = value;}
|
---|
| 148 | else if(strstr(temp_string.c_str(),"MAX_CALO_FWD")){curstring >> varname >> value; MAX_CALO_FWD = value;}
|
---|
| 149 | else if(strstr(temp_string.c_str(),"MAX_MU")){curstring >> varname >> value; MAX_MU = value;}
|
---|
[71] | 150 | else if(strstr(temp_string.c_str(),"TRACKING_RADIUS")){curstring >> varname >> ivalue; TRACKING_RADIUS = ivalue;}
|
---|
| 151 | else if(strstr(temp_string.c_str(),"TRACKING_LENGTH")){curstring >> varname >> ivalue; TRACKING_LENGTH = ivalue;}
|
---|
[62] | 152 | else if(strstr(temp_string.c_str(),"BFIELD_X")){curstring >> varname >> value; BFIELD_X = value;}
|
---|
| 153 | else if(strstr(temp_string.c_str(),"BFIELD_Y")){curstring >> varname >> value; BFIELD_Y = value;}
|
---|
| 154 | else if(strstr(temp_string.c_str(),"BFIELD_Z")){curstring >> varname >> value; BFIELD_Z = value;}
|
---|
[2] | 155 | else if(strstr(temp_string.c_str(),"ELG_Scen")){curstring >> varname >> value; ELG_Scen = value;}
|
---|
| 156 | else if(strstr(temp_string.c_str(),"ELG_Ncen")){curstring >> varname >> value; ELG_Ncen = value;}
|
---|
| 157 | else if(strstr(temp_string.c_str(),"ELG_Ccen")){curstring >> varname >> value; ELG_Ccen = value;}
|
---|
| 158 | else if(strstr(temp_string.c_str(),"ELG_Sfwd")){curstring >> varname >> value; ELG_Sfwd = value;}
|
---|
| 159 | else if(strstr(temp_string.c_str(),"ELG_Cfwd")){curstring >> varname >> value; ELG_Cfwd = value;}
|
---|
| 160 | else if(strstr(temp_string.c_str(),"ELG_Nfwd")){curstring >> varname >> value; ELG_Nfwd = value;}
|
---|
| 161 | else if(strstr(temp_string.c_str(),"HAD_Shcal")){curstring >> varname >> value; HAD_Shcal = value;}
|
---|
| 162 | else if(strstr(temp_string.c_str(),"HAD_Nhcal")){curstring >> varname >> value; HAD_Nhcal = value;}
|
---|
| 163 | else if(strstr(temp_string.c_str(),"HAD_Chcal")){curstring >> varname >> value; HAD_Chcal = value;}
|
---|
| 164 | else if(strstr(temp_string.c_str(),"HAD_Shf")){curstring >> varname >> value; HAD_Shf = value;}
|
---|
| 165 | else if(strstr(temp_string.c_str(),"HAD_Nhf")){curstring >> varname >> value; HAD_Nhf = value;}
|
---|
| 166 | else if(strstr(temp_string.c_str(),"HAD_Chf")){curstring >> varname >> value; HAD_Chf = value;}
|
---|
| 167 | else if(strstr(temp_string.c_str(),"MU_SmearPt")){curstring >> varname >> value; MU_SmearPt = value;}
|
---|
| 168 | else if(strstr(temp_string.c_str(),"TAU_CONE_ENERGY")){curstring >> varname >> value; TAU_CONE_ENERGY = value;}
|
---|
| 169 | else if(strstr(temp_string.c_str(),"TAU_CONE_TRACKS")){curstring >> varname >> value; TAU_CONE_TRACKS = value;}
|
---|
| 170 | else if(strstr(temp_string.c_str(),"PT_TRACK_TAU")){curstring >> varname >> value; PT_TRACK_TAU = value;}
|
---|
| 171 | else if(strstr(temp_string.c_str(),"PT_TRACKS_MIN")){curstring >> varname >> value; PT_TRACKS_MIN = value;}
|
---|
[71] | 172 | else if(strstr(temp_string.c_str(),"TAGGING_B")){curstring >> varname >> ivalue; TAGGING_B = ivalue;}
|
---|
| 173 | else if(strstr(temp_string.c_str(),"MISTAGGING_C")){curstring >> varname >> ivalue; MISTAGGING_C = ivalue;}
|
---|
| 174 | else if(strstr(temp_string.c_str(),"MISTAGGING_L")){curstring >> varname >> ivalue; MISTAGGING_L = ivalue;}
|
---|
[2] | 175 | else if(strstr(temp_string.c_str(),"CONERADIUS")){curstring >> varname >> value; CONERADIUS = value;}
|
---|
[71] | 176 | else if(strstr(temp_string.c_str(),"JETALGO")){curstring >> varname >> ivalue; JETALGO = ivalue;}
|
---|
| 177 | else if(strstr(temp_string.c_str(),"TRACKING_EFF")){curstring >> varname >> ivalue; TRACKING_EFF = ivalue;}
|
---|
[33] | 178 | else if(strstr(temp_string.c_str(),"ELEC_pt")){curstring >> varname >> value; ELEC_pt = value;}
|
---|
| 179 | else if(strstr(temp_string.c_str(),"MUON_pt")){curstring >> varname >> value; MUON_pt = value;}
|
---|
| 180 | else if(strstr(temp_string.c_str(),"JET_pt")){curstring >> varname >> value; JET_pt = value;}
|
---|
[74] | 181 | else if(strstr(temp_string.c_str(),"GAMMA_pt")){curstring >> varname >> value; GAMMA_pt = value;}
|
---|
[33] | 182 | else if(strstr(temp_string.c_str(),"TAUJET_pt")){curstring >> varname >> value; TAUJET_pt = value;}
|
---|
[71] | 183 | else if(strstr(temp_string.c_str(),"NTOWERS")){curstring >> varname >> ivalue; NTOWERS = ivalue;}
|
---|
[72] | 184 | else if(strstr(temp_string.c_str(),"DOTRIGGER")){curstring >> varname >> ivalue; DOTRIGGER = ivalue;}
|
---|
[71] | 185 | else if(strstr(temp_string.c_str(),"TOWER_ETA_EDGES")){
|
---|
| 186 | curstring >> varname; for(unsigned int i=0; i<NTOWERS+1; i++) {curstring >> value; TOWER_ETA_EDGES[i] = value;} }
|
---|
| 187 | else if(strstr(temp_string.c_str(),"TOWER_DPHI")){
|
---|
| 188 | curstring >> varname; for(unsigned int i=0; i<NTOWERS; i++) {curstring >> value; TOWER_DPHI[i] = value;} }
|
---|
| 189 |
|
---|
[33] | 190 |
|
---|
[2] | 191 | }
|
---|
| 192 |
|
---|
[43] | 193 | // General jet variables
|
---|
| 194 | SEEDTHRESHOLD = 1.0;
|
---|
| 195 | OVERLAPTHRESHOLD = 0.75;
|
---|
| 196 |
|
---|
[2] | 197 | // Define Cone algorithm.
