[2] | 1 | /*
|
---|
| 2 | ---- Delphes ----
|
---|
| 3 | A Fast Simulator for general purpose LHC detector
|
---|
| 4 | S. Ovyn ~~~~ severine.ovyn@uclouvain.be
|
---|
| 5 |
|
---|
| 6 | Center for Particle Physics and Phenomenology (CP3)
|
---|
| 7 | Universite Catholique de Louvain (UCL)
|
---|
| 8 | Louvain-la-Neuve, Belgium
|
---|
| 9 | */
|
---|
| 10 |
|
---|
| 11 | /// \file SmearUtil.cc
|
---|
| 12 | /// \brief RESOLution class, and some generic definitions
|
---|
| 13 |
|
---|
| 14 |
|
---|
| 15 | #include "interface/SmearUtil.h"
|
---|
| 16 | #include "TRandom.h"
|
---|
| 17 |
|
---|
| 18 | #include <iostream>
|
---|
| 19 | #include <sstream>
|
---|
| 20 | #include <fstream>
|
---|
[44] | 21 | #include <iomanip>
|
---|
| 22 |
|
---|
| 23 |
|
---|
| 24 |
|
---|
[2] | 25 | using namespace std;
|
---|
| 26 |
|
---|
| 27 | //------------------------------------------------------------------------------
|
---|
| 28 |
|
---|
| 29 | RESOLution::RESOLution() {
|
---|
| 30 |
|
---|
| 31 | MAX_TRACKER = 2.5; // tracker coverage
|
---|
| 32 | MAX_CALO_CEN = 3.0; // central calorimeter coverage
|
---|
| 33 | MAX_CALO_FWD = 5.0; // forward calorimeter pseudorapidity coverage
|
---|
| 34 | MAX_MU = 2.4; // muon chambers pseudorapidity coverage
|
---|
| 35 | MIN_CALO_VFWD= 5.2; // very forward calorimeter (if any), like CASTOR
|
---|
| 36 | MAX_CALO_VFWD= 6.6; // very forward calorimeter (if any), like CASTOR
|
---|
| 37 | MIN_ZDC = 8.3; // zero-degree calorimeter, coverage
|
---|
| 38 |
|
---|
| 39 | ZDC_S = 140.; // ZDC distance to IP
|
---|
| 40 | RP220_S = 220; // distance of the RP to the IP, in meters
|
---|
| 41 | RP220_X = 0.002;// distance of the RP to the beam, in meters
|
---|
| 42 | FP420_S = 420; // distance of the RP to the IP, in meters
|
---|
| 43 | FP420_X = 0.004;// distance of the RP to the beam, in meters
|
---|
| 44 |
|
---|
[62] | 45 | TRACKING_RADIUS = 129; //radius of the BField coverage
|
---|
| 46 | TRACKING_LENGTH = 300; //length of the BField coverage
|
---|
| 47 | BFIELD_X = 0.0;
|
---|
| 48 | BFIELD_Y = 0.0;
|
---|
| 49 | BFIELD_Z = 3.8;
|
---|
[2] | 50 |
|
---|
[48] | 51 | ELG_Scen = 0.05; // S term for central ECAL
|
---|
| 52 | ELG_Ncen = 0.25 ; // N term for central ECAL
|
---|
| 53 | ELG_Ccen = 0.0055 ; // C term for central ECAL
|
---|
[69] | 54 | ELG_Sfwd = 1.5; // S term for forward ECAL
|
---|
| 55 | ELG_Nfwd = 0.0; // N term for central ECAL
|
---|
| 56 | ELG_Cfwd = 0.06; // C term for forward ECAL
|
---|
[2] | 57 |
|
---|
[48] | 58 | HAD_Shcal = 1.5 ; // S term for central HCAL // hadronic calorimeter
|
---|
| 59 | HAD_Nhcal = 0.0 ; // N term for central HCAL
|
---|
| 60 | HAD_Chcal = 0.05 ; // C term for central HCAL
|
---|
[2] | 61 | HAD_Shf = 2.7 ; // S term for central HF // forward calorimeter
|
---|
[48] | 62 | HAD_Nhf = 0.0 ; // N term for central HF
|
---|
[2] | 63 | HAD_Chf = 0.13 ; // C term for central HF
|
---|
| 64 |
|
---|
| 65 | MU_SmearPt = 0.01 ;
|
---|
| 66 |
|
---|
[33] | 67 | ELEC_pt = 10.0;
|
---|
| 68 | MUON_pt = 10.0;
|
---|
| 69 | JET_pt = 20.0;
|
---|
| 70 | TAUJET_pt = 10.0;
|
---|
| 71 |
|
---|
| 72 |
|
---|
[2] | 73 | TAU_CONE_ENERGY = 0.15 ; // Delta R = radius of the cone // for "electromagnetic collimation"
|
---|
| 74 | TAU_EM_COLLIMATION = 0.95;
|
---|
| 75 | TAU_CONE_TRACKS= 0.4 ; //Delta R for tracker isolation for tau's
|
---|
| 76 | PT_TRACK_TAU = 2.0 ; // GeV // 6 GeV ????
|
---|
| 77 |
|
---|
| 78 |
|
---|
| 79 | PT_TRACKS_MIN = 0.9 ; // minimal pt needed to reach the calorimeter, in GeV
|
---|
| 80 | PT_QUARKS_MIN = 2.0 ; // minimal pt needed by quarks to reach the tracker, in GeV (??????)
|
---|
| 81 | TRACKING_EFF = 90;
|
---|
| 82 |
|
---|
| 83 |
|
---|
| 84 | TAGGING_B = 40;
|
---|
| 85 | MISTAGGING_C = 10;
|
---|
| 86 | MISTAGGING_L = 1;
|
---|
| 87 |
|
---|
| 88 |
|
---|
| 89 | CONERADIUS = 0.7; // generic jet radius ; not for tau's !!!
|
---|
[11] | 90 | JETALGO = 1; // 1 for Cone algorithm, 2 for MidPoint algorithm, 3 for SIScone algorithm, 4 for kt algorithm
|
---|
[43] | 91 |
|
---|
| 92 | //General jet parameters
|
---|
| 93 | SEEDTHRESHOLD = 1.0;
|
---|
| 94 | OVERLAPTHRESHOLD = 0.75;
|
---|
| 95 |
|
---|
[2] | 96 | // Define Cone algorithm.
|
---|
| 97 | C_ADJACENCYCUT = 2;
|
---|
| 98 | C_MAXITERATIONS = 100;
|
---|
| 99 | C_IRATCH = 1;
|
---|
| 100 |
|
---|
| 101 | //Define MidPoint algorithm.
