[260] | 1 | /***********************************************************************
|
---|
| 2 | ** **
|
---|
| 3 | ** /----------------------------------------------\ **
|
---|
| 4 | ** | Delphes, a framework for the fast simulation | **
|
---|
| 5 | ** | of a generic collider experiment | **
|
---|
| 6 | ** \----------------------------------------------/ **
|
---|
| 7 | ** **
|
---|
| 8 | ** **
|
---|
| 9 | ** This package uses: **
|
---|
| 10 | ** ------------------ **
|
---|
| 11 | ** FastJet algorithm: Phys. Lett. B641 (2006) [hep-ph/0512210] **
|
---|
| 12 | ** Hector: JINST 2:P09005 (2007) [physics.acc-ph:0707.1198v2] **
|
---|
| 13 | ** FROG: [hep-ex/0901.2718v1] **
|
---|
| 14 | ** **
|
---|
| 15 | ** ------------------------------------------------------------------ **
|
---|
| 16 | ** **
|
---|
| 17 | ** Main authors: **
|
---|
| 18 | ** ------------- **
|
---|
| 19 | ** **
|
---|
| 20 | ** Severine Ovyn Xavier Rouby **
|
---|
| 21 | ** severine.ovyn@uclouvain.be xavier.rouby@cern **
|
---|
| 22 | ** **
|
---|
| 23 | ** Center for Particle Physics and Phenomenology (CP3) **
|
---|
| 24 | ** Universite catholique de Louvain (UCL) **
|
---|
| 25 | ** Louvain-la-Neuve, Belgium **
|
---|
| 26 | ** **
|
---|
| 27 | ** Copyright (C) 2008-2009, **
|
---|
| 28 | ** All rights reserved. **
|
---|
| 29 | ** **
|
---|
| 30 | ***********************************************************************/
|
---|
[2] | 31 |
|
---|
[264] | 32 |
|
---|
[2] | 33 | /// \file SmearUtil.cc
|
---|
| 34 | /// \brief RESOLution class, and some generic definitions
|
---|
| 35 |
|
---|
| 36 |
|
---|
[219] | 37 | #include "SmearUtil.h"
|
---|
[2] | 38 | #include "TRandom.h"
|
---|
| 39 |
|
---|
| 40 | #include <iostream>
|
---|
[219] | 41 | #include <fstream>
|
---|
[2] | 42 | #include <sstream>
|
---|
[44] | 43 | #include <iomanip>
|
---|
[380] | 44 | #include <map>
|
---|
[219] | 45 | using namespace std;
|
---|
[44] | 46 |
|
---|
[2] | 47 | //------------------------------------------------------------------------------
|
---|
| 48 |
|
---|
| 49 | RESOLution::RESOLution() {
|
---|
| 50 |
|
---|
[94] | 51 | // Detector characteristics
|
---|
| 52 | CEN_max_tracker = 2.5; // Maximum tracker coverage
|
---|
| 53 | CEN_max_calo_cen = 3.0; // central calorimeter coverage
|
---|
| 54 | CEN_max_calo_fwd = 5.0; // forward calorimeter pseudorapidity coverage
|
---|
| 55 | CEN_max_mu = 2.4; // muon chambers pseudorapidity coverage
|
---|
| 56 |
|
---|
| 57 | // Energy resolution for electron/photon
|
---|
| 58 | // \sigma/E = C + N/E + S/\sqrt{E}
|
---|
| 59 | ELG_Scen = 0.05; // S term for central ECAL
|
---|
| 60 | ELG_Ncen = 0.25; // N term for central ECAL
|
---|
| 61 | ELG_Ccen = 0.005; // C term for central ECAL
|
---|
[257] | 62 | ELG_Sfwd = 2.084; // S term for FCAL
|
---|
| 63 | ELG_Nfwd = 0.0; // N term for FCAL
|
---|
| 64 | ELG_Cfwd = 0.107; // C term for FCAL
|
---|
[374] | 65 | ELG_Szdc = 0.70; // S term for ZDC
|
---|
| 66 | ELG_Nzdc = 0.0; // N term for ZDC
|
---|
| 67 | ELG_Czdc = 0.08; // C term for ZDC
|
---|
[2] | 68 |
|
---|