|
---|
| 198 | C_ADJACENCYCUT = 2;
|
---|
| 199 | C_MAXITERATIONS = 100;
|
---|
| 200 | C_IRATCH = 1;
|
---|
| 201 |
|
---|
| 202 | //Define MidPoint algorithm.
|
---|
| 203 | M_CONEAREAFRACTION = 0.25;
|
---|
| 204 | M_MAXPAIRSIZE = 2;
|
---|
| 205 | M_MAXITERATIONS = 100;
|
---|
| 206 |
|
---|
[44] | 207 | //Define SISCone algorithm.
|
---|
| 208 | NPASS = 0;
|
---|
| 209 | PROTOJET_PTMIN = 0.0;
|
---|
| 210 |
|
---|
| 211 |
|
---|
[2] | 212 | }
|
---|
| 213 |
|
---|
[44] | 214 | void RESOLution::Logfile(string LogName) {
|
---|
[71] | 215 | //void RESOLution::Logfile(string outputfilename) {
|
---|
[51] | 216 |
|
---|
[44] | 217 | ofstream f_out(LogName.c_str());
|
---|
| 218 |
|
---|
| 219 | f_out<<"#*********************************************************************"<<"\n";
|
---|
| 220 | f_out<<"# *"<<"\n";
|
---|
[51] | 221 | f_out<<"# ---- DELPHES release 1.0 ---- *"<<"\n";
|
---|
[44] | 222 | f_out<<"# *"<<"\n";
|
---|
| 223 | f_out<<"# A Fast Simulator for general purpose LHC detector *"<<"\n";
|
---|
| 224 | f_out<<"# Written by S. Ovyn and X. Rouby *"<<"\n";
|
---|
| 225 | f_out<<"# severine.ovyn@uclouvain.be *"<<"\n";
|
---|
| 226 | f_out<<"# *"<<"\n";
|
---|
| 227 | f_out<<"# http: *"<<"\n";
|
---|
| 228 | f_out<<"# *"<<"\n";
|
---|
| 229 | f_out<<"# Center for Particle Physics and Phenomenology (CP3) *"<<"\n";
|
---|
| 230 | f_out<<"# Universite Catholique de Louvain (UCL) *"<<"\n";
|
---|
| 231 | f_out<<"# Louvain-la-Neuve, Belgium *"<<"\n";
|
---|
| 232 | f_out<<"# *"<<"\n";
|
---|
| 233 | f_out<<"#....................................................................*"<<"\n";
|
---|
| 234 | f_out<<"# *"<<"\n";
|
---|
[46] | 235 | f_out<<"# This package uses: *"<<"\n";
|
---|
| 236 | f_out<<"# FastJet algorithm: Phys. Lett. B641 (2006) [hep-ph/0512210] *"<<"\n";
|
---|
| 237 | f_out<<"# Hector: JINST 2:P09005 (2007) [physics.acc-ph:0707.1198v2] *"<<"\n";
|
---|
| 238 | f_out<<"# ExRootAnalysis *"<<"\n";
|
---|
[44] | 239 | f_out<<"# *"<<"\n";
|
---|
| 240 | f_out<<"#....................................................................*"<<"\n";
|
---|
| 241 | f_out<<"# *"<<"\n";
|
---|
| 242 | f_out<<"# This file contains all the running parameters (detector and cuts) *"<<"\n";
|
---|
| 243 | f_out<<"# necessary to reproduce the detector simulation *"<<"\n";
|
---|
| 244 | f_out<<"# *"<<"\n";
|
---|
| 245 | f_out<<"#....................................................................*"<<"\n";
|
---|
| 246 | f_out<<"#>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>"<<"\n";
|
---|
| 247 | f_out<<"* *"<<"\n";
|
---|
| 248 | f_out<<"#******************************** *"<<"\n";
|
---|
| 249 | f_out<<"# Central detector caracteristics *"<<"\n";
|
---|
| 250 | f_out<<"#******************************** *"<<"\n";
|
---|
| 251 | f_out<<"* *"<<"\n";
|
---|
| 252 | f_out << left << setw(30) <<"* Maximum tracking system: "<<""
|
---|
| 253 | << left << setw(10) <<MAX_TRACKER <<""<< right << setw(15)<<"*"<<"\n";
|
---|
| 254 | f_out << left << setw(30) <<"* Maximum central calorimeter: "<<""
|
---|
| 255 | << left << setw(10) <<MAX_CALO_CEN <<""<< right << setw(15)<<"*"<<"\n";
|
---|
| 256 | f_out << left << setw(30) <<"* Maximum forward calorimeter: "<<""
|
---|
| 257 | << left << setw(10) <<MAX_CALO_FWD <<""<< right << setw(15)<<"*"<<"\n";
|
---|
| 258 | f_out << left << setw(30) <<"* Muon chambers coverage: "<<""
|
---|
| 259 | << left << setw(10) <<MAX_MU <<""<< right << setw(15)<<"*"<<"\n";
|
---|
| 260 | f_out<<"* *"<<"\n";
|
---|
| 261 | f_out<<"#************************************* *"<<"\n";
|
---|
| 262 | f_out<<"# Very forward detector caracteristics *"<<"\n";
|
---|
| 263 | f_out<<"#************************************* *"<<"\n";
|
---|
| 264 | f_out<<"* *"<<"\n";
|
---|
| 265 | f_out << left << setw(55) <<"* Minimum very forward calorimeter: "<<""
|
---|
| 266 | << left << setw(5) <<MIN_CALO_VFWD <<""<< right << setw(10)<<"*"<<"\n";
|
---|
| 267 | f_out << left << setw(55) <<"* Maximum very forward calorimeter: "<<""
|
---|
| 268 | << left << setw(5) <<MAX_CALO_VFWD <<""<< right << setw(10)<<"*"<<"\n";
|
---|
| 269 | f_out << left << setw(55) <<"* Distance of the ZDC to the IP, in meters: "<<""
|
---|
| 270 | << left << setw(5) <<ZDC_S <<""<< right << setw(10)<<"*"<<"\n";
|
---|
| 271 | f_out << left << setw(55) <<"* Distance of the RP to the IP, in meters: "<<""
|
---|
| 272 | << left << setw(5) <<RP220_S <<""<< right << setw(10)<<"*"<<"\n";
|
---|
| 273 | f_out << left << setw(55) <<"* Distance of the RP to the beam, in meters: "<<""
|
---|