|
---|
| 102 | M_CONEAREAFRACTION = 0.25;
|
---|
| 103 | M_MAXPAIRSIZE = 2;
|
---|
| 104 | M_MAXITERATIONS = 100;
|
---|
| 105 |
|
---|
| 106 | }
|
---|
| 107 |
|
---|
| 108 | //------------------------------------------------------------------------------
|
---|
| 109 | void RESOLution::ReadDataCard(const string datacard) {
|
---|
| 110 |
|
---|
| 111 | string temp_string;
|
---|
| 112 | istringstream curstring;
|
---|
| 113 |
|
---|
| 114 | ifstream fichier_a_lire(datacard.c_str());
|
---|
| 115 | if(!fichier_a_lire.good()) {
|
---|
| 116 | cout << datacard << "Datadard " << datacard << " not found, use default values" << endl;
|
---|
| 117 | return;
|
---|
| 118 | }
|
---|
| 119 |
|
---|
| 120 | while (getline(fichier_a_lire,temp_string)) {
|
---|
| 121 | curstring.clear(); // needed when using several times istringstream::str(string)
|
---|
| 122 | curstring.str(temp_string);
|
---|
| 123 | string varname;
|
---|
| 124 | float value;
|
---|
| 125 |
|
---|
| 126 | if(strstr(temp_string.c_str(),"#")) { }
|
---|
| 127 | else if(strstr(temp_string.c_str(),"MAX_TRACKER")){curstring >> varname >> value; MAX_TRACKER = value;}
|
---|
| 128 | else if(strstr(temp_string.c_str(),"MAX_CALO_CEN")){curstring >> varname >> value; MAX_CALO_CEN = value;}
|
---|
| 129 | else if(strstr(temp_string.c_str(),"MAX_CALO_FWD")){curstring >> varname >> value; MAX_CALO_FWD = value;}
|
---|
| 130 | else if(strstr(temp_string.c_str(),"MAX_MU")){curstring >> varname >> value; MAX_MU = value;}
|
---|
[62] | 131 | else if(strstr(temp_string.c_str(),"TRACKING_RADIUS")){curstring >> varname >> value; TRACKING_RADIUS = (int)value;}
|
---|
| 132 | else if(strstr(temp_string.c_str(),"TRACKING_LENGTH")){curstring >> varname >> value; TRACKING_LENGTH = (int)value;}
|
---|
| 133 | else if(strstr(temp_string.c_str(),"BFIELD_X")){curstring >> varname >> value; BFIELD_X = value;}
|
---|
| 134 | else if(strstr(temp_string.c_str(),"BFIELD_Y")){curstring >> varname >> value; BFIELD_Y = value;}
|
---|
| 135 | else if(strstr(temp_string.c_str(),"BFIELD_Z")){curstring >> varname >> value; BFIELD_Z = value;}
|
---|
[2] | 136 | else if(strstr(temp_string.c_str(),"ELG_Scen")){curstring >> varname >> value; ELG_Scen = value;}
|
---|
| 137 | else if(strstr(temp_string.c_str(),"ELG_Ncen")){curstring >> varname >> value; ELG_Ncen = value;}
|
---|
| 138 | else if(strstr(temp_string.c_str(),"ELG_Ccen")){curstring >> varname >> value; ELG_Ccen = value;}
|
---|
| 139 | else if(strstr(temp_string.c_str(),"ELG_Sfwd")){curstring >> varname >> value; ELG_Sfwd = value;}
|
---|
| 140 | else if(strstr(temp_string.c_str(),"ELG_Cfwd")){curstring >> varname >> value; ELG_Cfwd = value;}
|
---|
| 141 | else if(strstr(temp_string.c_str(),"ELG_Nfwd")){curstring >> varname >> value; ELG_Nfwd = value;}
|
---|
| 142 | else if(strstr(temp_string.c_str(),"HAD_Shcal")){curstring >> varname >> value; HAD_Shcal = value;}
|
---|
| 143 | else if(strstr(temp_string.c_str(),"HAD_Nhcal")){curstring >> varname >> value; HAD_Nhcal = value;}
|
---|
| 144 | else if(strstr(temp_string.c_str(),"HAD_Chcal")){curstring >> varname >> value; HAD_Chcal = value;}
|
---|
| 145 | else if(strstr(temp_string.c_str(),"HAD_Shf")){curstring >> varname >> value; HAD_Shf = value;}
|
---|
| 146 | else if(strstr(temp_string.c_str(),"HAD_Nhf")){curstring >> varname >> value; HAD_Nhf = value;}
|
---|
| 147 | else if(strstr(temp_string.c_str(),"HAD_Chf")){curstring >> varname >> value; HAD_Chf = value;}
|
---|
| 148 | else if(strstr(temp_string.c_str(),"MU_SmearPt")){curstring >> varname >> value; MU_SmearPt = value;}
|
---|
| 149 | else if(strstr(temp_string.c_str(),"TAU_CONE_ENERGY")){curstring >> varname >> value; TAU_CONE_ENERGY = value;}
|
---|
| 150 | else if(strstr(temp_string.c_str(),"TAU_CONE_TRACKS")){curstring >> varname >> value; TAU_CONE_TRACKS = value;}
|
---|
| 151 | else if(strstr(temp_string.c_str(),"PT_TRACK_TAU")){curstring >> varname >> value; PT_TRACK_TAU = value;}
|
---|
| 152 | else if(strstr(temp_string.c_str(),"PT_TRACKS_MIN")){curstring >> varname >> value; PT_TRACKS_MIN = value;}
|
---|
| 153 | else if(strstr(temp_string.c_str(),"TAGGING_B")){curstring >> varname >> value; TAGGING_B = (int)value;}
|
---|
| 154 | else if(strstr(temp_string.c_str(),"MISTAGGING_C")){curstring >> varname >> value; MISTAGGING_C = (int)value;}
|
---|
| 155 | else if(strstr(temp_string.c_str(),"MISTAGGING_L")){curstring >> varname >> value; MISTAGGING_L = (int)value;}
|
---|
| 156 | else if(strstr(temp_string.c_str(),"CONERADIUS")){curstring >> varname >> value; CONERADIUS = value;}
|
---|
| 157 | else if(strstr(temp_string.c_str(),"JETALGO")){curstring >> varname >> value; JETALGO = (int)value;}
|
---|
| 158 | else if(strstr(temp_string.c_str(),"TRACKING_EFF")){curstring >> varname >> value; TRACKING_EFF = (int)value;}
|
---|
[33] | 159 | else if(strstr(temp_string.c_str(),"ELEC_pt")){curstring >> varname >> value; ELEC_pt = value;}
|
---|
| 160 | else if(strstr(temp_string.c_str(),"MUON_pt")){curstring >> varname >> value; MUON_pt = value;}
|
---|
| 161 | else if(strstr(temp_string.c_str(),"JET_pt")){curstring >> varname >> value; JET_pt = value;}
|
---|
| 162 | else if(strstr(temp_string.c_str(),"TAUJET_pt")){curstring >> varname >> value; TAUJET_pt = value;}
|
---|
| 163 |
|
---|
[2] | 164 | }
|
---|
| 165 |
|
---|
[43] | 166 | // General jet variables
|
---|
| 167 | SEEDTHRESHOLD = 1.0;
|
---|
| 168 | OVERLAPTHRESHOLD = 0.75;
|
---|
| 169 |
|
---|
[2] | 170 | // Define Cone algorithm.