[94] | 69 | // Energy resolution for hadrons in ecal/hcal/hf
|
---|
| 70 | // \sigma/E = C + N/E + S/\sqrt{E}
|
---|
[264] | 71 | HAD_Shcal = 1.5; // S term for central HCAL
|
---|
[94] | 72 | HAD_Nhcal = 0.; // N term for central HCAL
|
---|
| 73 | HAD_Chcal = 0.05; // C term for central HCAL
|
---|
[264] | 74 | HAD_Shf = 2.7; // S term for FCAL
|
---|
[257] | 75 | HAD_Nhf = 0.; // N term for FCAL
|
---|
| 76 | HAD_Chf = 0.13; // C term for FCAL
|
---|
[374] | 77 | HAD_Szdc = 1.38; // S term for ZDC
|
---|
| 78 | HAD_Nzdc = 0.; // N term for ZDC
|
---|
| 79 | HAD_Czdc = 0.13; // C term for ZDC
|
---|
[2] | 80 |
|
---|
[94] | 81 | // Muon smearing
|
---|
| 82 | MU_SmearPt = 0.01;
|
---|
[2] | 83 |
|
---|
[374] | 84 | // time resolution
|
---|
| 85 | ZDC_T_resolution = 0; // resolution for time measurement [s]
|
---|
| 86 | RP220_T_resolution = 0;
|
---|
| 87 | RP420_T_resolution = 0;
|
---|
| 88 |
|
---|
[94] | 89 | // Tracking efficiencies
|
---|
| 90 | TRACK_ptmin = 0.9; // minimal pt needed to reach the calorimeter in GeV
|
---|
| 91 | TRACK_eff = 100; // efficiency associated to the tracking
|
---|
[2] | 92 |
|
---|
[94] | 93 | // Calorimetric towers
|
---|
| 94 | TOWER_number = 40;
|
---|
| 95 | const float tower_eta_edges[41] = {
|
---|
| 96 | 0., 0.087, 0.174, 0.261, 0.348, 0.435, 0.522, 0.609, 0.696, 0.783, 0.870, 0.957, 1.044, 1.131, 1.218, 1.305, 1.392, 1.479, 1.566,
|
---|
| 97 | 1.653, 1.740, 1.830, 1.930, 2.043, 2.172, 2.322, 2.500, 2.650, 2.868, 2.950, 3.125, 3.300, 3.475, 3.650, 3.825, 4.000, 4.175,
|
---|
| 98 | 4.350, 4.525, 4.700, 5.000}; // temporary object
|
---|
| 99 | TOWER_eta_edges = new float[TOWER_number+1];
|
---|
| 100 | for(unsigned int i=0; i<TOWER_number +1; i++) TOWER_eta_edges[i] = tower_eta_edges[i];
|
---|
| 101 |
|
---|
| 102 | const float tower_dphi[40] = {
|
---|
| 103 | 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 10,
|
---|
| 104 | 10,10,10,10,10, 10,10,10,10,10, 10,10,10,10,10, 10,10,10,20, 20 }; // temporary object
|
---|
| 105 | TOWER_dphi = new float[TOWER_number];
|
---|
| 106 | for(unsigned int i=0; i<TOWER_number; i++) TOWER_dphi[i] = tower_dphi[i];
|
---|
[2] | 107 |
|
---|
| 108 |
|
---|
[374] | 109 | // Thresholds for reconstructed objetcs (GeV)
|
---|
[94] | 110 | PTCUT_elec = 10.0;
|
---|
| 111 | PTCUT_muon = 10.0;
|
---|
| 112 | PTCUT_jet = 20.0;
|
---|
| 113 | PTCUT_gamma = 10.0;
|
---|
| 114 | PTCUT_taujet = 10.0;
|
---|
[33] | 115 |
|
---|
[374] | 116 | ZDC_gamma_E = 20; // GeV
|
---|
| 117 | ZDC_n_E = 50; // GeV
|
---|
| 118 |
|
---|
[321] | 119 | // Isolation
|
---|
[305] | 120 | ISOL_PT = 2.0; //minimal pt of tracks for isolation criteria
|
---|
| 121 | ISOL_Cone = 0.5; //Cone for isolation criteria
|
---|
[321] | 122 | ISOL_Calo_ET = 1E99; //minimal tower energy for isolation criteria. Default off = 1E99
|
---|
[392] | 123 | ISOL_Calo_Grid = 3; //Grid size (N x N) for calorimetric isolation -- should be odd
|
---|
[305] | 124 |
|
---|
[94] | 125 | // General jet variable
|
---|
| 126 | JET_coneradius = 0.7; // generic jet radius ; not for tau's !!!