| 274 | << left << setw(5) <<RP220_X <<""<< right << setw(10)<<"*"<<"\n";
|
---|
| 275 | f_out << left << setw(55) <<"* Distance of the RP to the IP, in meters: "<<""
|
---|
| 276 | << left << setw(5) <<FP420_S <<""<< right << setw(10)<<"*"<<"\n";
|
---|
| 277 | f_out << left << setw(55) <<"* Distance of the RP to the beam, in meters: "<<""
|
---|
| 278 | << left << setw(5) <<FP420_X <<""<< right << setw(10)<<"*"<<"\n";
|
---|
| 279 | f_out<<"* *"<<"\n";
|
---|
[62] | 280 | f_out<<"#*********************************** *"<<"\n";
|
---|
| 281 | f_out<<"# Magnetic field needed informations *"<<"\n";
|
---|
| 282 | f_out<<"#*********************************** *"<<"\n";
|
---|
| 283 | f_out<<"* *"<<"\n";
|
---|
| 284 | f_out << left << setw(55) <<"* Radius of the BField coverage: "<<""
|
---|
| 285 | << left << setw(5) <<TRACKING_RADIUS <<""<< right << setw(10)<<"*"<<"\n";
|
---|
| 286 | f_out << left << setw(55) <<"* Length of the BField coverage: "<<""
|
---|
| 287 | << left << setw(5) <<TRACKING_LENGTH <<""<< right << setw(10)<<"*"<<"\n";
|
---|
| 288 | f_out << left << setw(55) <<"* BField X component: "<<""
|
---|
| 289 | << left << setw(5) <<BFIELD_X <<""<< right << setw(10)<<"*"<<"\n";
|
---|
| 290 | f_out << left << setw(55) <<"* BField Y component: "<<""
|
---|
| 291 | << left << setw(5) <<BFIELD_Y <<""<< right << setw(10)<<"*"<<"\n";
|
---|
| 292 | f_out << left << setw(55) <<"* BField Z component: "<<""
|
---|
| 293 | << left << setw(5) <<BFIELD_Z <<""<< right << setw(10)<<"*"<<"\n";
|
---|
| 294 | f_out<<"* *"<<"\n";
|
---|
[71] | 295 |
|
---|
| 296 |
|
---|
| 297 | f_out<<"* *"<<"\n";
|
---|
| 298 | f_out<<"#******************** *"<<"\n";
|
---|
| 299 | f_out<<"# Calorimetric Towers *"<<"\n";
|
---|
| 300 | f_out<<"#******************** *"<<"\n";
|
---|
| 301 | f_out << left << setw(55) <<"* Number of calorimetric towers in eta, for eta>0: "<<""
|
---|
| 302 | << left << setw(5) << NTOWERS <<""<< right << setw(10)<<"*"<<"\n";
|
---|
| 303 | f_out << left << setw(55) <<"* Tower edges in eta, for eta>0: "<<"" << right << setw(15)<<"*"<<"\n";
|
---|
| 304 | f_out << "* ";
|
---|
| 305 | for (unsigned int i=0; i<NTOWERS+1; i++) {
|
---|
| 306 | f_out << left << setw(7) << TOWER_ETA_EDGES[i];
|
---|
| 307 | if(!( (i+1) %9 )) f_out << right << setw(3) << "*" << "\n" << "* ";
|
---|
| 308 | }
|
---|
| 309 | for (unsigned int i=(NTOWERS+1)%9; i<9; i++) f_out << left << setw(7) << "";
|
---|
| 310 | f_out << right << setw(3)<<"*"<<"\n";
|
---|
| 311 | f_out << left << setw(55) <<"* Tower sizes in phi, for eta>0 [degree]:"<<"" << right << setw(15)<<"*"<<"\n";
|
---|
| 312 | f_out << "* ";
|
---|
| 313 | for (unsigned int i=0; i<NTOWERS; i++) {
|
---|
| 314 | f_out << left << setw(7) << TOWER_DPHI[i];
|
---|
| 315 | if(!( (i+1) %9 )) f_out << right << setw(3) << "*" << "\n" << "* ";
|
---|
| 316 | }
|
---|
| 317 | for (unsigned int i=(NTOWERS)%9; i<9; i++) f_out << left << setw(7) << "";
|
---|
| 318 | f_out << right << setw(3)<<"*"<<"\n";
|
---|
| 319 | f_out<<"* *"<<"\n";
|
---|
| 320 |
|
---|
[44] | 321 | f_out<<"#************************************ *"<<"\n";
|
---|
| 322 | f_out<<"# Electromagnetic smearing parameters *"<<"\n";
|
---|
| 323 | f_out<<"#************************************ *"<<"\n";
|
---|
| 324 | f_out<<"* *"<<"\n";
|
---|
| 325 | //# \sigma/E = C + N/E + S/\sqrt{E}
|
---|
| 326 | f_out << left << setw(30) <<"* S term for central ECAL: "<<""
|
---|
| 327 | << left << setw(30) <<ELG_Scen <<""<< right << setw(10)<<"*"<<"\n";
|
---|
| 328 | f_out << left << setw(30) <<"* N term for central ECAL: "<<""
|
---|
| 329 | << left << setw(30) <<ELG_Ncen <<""<< right << setw(10)<<"*"<<"\n";
|
---|
| 330 | f_out << left << setw(30) <<"* C term for central ECAL: "<<""
|
---|
| 331 | << left << setw(30) <<ELG_Ccen <<""<< right << setw(10)<<"*"<<"\n";
|
---|
| 332 | f_out << left << setw(30) <<"* S term for forward ECAL: "<<""
|
---|
| 333 | << left << setw(30) <<ELG_Sfwd <<""<< right << setw(10)<<"*"<<"\n";
|
---|
| 334 | f_out << left << setw(30) <<"* N term for forward ECAL: "<<""
|
---|
| 335 | << left << setw(30) <<ELG_Nfwd <<""<< right << setw(10)<<"*"<<"\n";
|
---|
| 336 | f_out << left << setw(30) <<"* C term for forward ECAL: "<<""
|
---|
| 337 | << left << setw(30) <<ELG_Cfwd <<""<< right << setw(10)<<"*"<<"\n";
|
---|
| 338 | f_out<<"* *"<<"\n";
|
---|
| 339 | f_out<<"#***************************** *"<<"\n";
|
---|
| 340 | f_out<<"# Hadronic smearing parameters *"<<"\n";
|
---|
| 341 | f_out<<"#***************************** *"<<"\n";
|
---|
| 342 | f_out<<"* *"<<"\n";
|
---|