|
---|
| 171 | C_ADJACENCYCUT = 2;
|
---|
| 172 | C_MAXITERATIONS = 100;
|
---|
| 173 | C_IRATCH = 1;
|
---|
| 174 |
|
---|
| 175 | //Define MidPoint algorithm.
|
---|
| 176 | M_CONEAREAFRACTION = 0.25;
|
---|
| 177 | M_MAXPAIRSIZE = 2;
|
---|
| 178 | M_MAXITERATIONS = 100;
|
---|
| 179 |
|
---|
[44] | 180 | //Define SISCone algorithm.
|
---|
| 181 | NPASS = 0;
|
---|
| 182 | PROTOJET_PTMIN = 0.0;
|
---|
| 183 |
|
---|
[69] | 184 | DOTRIGGER=1;
|
---|
[44] | 185 |
|
---|
[2] | 186 | }
|
---|
| 187 |
|
---|
[44] | 188 | void RESOLution::Logfile(string LogName) {
|
---|
[51] | 189 |
|
---|
[44] | 190 | ofstream f_out(LogName.c_str());
|
---|
| 191 |
|
---|
| 192 | f_out<<"#*********************************************************************"<<"\n";
|
---|
| 193 | f_out<<"# *"<<"\n";
|
---|
[51] | 194 | f_out<<"# ---- DELPHES release 1.0 ---- *"<<"\n";
|
---|
[44] | 195 | f_out<<"# *"<<"\n";
|
---|
| 196 | f_out<<"# A Fast Simulator for general purpose LHC detector *"<<"\n";
|
---|
| 197 | f_out<<"# Written by S. Ovyn and X. Rouby *"<<"\n";
|
---|
| 198 | f_out<<"# severine.ovyn@uclouvain.be *"<<"\n";
|
---|
| 199 | f_out<<"# *"<<"\n";
|
---|
| 200 | f_out<<"# http: *"<<"\n";
|
---|
| 201 | f_out<<"# *"<<"\n";
|
---|
| 202 | f_out<<"# Center for Particle Physics and Phenomenology (CP3) *"<<"\n";
|
---|
| 203 | f_out<<"# Universite Catholique de Louvain (UCL) *"<<"\n";
|
---|
| 204 | f_out<<"# Louvain-la-Neuve, Belgium *"<<"\n";
|
---|
| 205 | f_out<<"# *"<<"\n";
|
---|
| 206 | f_out<<"#....................................................................*"<<"\n";
|
---|
| 207 | f_out<<"# *"<<"\n";
|
---|
[46] | 208 | f_out<<"# This package uses: *"<<"\n";
|
---|
| 209 | f_out<<"# FastJet algorithm: Phys. Lett. B641 (2006) [hep-ph/0512210] *"<<"\n";
|
---|
| 210 | f_out<<"# Hector: JINST 2:P09005 (2007) [physics.acc-ph:0707.1198v2] *"<<"\n";
|
---|
| 211 | f_out<<"# ExRootAnalysis *"<<"\n";
|
---|
[44] | 212 | f_out<<"# *"<<"\n";
|
---|
| 213 | f_out<<"#....................................................................*"<<"\n";
|
---|
| 214 | f_out<<"# *"<<"\n";
|
---|
| 215 | f_out<<"# This file contains all the running parameters (detector and cuts) *"<<"\n";
|
---|
| 216 | f_out<<"# necessary to reproduce the detector simulation *"<<"\n";
|
---|
| 217 | f_out<<"# *"<<"\n";
|
---|
| 218 | f_out<<"#....................................................................*"<<"\n";
|
---|
| 219 | f_out<<"#>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>"<<"\n";
|
---|
| 220 | f_out<<"* *"<<"\n";
|
---|
| 221 | f_out<<"#******************************** *"<<"\n";
|
---|
| 222 | f_out<<"# Central detector caracteristics *"<<"\n";
|
---|
| 223 | f_out<<"#******************************** *"<<"\n";
|
---|
| 224 | f_out<<"* *"<<"\n";
|
---|
| 225 | f_out << left << setw(30) <<"* Maximum tracking system: "<<""
|
---|
| 226 | << left << setw(10) <<MAX_TRACKER <<""<< right << setw(15)<<"*"<<"\n";
|
---|
| 227 | f_out << left << setw(30) <<"* Maximum central calorimeter: "<<""
|
---|
| 228 | << left << setw(10) <<MAX_CALO_CEN <<""<< right << setw(15)<<"*"<<"\n";
|
---|
| 229 | f_out << left << setw(30) <<"* Maximum forward calorimeter: "<<""
|
---|
| 230 | << left << setw(10) <<MAX_CALO_FWD <<""<< right << setw(15)<<"*"<<"\n";
|
---|
| 231 | f_out << left << setw(30) <<"* Muon chambers coverage: "<<""
|
---|
| 232 | << left << setw(10) <<MAX_MU <<""<< right << setw(15)<<"*"<<"\n";
|
---|
| 233 | f_out<<"* *"<<"\n";
|
---|
| 234 | f_out<<"#************************************* *"<<"\n";
|
---|
| 235 | f_out<<"# Very forward detector caracteristics *"<<"\n";
|
---|
| 236 | f_out<<"#************************************* *"<<"\n";
|
---|
| 237 | f_out<<"* *"<<"\n";
|
---|
| 238 | f_out << left << setw(55) <<"* Minimum very forward calorimeter: "<<""
|
---|
| 239 | << left << setw(5) <<MIN_CALO_VFWD <<""<< right << setw(10)<<"*"<<"\n";
|
---|
| 240 | f_out << left << setw(55) <<"* Maximum very forward calorimeter: "<<""
|
---|
| 241 | << left << setw(5) <<MAX_CALO_VFWD <<""<< right << setw(10)<<"*"<<"\n";
|
---|
| 242 | f_out << left << setw(55) <<"* Distance of the ZDC to the IP, in meters: "<<""
|
---|
| 243 | << left << setw(5) <<ZDC_S <<""<< right << setw(10)<<"*"<<"\n";
|
---|
| 244 | f_out << left << setw(55) <<"* Distance of the RP to the IP, in meters: "<<""
|
---|
| 245 | << left << setw(5) <<RP220_S <<""<< right << setw(10)<<"*"<<"\n";
|
---|
| 246 | f_out << left << setw(55) <<"* Distance of the RP to the beam, in meters: "<<""
|
---|
| 247 | << left << setw(5) <<RP220_X <<""<< right << setw(10)<<"*"<<"\n";
|
---|
| 248 | f_out << left << setw(55) <<"* Distance of the RP to the IP, in meters: "<<""
|
---|