|
---|
| 127 | JET_jetalgo = 1; // 1 for Cone algorithm, 2 for MidPoint algorithm, 3 for SIScone algorithm, 4 for kt algorithm
|
---|
| 128 | JET_seed = 1.0; // minimum seed to start jet reconstruction
|
---|
[383] | 129 | JET_Eflow = 1; // 1 for Energy flow in jets reco ; 0 if not
|
---|
[33] | 130 |
|
---|
[94] | 131 | // Tagging definition
|
---|
| 132 | BTAG_b = 40;
|
---|
| 133 | BTAG_mistag_c = 10;
|
---|
| 134 | BTAG_mistag_l = 1;
|
---|
[2] | 135 |
|
---|
[94] | 136 | // FLAGS
|
---|
| 137 | FLAG_bfield = 1; //1 to run the bfield propagation else 0
|
---|
| 138 | FLAG_vfd = 1; //1 to run the very forward detectors else 0
|
---|
[307] | 139 | FLAG_RP = 1; //1 to run the zero degree calorimeter else 0
|
---|
[94] | 140 | FLAG_trigger = 1; //1 to run the trigger selection else 0
|
---|
| 141 | FLAG_frog = 1; //1 to run the FROG event display
|
---|
[307] | 142 | FLAG_lhco = 1;
|
---|
[2] | 143 |
|
---|
[94] | 144 | // In case BField propagation allowed
|
---|
| 145 | TRACK_radius = 129; //radius of the BField coverage
|
---|
| 146 | TRACK_length = 300; //length of the BField coverage
|
---|
| 147 | TRACK_bfield_x = 0; //X composant of the BField
|
---|
| 148 | TRACK_bfield_y = 0; //Y composant of the BField
|
---|
| 149 | TRACK_bfield_z = 3.8; //Z composant of the BField
|
---|
[2] | 150 |
|
---|
[94] | 151 | // In case Very forward detectors allowed
|
---|
| 152 | VFD_min_calo_vfd = 5.2; // very forward calorimeter (if any) like CASTOR
|
---|
| 153 | VFD_max_calo_vfd = 6.6;
|
---|
| 154 | VFD_min_zdc = 8.3;
|
---|
| 155 | VFD_s_zdc = 140; // distance of the Zero Degree Calorimeter, from the Interaction poin, in [m]
|
---|
[2] | 156 |
|
---|
[94] | 157 | RP_220_s = 220; // distance of the RP to the IP, in meters
|
---|
| 158 | RP_220_x = 0.002; // distance of the RP to the beam, in meters
|
---|
| 159 | RP_420_s = 420; // distance of the RP to the IP, in meters
|
---|
| 160 | RP_420_x = 0.004; // distance of the RP to the beam, in meters
|
---|
[257] | 161 | RP_IP_name = "IP5";
|
---|
[252] | 162 | RP_beam1Card = "data/LHCB1IR5_v6.500.tfs";
|
---|
| 163 | RP_beam2Card = "data/LHCB1IR5_v6.500.tfs";
|
---|
[2] | 164 |
|
---|
[94] | 165 | // In case FROG event display allowed
|
---|
| 166 | NEvents_Frog = 10;
|
---|
[2] | 167 |
|
---|
[94] | 168 | //********************************************
|
---|
| 169 | //jet stuffs not defined in the input datacard
|
---|
| 170 | //********************************************
|
---|
| 171 |
|
---|
| 172 | JET_overlap = 0.75;
|
---|
| 173 | // MidPoint algorithm definition
|
---|
| 174 | JET_M_coneareafraction = 0.25;
|
---|
| 175 | JET_M_maxpairsize = 2;
|
---|
| 176 | JET_M_maxiterations = 100;
|
---|
| 177 | // Define Cone algorithm.