| 343 | f_out << left << setw(30) <<"* S term for central HCAL: "<<""
|
---|
| 344 | << left << setw(30) <<HAD_Shcal <<""<< right << setw(10)<<"*"<<"\n";
|
---|
| 345 | f_out << left << setw(30) <<"* N term for central HCAL: "<<""
|
---|
| 346 | << left << setw(30) <<HAD_Nhcal <<""<< right << setw(10)<<"*"<<"\n";
|
---|
| 347 | f_out << left << setw(30) <<"* C term for central HCAL: "<<""
|
---|
| 348 | << left << setw(30) <<HAD_Chcal <<""<< right << setw(10)<<"*"<<"\n";
|
---|
| 349 | f_out << left << setw(30) <<"* S term for forward HCAL: "<<""
|
---|
| 350 | << left << setw(30) <<HAD_Shf <<""<< right << setw(10)<<"*"<<"\n";
|
---|
| 351 | f_out << left << setw(30) <<"* N term for forward HCAL: "<<""
|
---|
| 352 | << left << setw(30) <<HAD_Nhf <<""<< right << setw(10)<<"*"<<"\n";
|
---|
| 353 | f_out << left << setw(30) <<"* C term for forward HCAL: "<<""
|
---|
| 354 | << left << setw(30) <<HAD_Chf <<""<< right << setw(10)<<"*"<<"\n";
|
---|
| 355 | f_out<<"* *"<<"\n";
|
---|
| 356 | f_out<<"#*************************** *"<<"\n";
|
---|
| 357 | f_out<<"# Tracking system acceptance *"<<"\n";
|
---|
| 358 | f_out<<"#*************************** *"<<"\n";
|
---|
| 359 | f_out<<"* *"<<"\n";
|
---|
| 360 | f_out << left << setw(55) <<"* Minimal pT needed to reach the calorimeter [GeV]: "<<""
|
---|
| 361 | << left << setw(10) <<PT_TRACKS_MIN <<""<< right << setw(5)<<"*"<<"\n";
|
---|
| 362 | f_out << left << setw(55) <<"* Efficiency associated to the tracking: "<<""
|
---|
| 363 | << left << setw(10) <<TRACKING_EFF <<""<< right << setw(5)<<"*"<<"\n";
|
---|
| 364 | f_out<<"* *"<<"\n";
|
---|
| 365 | f_out<<"#************************* *"<<"\n";
|
---|
| 366 | f_out<<"# Muon smearing parameters *"<<"\n";
|
---|
| 367 | f_out<<"#************************* *"<<"\n";
|
---|
| 368 | f_out<<"* *"<<"\n";
|
---|
| 369 | //MU_SmearPt 0.01
|
---|
| 370 | f_out<<"* *"<<"\n";
|
---|
| 371 | f_out<<"#****************************** *"<<"\n";
|
---|
| 372 | f_out<<"# Tau-jet definition parameters *"<<"\n";
|
---|
| 373 | f_out<<"#****************************** *"<<"\n";
|
---|
| 374 | f_out<<"* *"<<"\n";
|
---|
| 375 | f_out << left << setw(45) <<"* Cone radius for calorimeter tagging: "<<""
|
---|
| 376 | << left << setw(5) <<TAU_CONE_ENERGY <<""<< right << setw(20)<<"*"<<"\n";
|
---|
| 377 | f_out << left << setw(45) <<"* Fraction of energy in the small cone: "<<""
|
---|
| 378 | << left << setw(5) <<TAU_EM_COLLIMATION*100 <<""<< right << setw(20)<<"! not in datacard *"<<"\n";
|
---|
| 379 | f_out << left << setw(45) <<"* Cone radius for tracking tagging: "<<""
|
---|
| 380 | << left << setw(5) <<TAU_CONE_TRACKS <<""<< right << setw(20)<<"*"<<"\n";
|
---|
| 381 | f_out << left << setw(45) <<"* Minimum track pT [GeV]: "<<""
|
---|
| 382 | << left << setw(5) <<PT_TRACK_TAU <<""<< right << setw(20)<<"*"<<"\n";
|
---|
| 383 | f_out<<"* *"<<"\n";
|
---|
| 384 | f_out<<"#******************* *"<<"\n";
|
---|
| 385 | f_out<<"# Minimum pT's [GeV] *"<<"\n";
|
---|
| 386 | f_out<<"#******************* *"<<"\n";
|
---|
| 387 | f_out<<"* *"<<"\n";
|
---|
| 388 | f_out << left << setw(40) <<"* Minimum pT for electrons: "<<""
|
---|
| 389 | << left << setw(20) <<ELEC_pt <<""<< right << setw(10)<<"*"<<"\n";
|
---|
| 390 | f_out << left << setw(40) <<"* Minimum pT for muons: "<<""
|
---|
| 391 | << left << setw(20) <<MUON_pt <<""<< right << setw(10)<<"*"<<"\n";
|
---|
| 392 | f_out << left << setw(40) <<"* Minimum pT for jets: "<<""
|
---|
| 393 | << left << setw(20) <<JET_pt <<""<< right << setw(10)<<"*"<<"\n";
|
---|
| 394 | f_out << left << setw(40) <<"* Minimum pT for Tau-jets: "<<""
|
---|
| 395 | << left << setw(20) <<TAUJET_pt <<""<< right << setw(10)<<"*"<<"\n";
|
---|
[74] | 396 | f_out << left << setw(40) <<"* Minimum pT for photons: "<<""
|
---|
| 397 | << left << setw(20) <<GAMMA_pt <<""<< right << setw(10)<<"*"<<"\n";
|
---|
[44] | 398 | f_out<<"* *"<<"\n";
|
---|
| 399 | f_out<<"#*************************** *"<<"\n";
|
---|
| 400 | f_out<<"# B-tagging efficiencies [%] *"<<"\n";
|
---|
| 401 | f_out<<"#*************************** *"<<"\n";
|
---|
| 402 | f_out<<"* *"<<"\n";
|
---|
| 403 | f_out << left << setw(50) <<"* Efficiency to tag a \"b\" as a b-jet: "<<""
|
---|
| 404 | << left << setw(10) <<TAGGING_B <<""<< right << setw(10)<<"*"<<"\n";
|
---|
| 405 | f_out << left << setw(50) <<"* Efficiency to mistag a c-jet as a b-jet: "<<""
|
---|
| 406 | << left << setw(10) <<MISTAGGING_C <<""<< right << setw(10)<<"*"<<"\n";
|
---|
| 407 | f_out << left << setw(50) <<"* Efficiency to mistag a light jet as a b-jet: "<<""
|
---|