| 249 | << left << setw(5) <<FP420_S <<""<< right << setw(10)<<"*"<<"\n";
|
---|
| 250 | f_out << left << setw(55) <<"* Distance of the RP to the beam, in meters: "<<""
|
---|
| 251 | << left << setw(5) <<FP420_X <<""<< right << setw(10)<<"*"<<"\n";
|
---|
| 252 | f_out<<"* *"<<"\n";
|
---|
[62] | 253 | f_out<<"#*********************************** *"<<"\n";
|
---|
| 254 | f_out<<"# Magnetic field needed informations *"<<"\n";
|
---|
| 255 | f_out<<"#*********************************** *"<<"\n";
|
---|
| 256 | f_out<<"* *"<<"\n";
|
---|
| 257 | f_out << left << setw(55) <<"* Radius of the BField coverage: "<<""
|
---|
| 258 | << left << setw(5) <<TRACKING_RADIUS <<""<< right << setw(10)<<"*"<<"\n";
|
---|
| 259 | f_out << left << setw(55) <<"* Length of the BField coverage: "<<""
|
---|
| 260 | << left << setw(5) <<TRACKING_LENGTH <<""<< right << setw(10)<<"*"<<"\n";
|
---|
| 261 | f_out << left << setw(55) <<"* BField X component: "<<""
|
---|
| 262 | << left << setw(5) <<BFIELD_X <<""<< right << setw(10)<<"*"<<"\n";
|
---|
| 263 | f_out << left << setw(55) <<"* BField Y component: "<<""
|
---|
| 264 | << left << setw(5) <<BFIELD_Y <<""<< right << setw(10)<<"*"<<"\n";
|
---|
| 265 | f_out << left << setw(55) <<"* BField Z component: "<<""
|
---|
| 266 | << left << setw(5) <<BFIELD_Z <<""<< right << setw(10)<<"*"<<"\n";
|
---|
| 267 | f_out<<"* *"<<"\n";
|
---|
[44] | 268 | f_out<<"#************************************ *"<<"\n";
|
---|
| 269 | f_out<<"# Electromagnetic smearing parameters *"<<"\n";
|
---|
| 270 | f_out<<"#************************************ *"<<"\n";
|
---|
| 271 | f_out<<"* *"<<"\n";
|
---|
| 272 | //# \sigma/E = C + N/E + S/\sqrt{E}
|
---|
| 273 | f_out << left << setw(30) <<"* S term for central ECAL: "<<""
|
---|
| 274 | << left << setw(30) <<ELG_Scen <<""<< right << setw(10)<<"*"<<"\n";
|
---|
| 275 | f_out << left << setw(30) <<"* N term for central ECAL: "<<""
|
---|
| 276 | << left << setw(30) <<ELG_Ncen <<""<< right << setw(10)<<"*"<<"\n";
|
---|
| 277 | f_out << left << setw(30) <<"* C term for central ECAL: "<<""
|
---|
| 278 | << left << setw(30) <<ELG_Ccen <<""<< right << setw(10)<<"*"<<"\n";
|
---|
| 279 | f_out << left << setw(30) <<"* S term for forward ECAL: "<<""
|
---|
| 280 | << left << setw(30) <<ELG_Sfwd <<""<< right << setw(10)<<"*"<<"\n";
|
---|
| 281 | f_out << left << setw(30) <<"* N term for forward ECAL: "<<""
|
---|
| 282 | << left << setw(30) <<ELG_Nfwd <<""<< right << setw(10)<<"*"<<"\n";
|
---|
| 283 | f_out << left << setw(30) <<"* C term for forward ECAL: "<<""
|
---|
| 284 | << left << setw(30) <<ELG_Cfwd <<""<< right << setw(10)<<"*"<<"\n";
|
---|
| 285 | f_out<<"* *"<<"\n";
|
---|
| 286 | f_out<<"#***************************** *"<<"\n";
|
---|
| 287 | f_out<<"# Hadronic smearing parameters *"<<"\n";
|
---|
| 288 | f_out<<"#***************************** *"<<"\n";
|
---|
| 289 | f_out<<"* *"<<"\n";
|
---|
| 290 | f_out << left << setw(30) <<"* S term for central HCAL: "<<""
|
---|
| 291 | << left << setw(30) <<HAD_Shcal <<""<< right << setw(10)<<"*"<<"\n";
|
---|
| 292 | f_out << left << setw(30) <<"* N term for central HCAL: "<<""
|
---|
| 293 | << left << setw(30) <<HAD_Nhcal <<""<< right << setw(10)<<"*"<<"\n";
|
---|
| 294 | f_out << left << setw(30) <<"* C term for central HCAL: "<<""
|
---|
| 295 | << left << setw(30) <<HAD_Chcal <<""<< right << setw(10)<<"*"<<"\n";
|
---|
| 296 | f_out << left << setw(30) <<"* S term for forward HCAL: "<<""
|
---|
| 297 | << left << setw(30) <<HAD_Shf <<""<< right << setw(10)<<"*"<<"\n";
|
---|
| 298 | f_out << left << setw(30) <<"* N term for forward HCAL: "<<""
|
---|
| 299 | << left << setw(30) <<HAD_Nhf <<""<< right << setw(10)<<"*"<<"\n";
|
---|
| 300 | f_out << left << setw(30) <<"* C term for forward HCAL: "<<""
|
---|
| 301 | << left << setw(30) <<HAD_Chf <<""<< right << setw(10)<<"*"<<"\n";
|
---|
| 302 | f_out<<"* *"<<"\n";
|
---|
| 303 | f_out<<"#*************************** *"<<"\n";
|
---|
| 304 | f_out<<"# Tracking system acceptance *"<<"\n";
|
---|
| 305 | f_out<<"#*************************** *"<<"\n";
|
---|
| 306 | f_out<<"* *"<<"\n";
|
---|
| 307 | f_out << left << setw(55) <<"* Minimal pT needed to reach the calorimeter [GeV]: "<<""
|
---|
| 308 | << left << setw(10) <<PT_TRACKS_MIN <<""<< right << setw(5)<<"*"<<"\n";
|
---|
| 309 | f_out << left << setw(55) <<"* Efficiency associated to the tracking: "<<""
|
---|
| 310 | << left << setw(10) <<TRACKING_EFF <<""<< right << setw(5)<<"*"<<"\n";
|
---|
| 311 | f_out<<"* *"<<"\n";
|
---|
| 312 | f_out<<"#************************* *"<<"\n";
|
---|
| 313 | f_out<<"# Muon smearing parameters *"<<"\n";
|
---|
| 314 | f_out<<"#************************* *"<<"\n";