|
---|
| 178 | JET_C_adjacencycut = 2;
|
---|
| 179 | JET_C_maxiterations = 100;
|
---|
| 180 | JET_C_iratch = 1;
|
---|
| 181 | //Define SISCone algorithm.
|
---|
| 182 | JET_S_npass = 0;
|
---|
| 183 | JET_S_protojet_ptmin= 0.0;
|
---|
| 184 |
|
---|
| 185 | //For Tau-jet definition
|
---|
| 186 | TAU_energy_scone = 0.15; // radius R of the cone for tau definition, based on energy threshold
|
---|
| 187 | TAU_track_scone = 0.4; // radius R of the cone for tau definition, based on track number
|
---|
| 188 | TAU_track_pt = 2; // minimal pt [GeV] for tracks to be considered in tau definition
|
---|
| 189 | TAU_energy_frac = 0.95; // fraction of energy required in the central part of the cone, for tau jets
|
---|
| 190 |
|
---|
| 191 | PT_QUARKS_MIN = 2.0 ; // minimal pt needed by quarks to do b-tag
|
---|
[252] | 192 |
|
---|
| 193 | //for very forward detectors
|
---|
| 194 | RP_offsetEl_s = 120;
|
---|
| 195 | RP_offsetEl_x = 0.097;
|
---|
[254] | 196 | RP_cross_x = -500;
|
---|
| 197 | RP_cross_y = 0.0;
|
---|
| 198 | RP_cross_ang = 142.5;
|
---|
[380] | 199 |
|
---|
| 200 | PdgTableFilename = "data/particle.tbl";
|
---|
[94] | 201 |
|
---|
[2] | 202 | }
|
---|
| 203 |
|
---|
[219] | 204 |
|
---|
| 205 | RESOLution::RESOLution(const RESOLution & DET) {
|
---|
| 206 | // Detector characteristics
|
---|
| 207 | CEN_max_tracker = DET.CEN_max_tracker;
|
---|
| 208 | CEN_max_calo_cen = DET.CEN_max_calo_cen;
|
---|
| 209 | CEN_max_calo_fwd = DET.CEN_max_calo_fwd;
|
---|
| 210 | CEN_max_mu = DET.CEN_max_mu;
|
---|
| 211 |
|
---|
| 212 | // Energy resolution for electron/photon
|
---|
| 213 | ELG_Scen = DET.ELG_Scen;
|
---|
| 214 | ELG_Ncen = DET.ELG_Ncen;
|
---|
| 215 | ELG_Ccen = DET.ELG_Ccen;
|
---|
| 216 | ELG_Cfwd = DET.ELG_Cfwd;
|
---|
| 217 | ELG_Sfwd = DET.ELG_Sfwd;
|
---|
| 218 | ELG_Nfwd = DET.ELG_Nfwd;
|
---|
[374] | 219 | ELG_Czdc = DET.ELG_Czdc;
|
---|
| 220 | ELG_Szdc = DET.ELG_Szdc;
|
---|
| 221 | ELG_Nzdc = DET.ELG_Nzdc;
|
---|
[219] | 222 |
|
---|
[374] | 223 | // Energy resolution for hadrons in ecal/hcal/hf/zdc
|
---|
[219] | 224 | HAD_Shcal = DET.HAD_Shcal;
|
---|
| 225 | HAD_Nhcal = DET.HAD_Nhcal;
|
---|
| 226 | HAD_Chcal = DET.HAD_Chcal;
|
---|
| 227 | HAD_Shf = DET.HAD_Shf;