| 408 | << left << setw(10) <<MISTAGGING_L <<""<< right << setw(10)<<"*"<<"\n";
|
---|
| 409 | f_out<<"* *"<<"\n";
|
---|
| 410 | f_out<<"#*************** *"<<"\n";
|
---|
| 411 | f_out<<"# Jet definition *"<<"\n";
|
---|
| 412 | f_out<<"#*************** *"<<"\n";
|
---|
| 413 | f_out<<"* *"<<"\n";
|
---|
[49] | 414 | f_out<<"* Six algorithms are currently available: *"<<"\n";
|
---|
| 415 | f_out<<"* - 1) CDF cone algorithm, *"<<"\n";
|
---|
| 416 | f_out<<"* - 2) CDF MidPoint algorithm, *"<<"\n";
|
---|
| 417 | f_out<<"* - 3) SIScone algorithm, *"<<"\n";
|
---|
| 418 | f_out<<"* - 4) kt algorithm, *"<<"\n";
|
---|
| 419 | f_out<<"* - 5) Cambrigde/Aachen algorithm, *"<<"\n";
|
---|
| 420 | f_out<<"* - 6) Anti-kt algorithm. *"<<"\n";
|
---|
| 421 | f_out<<"* *"<<"\n";
|
---|
| 422 | f_out<<"* You have chosen *"<<"\n";
|
---|
[44] | 423 | switch(JETALGO) {
|
---|
| 424 | default:
|
---|
| 425 | case 1: {
|
---|
[49] | 426 | f_out<<"* CDF JetClu jet algorithm with parameters: *"<<"\n";
|
---|
| 427 | f_out << left << setw(40) <<"* - Seed threshold: "<<""
|
---|
| 428 | << left << setw(10) <<SEEDTHRESHOLD <<""<< right << setw(20)<<"! not in datacard *"<<"\n";
|
---|
| 429 | f_out << left << setw(40) <<"* - Cone radius: "<<""
|
---|
| 430 | << left << setw(10) <<CONERADIUS <<""<< right << setw(20)<<"*"<<"\n";
|
---|
| 431 | f_out << left << setw(40) <<"* - Adjacency cut: "<<""
|
---|
| 432 | << left << setw(10) <<C_ADJACENCYCUT <<""<< right << setw(20)<<"! not in datacard *"<<"\n";
|
---|
| 433 | f_out << left << setw(40) <<"* - Max iterations: "<<""
|
---|
| 434 | << left << setw(10) <<C_MAXITERATIONS <<""<< right << setw(20)<<"! not in datacard *"<<"\n";
|
---|
| 435 | f_out << left << setw(40) <<"* - Iratch: "<<""
|
---|
| 436 | << left << setw(10) <<C_IRATCH <<""<< right << setw(20)<<"! not in datacard *"<<"\n";
|
---|
| 437 | f_out << left << setw(40) <<"* - Overlap threshold: "<<""
|
---|
| 438 | << left << setw(10) <<OVERLAPTHRESHOLD <<""<< right << setw(20)<<"! not in datacard *"<<"\n";
|
---|
[44] | 439 | }
|
---|
| 440 | break;
|
---|
| 441 | case 2: {
|
---|
[49] | 442 | f_out<<"* CDF midpoint jet algorithm with parameters: *"<<"\n";
|
---|
| 443 | f_out << left << setw(40) <<"* - Seed threshold: "<<""
|
---|
| 444 | << left << setw(20) <<SEEDTHRESHOLD <<""<< right << setw(10)<<"! not in datacard *"<<"\n";
|
---|
| 445 | f_out << left << setw(40) <<"* - Cone radius: "<<""
|
---|
| 446 | << left << setw(20) <<CONERADIUS <<""<< right << setw(10)<<"*"<<"\n";
|
---|
| 447 | f_out << left << setw(40) <<"* - Cone area fraction:"<<""
|
---|
| 448 | << left << setw(20) <<M_CONEAREAFRACTION <<""<< right << setw(10)<<"! not in datacard *"<<"\n";
|
---|
| 449 | f_out << left << setw(40) <<"* - Maximum pair size: "<<""
|
---|
| 450 | << left << setw(20) <<M_MAXPAIRSIZE <<""<< right << setw(10)<<"! not in datacard *"<<"\n";
|
---|
| 451 | f_out << left << setw(40) <<"* - Max iterations: "<<""
|
---|
| 452 | << left << setw(20) <<M_MAXITERATIONS <<""<< right << setw(10)<<"! not in datacard *"<<"\n";
|
---|
| 453 | f_out << left << setw(40) <<"* - Overlap threshold: "<<""
|
---|
| 454 | << left << setw(20) <<OVERLAPTHRESHOLD <<""<< right << setw(10)<<"! not in datacard *"<<"\n";
|
---|
[44] | 455 | }
|
---|
| 456 | break;
|
---|
| 457 | case 3: {
|
---|
[49] | 458 | f_out <<"* SISCone jet algorithm with parameters: *"<<"\n";
|
---|
| 459 | f_out << left << setw(40) <<"* - Cone radius: "<<""
|
---|
| 460 | << left << setw(20) <<CONERADIUS <<""<< right << setw(10)<<"*"<<"\n";
|
---|
| 461 | f_out << left << setw(40) <<"* - Overlap threshold: "<<""
|
---|
| 462 | << left << setw(20) <<OVERLAPTHRESHOLD <<""<< right << setw(10)<<"! not in datacard *"<<"\n";
|
---|
| 463 | f_out << left << setw(40) <<"* - Number pass max: "<<""
|
---|
| 464 | << left << setw(20) <<NPASS <<""<< right << setw(10)<<"! not in datacard *"<<"\n";
|
---|
| 465 | f_out << left << setw(40) <<"* - Minimum pT for protojet: "<<""
|
---|
| 466 | << left << setw(20) <<PROTOJET_PTMIN <<""<< right << setw(10)<<"! not in datacard *"<<"\n";
|
---|
[44] | 467 | }
|
---|
| 468 | break;
|
---|
| 469 | case 4: {
|
---|
[49] | 470 | f_out <<"* KT jet algorithm with parameters: *"<<"\n";
|
---|
| 471 | f_out << left << setw(40) <<"* - Cone radius: "<<""
|
---|
| 472 | << left << setw(20) <<CONERADIUS <<""<< right << setw(10)<<"*"<<"\n";
|
---|
[44] | 473 | }
|
---|
| 474 | break;
|
---|
[49] | 475 | case 5: {
|
---|
| 476 | f_out <<"* Cambridge/Aachen jet algorithm with parameters: *"<<"\n";
|
---|
| 477 | f_out << left << setw(40) <<"* - Cone radius: "<<""