|
---|
| 315 | f_out<<"* *"<<"\n";
|
---|
| 316 | //MU_SmearPt 0.01
|
---|
| 317 | f_out<<"* *"<<"\n";
|
---|
| 318 | f_out<<"#****************************** *"<<"\n";
|
---|
| 319 | f_out<<"# Tau-jet definition parameters *"<<"\n";
|
---|
| 320 | f_out<<"#****************************** *"<<"\n";
|
---|
| 321 | f_out<<"* *"<<"\n";
|
---|
| 322 | f_out << left << setw(45) <<"* Cone radius for calorimeter tagging: "<<""
|
---|
| 323 | << left << setw(5) <<TAU_CONE_ENERGY <<""<< right << setw(20)<<"*"<<"\n";
|
---|
| 324 | f_out << left << setw(45) <<"* Fraction of energy in the small cone: "<<""
|
---|
| 325 | << left << setw(5) <<TAU_EM_COLLIMATION*100 <<""<< right << setw(20)<<"! not in datacard *"<<"\n";
|
---|
| 326 | f_out << left << setw(45) <<"* Cone radius for tracking tagging: "<<""
|
---|
| 327 | << left << setw(5) <<TAU_CONE_TRACKS <<""<< right << setw(20)<<"*"<<"\n";
|
---|
| 328 | f_out << left << setw(45) <<"* Minimum track pT [GeV]: "<<""
|
---|
| 329 | << left << setw(5) <<PT_TRACK_TAU <<""<< right << setw(20)<<"*"<<"\n";
|
---|
| 330 | f_out<<"* *"<<"\n";
|
---|
| 331 | f_out<<"#******************* *"<<"\n";
|
---|
| 332 | f_out<<"# Minimum pT's [GeV] *"<<"\n";
|
---|
| 333 | f_out<<"#******************* *"<<"\n";
|
---|
| 334 | f_out<<"* *"<<"\n";
|
---|
| 335 | f_out << left << setw(40) <<"* Minimum pT for electrons: "<<""
|
---|
| 336 | << left << setw(20) <<ELEC_pt <<""<< right << setw(10)<<"*"<<"\n";
|
---|
| 337 | f_out << left << setw(40) <<"* Minimum pT for muons: "<<""
|
---|
| 338 | << left << setw(20) <<MUON_pt <<""<< right << setw(10)<<"*"<<"\n";
|
---|
| 339 | f_out << left << setw(40) <<"* Minimum pT for jets: "<<""
|
---|
| 340 | << left << setw(20) <<JET_pt <<""<< right << setw(10)<<"*"<<"\n";
|
---|
| 341 | f_out << left << setw(40) <<"* Minimum pT for Tau-jets: "<<""
|
---|
| 342 | << left << setw(20) <<TAUJET_pt <<""<< right << setw(10)<<"*"<<"\n";
|
---|
| 343 | f_out<<"* *"<<"\n";
|
---|
| 344 | f_out<<"#*************************** *"<<"\n";
|
---|
| 345 | f_out<<"# B-tagging efficiencies [%] *"<<"\n";
|
---|
| 346 | f_out<<"#*************************** *"<<"\n";
|
---|
| 347 | f_out<<"* *"<<"\n";
|
---|
| 348 | f_out << left << setw(50) <<"* Efficiency to tag a \"b\" as a b-jet: "<<""
|
---|
| 349 | << left << setw(10) <<TAGGING_B <<""<< right << setw(10)<<"*"<<"\n";
|
---|
| 350 | f_out << left << setw(50) <<"* Efficiency to mistag a c-jet as a b-jet: "<<""
|
---|
| 351 | << left << setw(10) <<MISTAGGING_C <<""<< right << setw(10)<<"*"<<"\n";
|
---|
| 352 | f_out << left << setw(50) <<"* Efficiency to mistag a light jet as a b-jet: "<<""
|
---|
| 353 | << left << setw(10) <<MISTAGGING_L <<""<< right << setw(10)<<"*"<<"\n";
|
---|
| 354 | f_out<<"* *"<<"\n";
|
---|
| 355 | f_out<<"#*************** *"<<"\n";
|
---|
| 356 | f_out<<"# Jet definition *"<<"\n";
|
---|
| 357 | f_out<<"#*************** *"<<"\n";
|
---|
| 358 | f_out<<"* *"<<"\n";
|
---|
[49] | 359 | f_out<<"* Six algorithms are currently available: *"<<"\n";
|
---|
| 360 | f_out<<"* - 1) CDF cone algorithm, *"<<"\n";
|
---|
| 361 | f_out<<"* - 2) CDF MidPoint algorithm, *"<<"\n";
|
---|
| 362 | f_out<<"* - 3) SIScone algorithm, *"<<"\n";
|
---|
| 363 | f_out<<"* - 4) kt algorithm, *"<<"\n";
|
---|
| 364 | f_out<<"* - 5) Cambrigde/Aachen algorithm, *"<<"\n";
|
---|
| 365 | f_out<<"* - 6) Anti-kt algorithm. *"<<"\n";
|
---|
| 366 | f_out<<"* *"<<"\n";
|
---|
| 367 | f_out<<"* You have chosen *"<<"\n";
|
---|
[44] | 368 | switch(JETALGO) {
|
---|
| 369 | default:
|
---|
| 370 | case 1: {
|
---|
[49] | 371 | f_out<<"* CDF JetClu jet algorithm with parameters: *"<<"\n";
|
---|
| 372 | f_out << left << setw(40) <<"* - Seed threshold: "<<""
|
---|
| 373 | << left << setw(10) <<SEEDTHRESHOLD <<""<< right << setw(20)<<"! not in datacard *"<<"\n";
|
---|
| 374 | f_out << left << setw(40) <<"* - Cone radius: "<<""
|
---|
| 375 | << left << setw(10) <<CONERADIUS <<""<< right << setw(20)<<"*"<<"\n";
|
---|
| 376 | f_out << left << setw(40) <<"* - Adjacency cut: "<<""
|
---|
| 377 | << left << setw(10) <<C_ADJACENCYCUT <<""<< right << setw(20)<<"! not in datacard *"<<"\n";
|
---|
| 378 | f_out << left << setw(40) <<"* - Max iterations: "<<""
|
---|
| 379 | << left << setw(10) <<C_MAXITERATIONS <<""<< right << setw(20)<<"! not in datacard *"<<"\n";
|
---|
| 380 | f_out << left << setw(40) <<"* - Iratch: "<<""
|
---|
| 381 | << left << setw(10) <<C_IRATCH <<""<< right << setw(20)<<"! not in datacard *"<<"\n";
|
---|
| 382 | f_out << left << setw(40) <<"* - Overlap threshold: "<<""
|
---|
| 383 | << left << setw(10) <<OVERLAPTHRESHOLD <<""<< right << setw(20)<<"! not in datacard *"<<"\n";
|
---|
[44] | 384 | }