|
---|
| 228 | HAD_Nhf = DET.HAD_Nhf;
|
---|
| 229 | HAD_Chf = DET.HAD_Chf;
|
---|
[374] | 230 | HAD_Szdc = DET.HAD_Szdc;
|
---|
| 231 | HAD_Nzdc = DET.HAD_Nzdc;
|
---|
| 232 | HAD_Czdc = DET.HAD_Czdc;
|
---|
[219] | 233 |
|
---|
[374] | 234 | // time resolution
|
---|
| 235 | ZDC_T_resolution = DET.ZDC_T_resolution; // resolution for time measurement [s]
|
---|
| 236 | RP220_T_resolution = DET.RP220_T_resolution;
|
---|
| 237 | RP420_T_resolution = DET.RP420_T_resolution;
|
---|
| 238 |
|
---|
[219] | 239 | // Muon smearing
|
---|
| 240 | MU_SmearPt = DET.MU_SmearPt;
|
---|
| 241 |
|
---|
| 242 | // Tracking efficiencies
|
---|
| 243 | TRACK_ptmin = DET.TRACK_ptmin;
|
---|
| 244 | TRACK_eff = DET.TRACK_eff;
|
---|
| 245 |
|
---|
| 246 | // Calorimetric towers
|
---|
| 247 | TOWER_number = DET.TOWER_number;
|
---|
| 248 | TOWER_eta_edges = new float[TOWER_number+1];
|
---|
| 249 | for(unsigned int i=0; i<TOWER_number +1; i++) TOWER_eta_edges[i] = DET.TOWER_eta_edges[i];
|
---|
| 250 |
|
---|
| 251 | TOWER_dphi = new float[TOWER_number];
|
---|
| 252 | for(unsigned int i=0; i<TOWER_number; i++) TOWER_dphi[i] = DET.TOWER_dphi[i];
|
---|
| 253 |
|
---|
| 254 | // Thresholds for reconstructed objetcs
|
---|
| 255 | PTCUT_elec = DET.PTCUT_elec;
|
---|
| 256 | PTCUT_muon = DET.PTCUT_muon;
|
---|
| 257 | PTCUT_jet = DET.PTCUT_jet;
|
---|
| 258 | PTCUT_gamma = DET.PTCUT_gamma;
|
---|
| 259 | PTCUT_taujet = DET.PTCUT_taujet;
|
---|
| 260 |
|
---|
[374] | 261 | ZDC_gamma_E = DET.ZDC_gamma_E;
|
---|
| 262 | ZDC_n_E = DET.ZDC_n_E;
|
---|
| 263 |
|
---|
[321] | 264 | // Isolation
|
---|
| 265 | ISOL_PT = DET.ISOL_PT; // tracking isolation
|
---|
| 266 | ISOL_Cone = DET.ISOL_Cone;
|
---|
| 267 | ISOL_Calo_ET = DET.ISOL_Calo_ET; // calorimeter isolation, defaut off
|
---|
| 268 | ISOL_Calo_Grid = DET.ISOL_Calo_Grid;
|
---|
[305] | 269 |
|
---|
| 270 |
|
---|
[219] | 271 | // General jet variable
|
---|
| 272 | JET_coneradius = DET.JET_coneradius;
|
---|
| 273 | JET_jetalgo = DET.JET_jetalgo;
|
---|
| 274 | JET_seed = DET.JET_seed;
|
---|
[383] | 275 | JET_Eflow = DET.JET_Eflow;
|
---|
[219] | 276 |
|
---|
| 277 | // Tagging definition
|
---|
| 278 | BTAG_b = DET.BTAG_b;
|
---|