|
---|
| 478 | << left << setw(20) <<CONERADIUS <<""<< right << setw(10)<<"*"<<"\n";
|
---|
[44] | 479 | }
|
---|
[49] | 480 | break;
|
---|
| 481 | case 6: {
|
---|
| 482 | f_out <<"* Anti-kt jet algorithm with parameters: *"<<"\n";
|
---|
| 483 | f_out << left << setw(40) <<"* - Cone radius: "<<""
|
---|
| 484 | << left << setw(20) <<CONERADIUS <<""<< right << setw(10)<<"*"<<"\n";
|
---|
| 485 | }
|
---|
| 486 | break;
|
---|
| 487 |
|
---|
| 488 |
|
---|
| 489 | }
|
---|
[44] | 490 | f_out<<"* *"<<"\n";
|
---|
| 491 | f_out<<"#....................................................................*"<<"\n";
|
---|
| 492 | f_out<<"#>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>"<<"\n";
|
---|
| 493 |
|
---|
| 494 | }
|
---|
| 495 |
|
---|
[2] | 496 | // **********Provides the smeared TLorentzVector for the electrons********
|
---|
| 497 | // Smears the electron energy, and changes the 4-momentum accordingly
|
---|
| 498 | // different smearing if the electron is central (eta < 2.5) or forward
|
---|
| 499 | void RESOLution::SmearElectron(TLorentzVector &electron) {
|
---|
| 500 | // the 'electron' variable will be changed by the function
|
---|
| 501 | float energy = electron.E(); // before smearing
|
---|
| 502 | float energyS = 0.0; // after smearing // \sigma/E = C + N/E + S/\sqrt{E}
|
---|
[71] | 503 |
|
---|
| 504 | if(fabs(electron.Eta()) < MAX_TRACKER) { // if the electron is inside the tracker
|
---|
[2] | 505 | energyS = gRandom->Gaus(energy, sqrt(
|
---|
| 506 | pow(ELG_Ncen,2) +
|
---|
| 507 | pow(ELG_Ccen*energy,2) +
|
---|
[22] | 508 | pow(ELG_Scen*sqrt(energy),2) ));
|
---|
[55] | 509 | }
|
---|
[71] | 510 | if(fabs(electron.Eta()) > MAX_TRACKER && fabs(electron.Eta()) < MAX_CALO_FWD){
|
---|
[2] | 511 | energyS = gRandom->Gaus(energy, sqrt(
|
---|
| 512 | pow(ELG_Nfwd,2) +
|
---|
| 513 | pow(ELG_Cfwd*energy,2) +
|
---|
| 514 | pow(ELG_Sfwd*sqrt(energy),2) ) );
|
---|
| 515 | }
|
---|
| 516 | electron.SetPtEtaPhiE(energyS/cosh(electron.Eta()), electron.Eta(), electron.Phi(), energyS);
|
---|
| 517 | if(electron.E() < 0)electron.SetPxPyPzE(0,0,0,0); // no negative values after smearing !
|
---|
| 518 | }
|
---|
| 519 |
|
---|
| 520 |
|
---|
| 521 | // **********Provides the smeared TLorentzVector for the muons********
|
---|
| 522 | // Smears the muon pT and changes the 4-momentum accordingly
|
---|
| 523 | void RESOLution::SmearMu(TLorentzVector &muon) {
|
---|
| 524 | // the 'muon' variable will be changed by the function
|
---|
| 525 | float pt = muon.Pt(); // before smearing
|
---|
[61] | 526 | float ptS=pt;
|
---|
| 527 |
|
---|
| 528 | if(fabs(muon.Eta()) < MAX_MU )
|
---|
| 529 | {
|
---|
| 530 | ptS = gRandom->Gaus(pt, MU_SmearPt*pt ); // after smearing // \sigma/E = C + N/E + S/\sqrt{E}
|
---|
| 531 | }
|
---|
| 532 | muon.SetPtEtaPhiE(ptS, muon.Eta(), muon.Phi(), ptS*cosh(muon.Eta()));
|
---|
[2] | 533 |
|
---|
| 534 | if(muon.E() < 0)muon.SetPxPyPzE(0,0,0,0); // no negative values after smearing !
|
---|
| 535 | }
|
---|
| 536 |
|
---|
| 537 |
|
---|
| 538 | // **********Provides the smeared TLorentzVector for the hadrons********
|
---|
| 539 | // Smears the hadron 4-momentum
|
---|
| 540 | void RESOLution::SmearHadron(TLorentzVector &hadron, const float frac)
|
---|
| 541 | // the 'hadron' variable will be changed by the function
|
---|
| 542 | // the 'frac' variable describes the long-living particles. Should be 0.7 for K0S and Lambda, 1. otherwise
|
---|
| 543 | {
|
---|
| 544 | float energy = hadron.E(); // before smearing
|
---|
| 545 | float energyS = 0.0; // after smearing // \sigma/E = C + N/E + S/\sqrt{E}
|
---|
| 546 | float energy_ecal = (1.0 - frac)*energy; // electromagnetic calorimeter
|
---|
| 547 | float energy_hcal = frac*energy; // hadronic calorimeter
|
---|
| 548 | // frac takes into account the decay of long-living particles, that decay in the calorimeters
|
---|
| 549 | // some of the particles decay mostly in the ecal, some mostly in the hcal
|
---|
| 550 |
|
---|
[31] | 551 | float energyS1,energyS2;
|
---|
[2] | 552 | if(fabs(hadron.Eta()) < MAX_CALO_CEN) {
|
---|
[10] | 553 | energyS1 = gRandom->Gaus(energy_hcal, sqrt(
|
---|
[2] | 554 | pow(HAD_Nhcal,2) +
|
---|
| 555 | pow(HAD_Chcal*energy_hcal,2) +
|
---|
[9] | 556 | pow(HAD_Shcal*sqrt(energy_hcal),2) )) ;
|
---|
[10] | 557 |
|
---|
[9] | 558 |
|
---|
[10] | 559 | energyS2 = gRandom->Gaus(energy_ecal, sqrt(
|
---|
[32] | 560 | pow(ELG_Ncen,2) +
|
---|
| 561 | pow(ELG_Ccen*energy_ecal,2) +
|
---|
| 562 | pow(ELG_Scen*sqrt(energy_ecal),2) ) );
|
---|
[9] | 563 |