|
---|
| 385 | break;
|
---|
| 386 | case 2: {
|
---|
[49] | 387 | f_out<<"* CDF midpoint jet algorithm with parameters: *"<<"\n";
|
---|
| 388 | f_out << left << setw(40) <<"* - Seed threshold: "<<""
|
---|
| 389 | << left << setw(20) <<SEEDTHRESHOLD <<""<< right << setw(10)<<"! not in datacard *"<<"\n";
|
---|
| 390 | f_out << left << setw(40) <<"* - Cone radius: "<<""
|
---|
| 391 | << left << setw(20) <<CONERADIUS <<""<< right << setw(10)<<"*"<<"\n";
|
---|
| 392 | f_out << left << setw(40) <<"* - Cone area fraction:"<<""
|
---|
| 393 | << left << setw(20) <<M_CONEAREAFRACTION <<""<< right << setw(10)<<"! not in datacard *"<<"\n";
|
---|
| 394 | f_out << left << setw(40) <<"* - Maximum pair size: "<<""
|
---|
| 395 | << left << setw(20) <<M_MAXPAIRSIZE <<""<< right << setw(10)<<"! not in datacard *"<<"\n";
|
---|
| 396 | f_out << left << setw(40) <<"* - Max iterations: "<<""
|
---|
| 397 | << left << setw(20) <<M_MAXITERATIONS <<""<< right << setw(10)<<"! not in datacard *"<<"\n";
|
---|
| 398 | f_out << left << setw(40) <<"* - Overlap threshold: "<<""
|
---|
| 399 | << left << setw(20) <<OVERLAPTHRESHOLD <<""<< right << setw(10)<<"! not in datacard *"<<"\n";
|
---|
[44] | 400 | }
|
---|
| 401 | break;
|
---|
| 402 | case 3: {
|
---|
[49] | 403 | f_out <<"* SISCone jet algorithm with parameters: *"<<"\n";
|
---|
| 404 | f_out << left << setw(40) <<"* - Cone radius: "<<""
|
---|
| 405 | << left << setw(20) <<CONERADIUS <<""<< right << setw(10)<<"*"<<"\n";
|
---|
| 406 | f_out << left << setw(40) <<"* - Overlap threshold: "<<""
|
---|
| 407 | << left << setw(20) <<OVERLAPTHRESHOLD <<""<< right << setw(10)<<"! not in datacard *"<<"\n";
|
---|
| 408 | f_out << left << setw(40) <<"* - Number pass max: "<<""
|
---|
| 409 | << left << setw(20) <<NPASS <<""<< right << setw(10)<<"! not in datacard *"<<"\n";
|
---|
| 410 | f_out << left << setw(40) <<"* - Minimum pT for protojet: "<<""
|
---|
| 411 | << left << setw(20) <<PROTOJET_PTMIN <<""<< right << setw(10)<<"! not in datacard *"<<"\n";
|
---|
[44] | 412 | }
|
---|
| 413 | break;
|
---|
| 414 | case 4: {
|
---|
[49] | 415 | f_out <<"* KT jet algorithm with parameters: *"<<"\n";
|
---|
| 416 | f_out << left << setw(40) <<"* - Cone radius: "<<""
|
---|
| 417 | << left << setw(20) <<CONERADIUS <<""<< right << setw(10)<<"*"<<"\n";
|
---|
[44] | 418 | }
|
---|
| 419 | break;
|
---|
[49] | 420 | case 5: {
|
---|
| 421 | f_out <<"* Cambridge/Aachen jet algorithm with parameters: *"<<"\n";
|
---|
| 422 | f_out << left << setw(40) <<"* - Cone radius: "<<""
|
---|
| 423 | << left << setw(20) <<CONERADIUS <<""<< right << setw(10)<<"*"<<"\n";
|
---|
[44] | 424 | }
|
---|
[49] | 425 | break;
|
---|
| 426 | case 6: {
|
---|
| 427 | f_out <<"* Anti-kt jet algorithm with parameters: *"<<"\n";
|
---|
| 428 | f_out << left << setw(40) <<"* - Cone radius: "<<""
|
---|
| 429 | << left << setw(20) <<CONERADIUS <<""<< right << setw(10)<<"*"<<"\n";
|
---|
| 430 | }
|
---|
| 431 | break;
|
---|
| 432 |
|
---|
| 433 |
|
---|
| 434 | }
|
---|
[44] | 435 | f_out<<"* *"<<"\n";
|
---|
| 436 | f_out<<"#....................................................................*"<<"\n";
|
---|
| 437 | f_out<<"#>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>"<<"\n";
|
---|
| 438 |
|
---|
| 439 | }
|
---|
| 440 |
|
---|
[2] | 441 | // **********Provides the smeared TLorentzVector for the electrons********
|
---|
| 442 | // Smears the electron energy, and changes the 4-momentum accordingly
|
---|
| 443 | // different smearing if the electron is central (eta < 2.5) or forward
|
---|
| 444 | void RESOLution::SmearElectron(TLorentzVector &electron) {
|
---|
| 445 | // the 'electron' variable will be changed by the function
|
---|
| 446 | float energy = electron.E(); // before smearing
|
---|
| 447 | float energyS = 0.0; // after smearing // \sigma/E = C + N/E + S/\sqrt{E}
|
---|
[69] | 448 | float eta=fabs(electron.Eta());
|
---|
| 449 |
|
---|
| 450 | if(eta < MAX_TRACKER) { // if the electron is inside the tracker
|
---|
[2] | 451 | energyS = gRandom->Gaus(energy, sqrt(
|
---|
| 452 | pow(ELG_Ncen,2) +
|
---|
| 453 | pow(ELG_Ccen*energy,2) +
|
---|
[22] | 454 | pow(ELG_Scen*sqrt(energy),2) ));
|
---|
[55] | 455 | }
|
---|
[69] | 456 | if(eta > MAX_TRACKER && eta < MAX_CALO_FWD){
|
---|
[2] | 457 | energyS = gRandom->Gaus(energy, sqrt(
|
---|
| 458 | pow(ELG_Nfwd,2) +
|
---|
| 459 | pow(ELG_Cfwd*energy,2) +
|
---|
| 460 | pow(ELG_Sfwd*sqrt(energy),2) ) );
|
---|
| 461 | }
|
---|
| 462 | electron.SetPtEtaPhiE(energyS/cosh(electron.Eta()), electron.Eta(), electron.Phi(), energyS);
|
---|
| 463 | if(electron.E() < 0)electron.SetPxPyPzE(0,0,0,0); // no negative values after smearing !