| 279 | BTAG_mistag_c = DET.BTAG_mistag_c;
|
---|
| 280 | BTAG_mistag_l = DET.BTAG_mistag_l;
|
---|
| 281 |
|
---|
| 282 | // FLAGS
|
---|
| 283 | FLAG_bfield = DET.FLAG_bfield;
|
---|
| 284 | FLAG_vfd = DET.FLAG_vfd;
|
---|
[306] | 285 | FLAG_RP = DET.FLAG_RP;
|
---|
[219] | 286 | FLAG_trigger = DET.FLAG_trigger;
|
---|
| 287 | FLAG_frog = DET.FLAG_frog;
|
---|
[307] | 288 | FLAG_lhco = DET.FLAG_lhco;
|
---|
[219] | 289 |
|
---|
| 290 | // In case BField propagation allowed
|
---|
| 291 | TRACK_radius = DET.TRACK_radius;
|
---|
| 292 | TRACK_length = DET.TRACK_length;
|
---|
| 293 | TRACK_bfield_x = DET.TRACK_bfield_x;
|
---|
| 294 | TRACK_bfield_y = DET.TRACK_bfield_y;
|
---|
| 295 | TRACK_bfield_z = DET.TRACK_bfield_z;
|
---|
| 296 |
|
---|
| 297 | // In case Very forward detectors allowed
|
---|
| 298 | VFD_min_calo_vfd = DET.VFD_min_calo_vfd;
|
---|
| 299 | VFD_max_calo_vfd = DET.VFD_max_calo_vfd;
|
---|
| 300 | VFD_min_zdc = DET.VFD_min_zdc;
|
---|
| 301 | VFD_s_zdc = DET.VFD_s_zdc;
|
---|
| 302 |
|
---|
| 303 | RP_220_s = DET.RP_220_s;
|
---|
| 304 | RP_220_x = DET.RP_220_x;
|
---|
| 305 | RP_420_s = DET.RP_420_s;
|
---|
| 306 | RP_420_x = DET.RP_420_x;
|
---|
[252] | 307 | RP_beam1Card = DET.RP_beam1Card;
|
---|
| 308 | RP_beam2Card = DET.RP_beam2Card;
|
---|
| 309 | RP_offsetEl_s = DET.RP_offsetEl_s;
|
---|
| 310 | RP_offsetEl_x = DET.RP_offsetEl_x;
|
---|
[254] | 311 | RP_cross_x = DET.RP_cross_x;
|
---|
| 312 | RP_cross_y = DET.RP_cross_y;
|
---|
| 313 | RP_cross_ang = DET.RP_cross_ang;
|
---|
[257] | 314 | RP_IP_name = DET.RP_IP_name;
|
---|
[219] | 315 |
|
---|
| 316 | // In case FROG event display allowed
|
---|
| 317 | NEvents_Frog = DET.NEvents_Frog;
|
---|
| 318 |
|
---|
| 319 | JET_overlap = DET.JET_overlap;
|
---|
| 320 | // MidPoint algorithm definition
|
---|
| 321 | JET_M_coneareafraction = DET.JET_M_coneareafraction;
|
---|
| 322 | JET_M_maxpairsize = DET.JET_M_maxpairsize;
|
---|
| 323 | JET_M_maxiterations = DET.JET_M_maxiterations;
|
---|
| 324 | // Define Cone algorithm.
|
---|
| 325 | JET_C_adjacencycut = DET.JET_C_adjacencycut;
|
---|
| 326 | JET_C_maxiterations = DET.JET_C_maxiterations;
|
---|
| 327 | JET_C_iratch = DET.JET_C_iratch;
|
---|
| 328 | //Define SISCone algorithm.