|
---|
[10] | 564 | energyS = ((energyS1>0)?energyS1:0) + ((energyS2>0)?energyS2:0);
|
---|
[55] | 565 | }
|
---|
| 566 | if(abs(hadron.Eta()) > MAX_CALO_CEN && fabs(hadron.Eta()) < MAX_CALO_FWD){
|
---|
[22] | 567 | energyS = gRandom->Gaus(energy, sqrt(
|
---|
[2] | 568 | pow(HAD_Nhf,2) +
|
---|
| 569 | pow(HAD_Chf*energy,2) +
|
---|
[22] | 570 | pow(HAD_Shf*sqrt(energy),2) ));
|
---|
[55] | 571 | }
|
---|
| 572 |
|
---|
[10] | 573 |
|
---|
| 574 |
|
---|
[2] | 575 | hadron.SetPtEtaPhiE(energyS/cosh(hadron.Eta()),hadron.Eta(), hadron.Phi(), energyS);
|
---|
| 576 |
|
---|
| 577 | if(hadron.E() < 0)hadron.SetPxPyPzE(0,0,0,0);
|
---|
| 578 | }
|
---|
[73] | 579 | /*
|
---|
| 580 | void RESOLution::SortedVector()
|
---|
| 581 | {
|
---|
| 582 | int i,j = 0;
|
---|
| 583 | TLorentzVector tmp;
|
---|
| 584 | bool en_desordre = true;
|
---|
| 585 | for(i = 0 ; (i < numjetT) && en_desordre; i++)
|
---|
| 586 | {
|
---|
| 587 | en_desordre = false;
|
---|
| 588 | for(j = 1 ; j < numjetT - i ; j++)
|
---|
| 589 | {
|
---|
| 590 | if ( Wjets[j].Eta() > Wjets[j-1].Eta() )
|
---|
| 591 | {
|
---|
| 592 | TLorentzVector tmp = Wjets[j-1];
|
---|
| 593 | Wjets[j-1] = Wjets[j];
|
---|
| 594 | Wjets[j] = tmp;
|
---|
| 595 | en_desordre = true;
|
---|
| 596 | }
|
---|
| 597 | }
|
---|
| 598 | }
|
---|
| 599 |
|
---|
| 600 | }*/
|
---|
[2] | 601 |
|
---|
[74] | 602 | //******************************************************************************************
|
---|
| 603 |
|
---|
| 604 | void RESOLution::SortedVector(vector<ParticleUtil> &vect)
|
---|
| 605 | {
|
---|
| 606 | int i,j = 0;
|
---|
| 607 | TLorentzVector tmp;
|
---|
| 608 | bool en_desordre = true;
|
---|
| 609 | int entries=vect.size();
|
---|
| 610 | for(i = 0 ; (i < entries) && en_desordre; i++)
|
---|
| 611 | {
|
---|
| 612 | en_desordre = false;
|
---|
| 613 | for(j = 1 ; j < entries - i ; j++)
|
---|
| 614 | {
|
---|
| 615 | if ( vect[j].Pt() > vect[j-1].Pt() )
|
---|
| 616 | {
|
---|
| 617 | ParticleUtil tmp = vect[j-1];
|
---|
| 618 | vect[j-1] = vect[j];
|
---|
| 619 | vect[j] = tmp;
|
---|
| 620 | en_desordre = true;
|
---|
| 621 | }
|
---|
| 622 | }
|
---|
| 623 | }
|
---|
| 624 | }
|
---|
| 625 |
|
---|
[2] | 626 | // **********Provides the energy in the cone of radius TAU_CONE_ENERGY for the tau identification********
|
---|
| 627 | // to be taken into account, a calo tower should
|
---|
| 628 | // 1) have a transverse energy \f$ E_T = \sqrt{E_X^2 + E_Y^2} \f$ above a given threshold
|
---|
| 629 | // 2) be inside a cone with a radius R and the axis defined by (eta,phi)
|
---|
| 630 | double RESOLution::EnergySmallCone(const vector<PhysicsTower> &towers, const float eta, const float phi) {
|
---|
| 631 | double Energie=0;
|
---|
| 632 | for(unsigned int i=0; i < towers.size(); i++) {
|
---|
[43] | 633 | if(towers[i].fourVector.pt() < SEEDTHRESHOLD) continue;
|
---|
[2] | 634 | if((DeltaR(phi,eta,towers[i].fourVector.phi(),towers[i].fourVector.eta()) < TAU_CONE_ENERGY)) {
|
---|
| 635 | Energie += towers[i].fourVector.E;
|
---|
| 636 | }
|
---|
| 637 | }
|
---|
| 638 | return Energie;
|
---|
| 639 | }
|
---|
| 640 |
|
---|
| 641 |
|
---|
| 642 | // **********Provides the number of tracks in the cone of radius TAU_CONE_TRACKS for the tau identification********
|
---|
| 643 | // to be taken into account, a track should
|
---|
| 644 | // 1) avec a transverse momentum \$f p_T \$ above a given threshold
|
---|
| 645 | // 2) be inside a cone with a radius R and the axis defined by (eta,phi)
|
---|
| 646 | // IMPORTANT REMARK !!!!!
|
---|
| 647 | // previously, the argument 'phi' was before the argument 'eta'
|
---|
| 648 | // this has been changed for consistency with the other functions
|
---|
| 649 | // double check your running code that uses NumTracks !
|
---|
| 650 | unsigned int RESOLution::NumTracks(const vector<TLorentzVector> &tracks, const float pt_track, const float eta, const float phi) {
|
---|
| 651 | unsigned int numtrack=0;
|
---|
| 652 | for(unsigned int i=0; i < tracks.size(); i++) {
|
---|
| 653 | if((tracks[i].Pt() < pt_track )||
|
---|
| 654 | (DeltaR(phi,eta,tracks[i].Phi(),tracks[i].Eta()) > TAU_CONE_TRACKS)
|
---|
| 655 | )continue;
|
---|
| 656 | numtrack++;
|
---|
| 657 | }
|
---|
| 658 | return numtrack;
|
---|
| 659 | }
|
---|
| 660 |
|
---|
| 661 |
|
---|
| 662 | //*** Returns the PID of the particle with the highest energy, in a cone with a radius CONERADIUS and an axis (eta,phi) *********
|
---|
| 663 | //used by Btaggedjet
|
---|
| 664 | ///// Attention : bug removed => CONERADIUS/2 -> CONERADIUS !!