|
---|
| 464 | }
|
---|
| 465 |
|
---|
| 466 |
|
---|
| 467 | // **********Provides the smeared TLorentzVector for the muons********
|
---|
| 468 | // Smears the muon pT and changes the 4-momentum accordingly
|
---|
| 469 | void RESOLution::SmearMu(TLorentzVector &muon) {
|
---|
| 470 | // the 'muon' variable will be changed by the function
|
---|
| 471 | float pt = muon.Pt(); // before smearing
|
---|
[61] | 472 | float ptS=pt;
|
---|
| 473 |
|
---|
| 474 | if(fabs(muon.Eta()) < MAX_MU )
|
---|
| 475 | {
|
---|
| 476 | ptS = gRandom->Gaus(pt, MU_SmearPt*pt ); // after smearing // \sigma/E = C + N/E + S/\sqrt{E}
|
---|
| 477 | }
|
---|
| 478 | muon.SetPtEtaPhiE(ptS, muon.Eta(), muon.Phi(), ptS*cosh(muon.Eta()));
|
---|
[2] | 479 |
|
---|
| 480 | if(muon.E() < 0)muon.SetPxPyPzE(0,0,0,0); // no negative values after smearing !
|
---|
| 481 | }
|
---|
| 482 |
|
---|
| 483 |
|
---|
| 484 | // **********Provides the smeared TLorentzVector for the hadrons********
|
---|
| 485 | // Smears the hadron 4-momentum
|
---|
| 486 | void RESOLution::SmearHadron(TLorentzVector &hadron, const float frac)
|
---|
| 487 | // the 'hadron' variable will be changed by the function
|
---|
| 488 | // the 'frac' variable describes the long-living particles. Should be 0.7 for K0S and Lambda, 1. otherwise
|
---|
| 489 | {
|
---|
| 490 | float energy = hadron.E(); // before smearing
|
---|
| 491 | float energyS = 0.0; // after smearing // \sigma/E = C + N/E + S/\sqrt{E}
|
---|
| 492 | float energy_ecal = (1.0 - frac)*energy; // electromagnetic calorimeter
|
---|
| 493 | float energy_hcal = frac*energy; // hadronic calorimeter
|
---|
| 494 | // frac takes into account the decay of long-living particles, that decay in the calorimeters
|
---|
| 495 | // some of the particles decay mostly in the ecal, some mostly in the hcal
|
---|
| 496 |
|
---|
[31] | 497 | float energyS1,energyS2;
|
---|
[2] | 498 | if(fabs(hadron.Eta()) < MAX_CALO_CEN) {
|
---|
[10] | 499 | energyS1 = gRandom->Gaus(energy_hcal, sqrt(
|
---|
[2] | 500 | pow(HAD_Nhcal,2) +
|
---|
| 501 | pow(HAD_Chcal*energy_hcal,2) +
|
---|
[9] | 502 | pow(HAD_Shcal*sqrt(energy_hcal),2) )) ;
|
---|
[10] | 503 |
|
---|
[9] | 504 |
|
---|
[10] | 505 | energyS2 = gRandom->Gaus(energy_ecal, sqrt(
|
---|
[32] | 506 | pow(ELG_Ncen,2) +
|
---|
| 507 | pow(ELG_Ccen*energy_ecal,2) +
|
---|
| 508 | pow(ELG_Scen*sqrt(energy_ecal),2) ) );
|
---|
[9] | 509 |
|
---|
[10] | 510 | energyS = ((energyS1>0)?energyS1:0) + ((energyS2>0)?energyS2:0);
|
---|
[55] | 511 | }
|
---|
| 512 | if(abs(hadron.Eta()) > MAX_CALO_CEN && fabs(hadron.Eta()) < MAX_CALO_FWD){
|
---|
[22] | 513 | energyS = gRandom->Gaus(energy, sqrt(
|
---|
[2] | 514 | pow(HAD_Nhf,2) +
|
---|
| 515 | pow(HAD_Chf*energy,2) +
|
---|
[22] | 516 | pow(HAD_Shf*sqrt(energy),2) ));
|
---|
[55] | 517 | }
|
---|
| 518 |
|
---|
[10] | 519 |
|
---|
| 520 |
|
---|
[2] | 521 | hadron.SetPtEtaPhiE(energyS/cosh(hadron.Eta()),hadron.Eta(), hadron.Phi(), energyS);
|
---|
| 522 |
|
---|
| 523 | if(hadron.E() < 0)hadron.SetPxPyPzE(0,0,0,0);
|
---|
| 524 | }
|
---|
| 525 |
|
---|
| 526 | // **********Provides the energy in the cone of radius TAU_CONE_ENERGY for the tau identification********
|
---|
| 527 | // to be taken into account, a calo tower should
|
---|
| 528 | // 1) have a transverse energy \f$ E_T = \sqrt{E_X^2 + E_Y^2} \f$ above a given threshold
|
---|
| 529 | // 2) be inside a cone with a radius R and the axis defined by (eta,phi)
|
---|
| 530 | double RESOLution::EnergySmallCone(const vector<PhysicsTower> &towers, const float eta, const float phi) {
|
---|
| 531 | double Energie=0;
|
---|
| 532 | for(unsigned int i=0; i < towers.size(); i++) {
|
---|
[43] | 533 | if(towers[i].fourVector.pt() < SEEDTHRESHOLD) continue;
|
---|
[2] | 534 | if((DeltaR(phi,eta,towers[i].fourVector.phi(),towers[i].fourVector.eta()) < TAU_CONE_ENERGY)) {
|
---|
| 535 | Energie += towers[i].fourVector.E;
|
---|
| 536 | }
|
---|
| 537 | }
|
---|
| 538 | return Energie;
|
---|
| 539 | }
|
---|
| 540 |
|
---|
| 541 |
|
---|
| 542 | // **********Provides the number of tracks in the cone of radius TAU_CONE_TRACKS for the tau identification********
|
---|
| 543 | // to be taken into account, a track should
|
---|
| 544 | // 1) avec a transverse momentum \$f p_T \$ above a given threshold
|
---|
| 545 | // 2) be inside a cone with a radius R and the axis defined by (eta,phi)
|
---|
| 546 | // IMPORTANT REMARK !!!!!
|
---|
| 547 | // previously, the argument 'phi' was before the argument 'eta'
|
---|
| 548 | // this has been changed for consistency with the other functions
|
---|
| 549 | // double check your running code that uses NumTracks !