|
---|
| 329 | JET_S_npass = DET.JET_S_npass;
|
---|
| 330 | JET_S_protojet_ptmin = DET.JET_S_protojet_ptmin;
|
---|
| 331 |
|
---|
| 332 | //For Tau-jet definition
|
---|
| 333 | TAU_energy_scone = DET.TAU_energy_scone;
|
---|
| 334 | TAU_track_scone = DET.TAU_track_scone;
|
---|
| 335 | TAU_track_pt = DET.TAU_track_pt;
|
---|
| 336 | TAU_energy_frac = DET.TAU_energy_frac;
|
---|
| 337 |
|
---|
| 338 | PT_QUARKS_MIN = DET.PT_QUARKS_MIN;
|
---|
[380] | 339 | PdgTableFilename = DET.PdgTableFilename;
|
---|
| 340 | PDGtable = DET.PDGtable;
|
---|
[219] | 341 | }
|
---|
| 342 |
|
---|
| 343 | RESOLution& RESOLution::operator=(const RESOLution& DET) {
|
---|
| 344 | if(this==&DET) return *this;
|
---|
| 345 | // Detector characteristics
|
---|
| 346 | CEN_max_tracker = DET.CEN_max_tracker;
|
---|
| 347 | CEN_max_calo_cen = DET.CEN_max_calo_cen;
|
---|
| 348 | CEN_max_calo_fwd = DET.CEN_max_calo_fwd;
|
---|
| 349 | CEN_max_mu = DET.CEN_max_mu;
|
---|
| 350 |
|
---|
| 351 | // Energy resolution for electron/photon
|
---|
| 352 | ELG_Scen = DET.ELG_Scen;
|
---|
| 353 | ELG_Ncen = DET.ELG_Ncen;
|
---|
| 354 | ELG_Ccen = DET.ELG_Ccen;
|
---|
| 355 | ELG_Cfwd = DET.ELG_Cfwd;
|
---|
| 356 | ELG_Sfwd = DET.ELG_Sfwd;
|
---|
| 357 | ELG_Nfwd = DET.ELG_Nfwd;
|
---|
[374] | 358 | ELG_Czdc = DET.ELG_Czdc;
|
---|
| 359 | ELG_Szdc = DET.ELG_Szdc;
|
---|
| 360 | ELG_Nzdc = DET.ELG_Nzdc;
|
---|
[219] | 361 |
|
---|
| 362 | // Energy resolution for hadrons in ecal/hcal/hf
|
---|
| 363 | HAD_Shcal = DET.HAD_Shcal;
|
---|
| 364 | HAD_Nhcal = DET.HAD_Nhcal;
|
---|
| 365 | HAD_Chcal = DET.HAD_Chcal;
|
---|
| 366 | HAD_Shf = DET.HAD_Shf;
|
---|
| 367 | HAD_Nhf = DET.HAD_Nhf;
|
---|
| 368 | HAD_Chf = DET.HAD_Chf;
|
---|
[374] | 369 | HAD_Szdc = DET.HAD_Szdc;
|
---|
| 370 | HAD_Nzdc = DET.HAD_Nzdc;
|
---|
| 371 | HAD_Czdc = DET.HAD_Czdc;
|
---|
[219] | 372 |
|
---|
[374] | 373 | // time resolution
|
---|
| 374 | ZDC_T_resolution = DET.ZDC_T_resolution; // resolution for time measurement [s]
|
---|
| 375 | RP220_T_resolution = DET.RP220_T_resolution;
|
---|
| 376 | RP420_T_resolution = DET.RP420_T_resolution;
|
---|
| 377 |
|
---|
[219] | 378 | // Muon smearing
|
---|
| 379 | MU_SmearPt = DET.MU_SmearPt;
|
---|
| 380 |
|
---|
| 381 | // Tracking efficiencies
|
---|
| 382 | TRACK_ptmin = DET.TRACK_ptmin;
|
---|
| 383 | TRACK_eff = DET.TRACK_eff;
|
---|
| 384 |
|
---|
| 385 | // Calorimetric towers
|
---|
| 386 | TOWER_number = DET.TOWER_number;
|
---|
| 387 | TOWER_eta_edges = new float[TOWER_number+1];
|
---|
| 388 | for(unsigned int i=0; i<TOWER_number +1; i++) TOWER_eta_edges[i] = DET.TOWER_eta_edges[i];
|
---|
| 389 |
|
---|
| 390 | TOWER_dphi = new float[TOWER_number];
|
---|
| 391 | for(unsigned int i=0; i<TOWER_number; i++) TOWER_dphi[i] = DET.TOWER_dphi[i];