|
---|
| 665 | int RESOLution::Bjets(const TSimpleArray<TRootGenParticle> &subarray, const float eta, const float phi) {
|
---|
| 666 | float emax=0;
|
---|
| 667 | int Ppid=0;
|
---|
| 668 | if(subarray.GetEntries()>0) {
|
---|
| 669 | for(int i=0; i < subarray.GetEntries();i++) { // should have pt>PT_JETMIN and a small cone radius (r<CONE_JET)
|
---|
| 670 | float genDeltaR = DeltaR(subarray[i]->Phi,subarray[i]->Eta,phi,eta);
|
---|
| 671 | if(genDeltaR < CONERADIUS && subarray[i]->E > emax) {
|
---|
| 672 | emax=subarray[i]->E;
|
---|
| 673 | Ppid=abs(subarray[i]->PID);
|
---|
| 674 | }
|
---|
| 675 | }
|
---|
| 676 | }
|
---|
| 677 | return Ppid;
|
---|
| 678 | }
|
---|
| 679 |
|
---|
| 680 |
|
---|
| 681 | //******************** Simulates the b-tagging efficiency for real bjet, or the misendentification for other jets****************
|
---|
| 682 | bool RESOLution::Btaggedjet(const TLorentzVector &JET, const TSimpleArray<TRootGenParticle> &subarray) {
|
---|
| 683 | if( rand()%100 < (TAGGING_B+1) && Bjets(subarray,JET.Eta(),JET.Phi())==pB ) return true; // b-tag of b-jets is 40%
|
---|
| 684 | else if( rand()%100 < (MISTAGGING_C+1) && Bjets(subarray,JET.Eta(),JET.Phi())==pC ) return true; // b-tag of c-jets is 10%
|
---|
| 685 | else if( rand()%100 < (MISTAGGING_L+1) && Bjets(subarray,JET.Eta(),JET.Phi())!=0) return true; // b-tag of light jets is 1%
|
---|
| 686 | return false;
|
---|
| 687 | }
|
---|
| 688 |
|
---|
[31] | 689 | //***********************Isolation criteria***********************
|
---|
| 690 | //****************************************************************
|
---|
| 691 | bool RESOLution::Isolation(Float_t phi,Float_t eta,const vector<TLorentzVector> &tracks,float PT_TRACK2)
|
---|
| 692 | {
|
---|
| 693 | bool isolated = false;
|
---|
| 694 | Float_t deltar=5000.; // Initial value; should be high; no further repercussion
|
---|
| 695 | // loop on all final charged particles, with p_t >2, close enough from the electron
|
---|
| 696 | for(unsigned int i=0; i < tracks.size(); i++)
|
---|
| 697 | {
|
---|
| 698 | if(tracks[i].Pt() < PT_TRACK2)continue;
|
---|
| 699 | Float_t genDeltaR = DeltaR(phi,eta,tracks[i].Phi(),tracks[i].Eta()); // slower to evaluate
|
---|
| 700 | if(
|
---|
| 701 | (genDeltaR > deltar) ||
|
---|
| 702 | (genDeltaR==0)
|
---|
| 703 | ) continue ;
|
---|
| 704 | deltar=genDeltaR;
|
---|
| 705 | }
|
---|
| 706 | if(deltar > 0.5)isolated = true; // returns the closest distance
|
---|
| 707 | return isolated;
|
---|
| 708 | }
|
---|
| 709 |
|
---|
| 710 |
|
---|
[71] | 711 | //********** returns a segmented value for eta and phi, for calo towers *****
|
---|
| 712 | void RESOLution::BinEtaPhi(const float phi, const float eta, float& iPhi, float& iEta){
|
---|
| 713 | iEta = -100;
|
---|
| 714 | int index=-100;
|
---|
| 715 | for (unsigned int i=1; i< NTOWERS+1; i++) {
|
---|
| 716 | if(fabs(eta)>TOWER_ETA_EDGES[i-1] && fabs(eta)<TOWER_ETA_EDGES[i]) {
|
---|
| 717 | iEta = (eta>0) ? TOWER_ETA_EDGES[i-1] : -TOWER_ETA_EDGES[i];
|
---|
| 718 | index = i-1;
|
---|
| 719 | //cout << setw(15) << left << eta << "\t" << iEta << endl;
|
---|
| 720 | break;
|
---|
| 721 | }
|
---|
| 722 | }
|
---|
| 723 | if(index==-100) return;
|
---|
| 724 | iPhi = -100;
|
---|
| 725 | float dphi = TOWER_DPHI[index]*PI/180.;
|
---|
| 726 | for (unsigned int i=1; i < 360/TOWER_DPHI[index]; i++ ) {
|
---|
| 727 | float low = -PI+(i-1)*dphi;
|
---|
| 728 | float high= low+dphi;
|
---|
| 729 | if(phi > low && phi < high ){
|
---|
| 730 | iPhi = low;
|
---|
| 731 | break;
|
---|
| 732 | }
|
---|
| 733 | }
|
---|
| 734 | if (phi > PI-dphi) iPhi = PI-dphi;
|
---|
| 735 | }
|
---|
| 736 |
|
---|
[2] | 737 | //**************************** Returns the delta Phi ****************************
|
---|
| 738 | float DeltaPhi(const float phi1, const float phi2) {
|
---|
| 739 | float deltaphi=phi1-phi2; // in here, -PI < phi < PI
|
---|
| 740 | if(fabs(deltaphi) > PI) deltaphi=2.*PI-fabs(deltaphi);// put deltaphi between 0 and PI
|
---|
| 741 | else deltaphi=fabs(deltaphi);
|
---|
| 742 |
|
---|
| 743 | return deltaphi;
|
---|
| 744 | }
|
---|
| 745 |
|
---|
| 746 | //**************************** Returns the delta R****************************
|
---|
| 747 | float DeltaR(const float phi1, const float eta1, const float phi2, const float eta2) {
|
---|
| 748 | return sqrt(pow(DeltaPhi(phi1,phi2),2) + pow(eta1-eta2,2));
|
---|
| 749 | }
|
---|
| 750 |
|
---|
| 751 | int sign(const int myint) {
|
---|
| 752 | if (myint >0) return 1;
|
---|
| 753 | else if (myint <0) return -1;
|
---|
| 754 | else return 0;
|
---|
| 755 | }
|
---|
| 756 |
|
---|
| 757 | int sign(const float myfloat) {
|
---|
| 758 | if (myfloat >0) return 1;
|
---|
| 759 | else if (myfloat <0) return -1;
|
---|
| 760 | else return 0;
|
---|
| 761 | }
|
---|
| 762 |
|
---|
[55] | 763 | int Charge(int pid)
|
---|
| 764 | {
|
---|
| 765 | int charge;
|
---|
| 766 | if(
|
---|
| 767 | (pid == pGAMMA) ||
|
---|
| 768 | (pid == pPI0) ||
|
---|
| 769 | (pid == pK0L) ||
|
---|
| 770 | (pid == pN) ||
|
---|
| 771 | (pid == pSIGMA0) ||
|
---|
| 772 | (pid == pDELTA0) ||
|
---|
| 773 | (pid == pK0S) // not charged particles : invisible by tracker
|
---|
| 774 | )
|
---|
| 775 | charge = 0;
|
---|
| 776 | else charge = (sign(pid));
|
---|
| 777 | return charge;
|
---|
| 778 |
|
---|
[2] | 779 | }
|
---|