|
---|
| 550 | unsigned int RESOLution::NumTracks(const vector<TLorentzVector> &tracks, const float pt_track, const float eta, const float phi) {
|
---|
| 551 | unsigned int numtrack=0;
|
---|
| 552 | for(unsigned int i=0; i < tracks.size(); i++) {
|
---|
| 553 | if((tracks[i].Pt() < pt_track )||
|
---|
| 554 | (DeltaR(phi,eta,tracks[i].Phi(),tracks[i].Eta()) > TAU_CONE_TRACKS)
|
---|
| 555 | )continue;
|
---|
| 556 | numtrack++;
|
---|
| 557 | }
|
---|
| 558 | return numtrack;
|
---|
| 559 | }
|
---|
| 560 |
|
---|
| 561 |
|
---|
| 562 | //*** Returns the PID of the particle with the highest energy, in a cone with a radius CONERADIUS and an axis (eta,phi) *********
|
---|
| 563 | //used by Btaggedjet
|
---|
| 564 | ///// Attention : bug removed => CONERADIUS/2 -> CONERADIUS !!
|
---|
| 565 | int RESOLution::Bjets(const TSimpleArray<TRootGenParticle> &subarray, const float eta, const float phi) {
|
---|
| 566 | float emax=0;
|
---|
| 567 | int Ppid=0;
|
---|
| 568 | if(subarray.GetEntries()>0) {
|
---|
| 569 | for(int i=0; i < subarray.GetEntries();i++) { // should have pt>PT_JETMIN and a small cone radius (r<CONE_JET)
|
---|
| 570 | float genDeltaR = DeltaR(subarray[i]->Phi,subarray[i]->Eta,phi,eta);
|
---|
| 571 | if(genDeltaR < CONERADIUS && subarray[i]->E > emax) {
|
---|
| 572 | emax=subarray[i]->E;
|
---|
| 573 | Ppid=abs(subarray[i]->PID);
|
---|
| 574 | }
|
---|
| 575 | }
|
---|
| 576 | }
|
---|
| 577 | return Ppid;
|
---|
| 578 | }
|
---|
| 579 |
|
---|
| 580 |
|
---|
| 581 | //******************** Simulates the b-tagging efficiency for real bjet, or the misendentification for other jets****************
|
---|
| 582 | bool RESOLution::Btaggedjet(const TLorentzVector &JET, const TSimpleArray<TRootGenParticle> &subarray) {
|
---|
| 583 | if( rand()%100 < (TAGGING_B+1) && Bjets(subarray,JET.Eta(),JET.Phi())==pB ) return true; // b-tag of b-jets is 40%
|
---|
| 584 | else if( rand()%100 < (MISTAGGING_C+1) && Bjets(subarray,JET.Eta(),JET.Phi())==pC ) return true; // b-tag of c-jets is 10%
|
---|
| 585 | else if( rand()%100 < (MISTAGGING_L+1) && Bjets(subarray,JET.Eta(),JET.Phi())!=0) return true; // b-tag of light jets is 1%
|
---|
| 586 | return false;
|
---|
| 587 | }
|
---|
| 588 |
|
---|
[31] | 589 | //***********************Isolation criteria***********************
|
---|
| 590 | //****************************************************************
|
---|
| 591 | bool RESOLution::Isolation(Float_t phi,Float_t eta,const vector<TLorentzVector> &tracks,float PT_TRACK2)
|
---|
| 592 | {
|
---|
| 593 | bool isolated = false;
|
---|
| 594 | Float_t deltar=5000.; // Initial value; should be high; no further repercussion
|
---|
| 595 | // loop on all final charged particles, with p_t >2, close enough from the electron
|
---|
| 596 | for(unsigned int i=0; i < tracks.size(); i++)
|
---|
| 597 | {
|
---|
| 598 | if(tracks[i].Pt() < PT_TRACK2)continue;
|
---|
| 599 | Float_t genDeltaR = DeltaR(phi,eta,tracks[i].Phi(),tracks[i].Eta()); // slower to evaluate
|
---|
| 600 | if(
|
---|
| 601 | (genDeltaR > deltar) ||
|
---|
| 602 | (genDeltaR==0)
|
---|
| 603 | ) continue ;
|
---|
| 604 | deltar=genDeltaR;
|
---|
| 605 | }
|
---|
| 606 | if(deltar > 0.5)isolated = true; // returns the closest distance
|
---|
| 607 | return isolated;
|
---|
| 608 | }
|
---|
| 609 |
|
---|
| 610 |
|
---|
[2] | 611 | //**************************** Returns the delta Phi ****************************
|
---|
| 612 | float DeltaPhi(const float phi1, const float phi2) {
|
---|
| 613 | float deltaphi=phi1-phi2; // in here, -PI < phi < PI
|
---|
| 614 | if(fabs(deltaphi) > PI) deltaphi=2.*PI-fabs(deltaphi);// put deltaphi between 0 and PI
|
---|
| 615 | else deltaphi=fabs(deltaphi);
|
---|
| 616 |
|
---|
| 617 | return deltaphi;
|
---|
| 618 | }
|
---|
| 619 |
|
---|
| 620 | //**************************** Returns the delta R****************************
|
---|
| 621 | float DeltaR(const float phi1, const float eta1, const float phi2, const float eta2) {
|
---|
| 622 | return sqrt(pow(DeltaPhi(phi1,phi2),2) + pow(eta1-eta2,2));
|
---|
| 623 | }
|
---|
| 624 |
|
---|
| 625 | int sign(const int myint) {
|
---|
| 626 | if (myint >0) return 1;
|
---|
| 627 | else if (myint <0) return -1;
|
---|
| 628 | else return 0;
|
---|
| 629 | }
|
---|
| 630 |
|
---|
| 631 | int sign(const float myfloat) {
|
---|
| 632 | if (myfloat >0) return 1;
|
---|
| 633 | else if (myfloat <0) return -1;
|
---|
| 634 | else return 0;
|
---|
| 635 | }
|
---|
| 636 |
|
---|
[55] | 637 | int Charge(int pid)
|
---|
| 638 | {
|
---|
| 639 | int charge;
|
---|
| 640 | if(
|
---|
| 641 | (pid == pGAMMA) ||
|
---|
| 642 | (pid == pPI0) ||
|
---|
| 643 | (pid == pK0L) ||
|
---|
| 644 | (pid == pN) ||
|
---|
| 645 | (pid == pSIGMA0) ||
|
---|
| 646 | (pid == pDELTA0) ||
|
---|
| 647 | (pid == pK0S) // not charged particles : invisible by tracker
|
---|
| 648 | )
|
---|
| 649 | charge = 0;
|
---|
| 650 | else charge = (sign(pid));
|
---|
| 651 | return charge;
|
---|
| 652 |
|
---|
[2] | 653 | }
|
---|