|
---|
| 392 |
|
---|
| 393 | // Thresholds for reconstructed objetcs
|
---|
| 394 | PTCUT_elec = DET.PTCUT_elec;
|
---|
| 395 | PTCUT_muon = DET.PTCUT_muon;
|
---|
| 396 | PTCUT_jet = DET.PTCUT_jet;
|
---|
| 397 | PTCUT_gamma = DET.PTCUT_gamma;
|
---|
| 398 | PTCUT_taujet = DET.PTCUT_taujet;
|
---|
| 399 |
|
---|
[374] | 400 | ZDC_gamma_E = DET.ZDC_gamma_E;
|
---|
| 401 | ZDC_n_E = DET.ZDC_n_E;
|
---|
| 402 |
|
---|
[321] | 403 | // Isolation
|
---|
| 404 | ISOL_PT = DET.ISOL_PT; // tracking isolation
|
---|
| 405 | ISOL_Cone = DET.ISOL_Cone;
|
---|
| 406 | ISOL_Calo_ET = DET.ISOL_Calo_ET; // calorimeter isolation, defaut off
|
---|
| 407 | ISOL_Calo_Grid = DET.ISOL_Calo_Grid;
|
---|
[305] | 408 |
|
---|
[219] | 409 | // General jet variable
|
---|
| 410 | JET_coneradius = DET.JET_coneradius;
|
---|
| 411 | JET_jetalgo = DET.JET_jetalgo;
|
---|
| 412 | JET_seed = DET.JET_seed;
|
---|
[383] | 413 | JET_Eflow = DET.JET_Eflow;
|
---|
[219] | 414 |
|
---|
| 415 | // Tagging definition
|
---|
| 416 | BTAG_b = DET.BTAG_b;
|
---|
| 417 | BTAG_mistag_c = DET.BTAG_mistag_c;
|
---|
| 418 | BTAG_mistag_l = DET.BTAG_mistag_l;
|
---|
| 419 |
|
---|
| 420 | // FLAGS
|
---|
| 421 | FLAG_bfield = DET.FLAG_bfield;
|
---|
| 422 | FLAG_vfd = DET.FLAG_vfd;
|
---|
[306] | 423 | FLAG_RP = DET.FLAG_RP;
|
---|
[219] | 424 | FLAG_trigger = DET.FLAG_trigger;
|
---|
| 425 | FLAG_frog = DET.FLAG_frog;
|
---|
[307] | 426 | FLAG_lhco = DET.FLAG_lhco;
|
---|
[219] | 427 |
|
---|
| 428 | // In case BField propagation allowed
|
---|
| 429 | TRACK_radius = DET.TRACK_radius;
|
---|
| 430 | TRACK_length = DET.TRACK_length;
|
---|
| 431 | TRACK_bfield_x = DET.TRACK_bfield_x;
|
---|
| 432 | TRACK_bfield_y = DET.TRACK_bfield_y;
|
---|
| 433 | TRACK_bfield_z = DET.TRACK_bfield_z;
|
---|
| 434 |
|
---|
| 435 | // In case Very forward detectors allowed
|
---|
| 436 | VFD_min_calo_vfd = DET.VFD_min_calo_vfd;
|
---|
| 437 | VFD_max_calo_vfd = DET.VFD_max_calo_vfd;
|
---|
| 438 | VFD_min_zdc = DET.VFD_min_zdc;
|
---|
| 439 | VFD_s_zdc = DET.VFD_s_zdc;
|
---|
| 440 |
|
---|
| 441 | RP_220_s = DET.RP_220_s;
|
---|
| 442 | RP_220_x = DET.RP_220_x;
|
---|
| 443 | RP_420_s = DET.RP_420_s;
|
---|
| 444 | RP_420_x = DET.RP_420_x;
|
---|
[252] | 445 | RP_offsetEl_s = DET.RP_offsetEl_s;
|
---|
| 446 | RP_offsetEl_x = DET.RP_offsetEl_x;
|
---|
| 447 | RP_beam1Card = DET.RP_beam1Card;
|
---|
| 448 | RP_beam2Card = DET.RP_beam2Card;
|
---|
[254] | 449 | RP_cross_x = DET.RP_cross_x;
|
---|
| 450 | RP_cross_y = DET.RP_cross_y;
|
---|
| 451 | RP_cross_ang = DET.RP_cross_ang;
|
---|
[257] | 452 | RP_IP_name = DET.RP_IP_name;
|
---|
[219] | 453 |
|
---|
[252] | 454 |
|
---|
[219] | 455 | // In case FROG event display allowed
|
---|
| 456 | NEvents_Frog = DET.NEvents_Frog;
|
---|
| 457 |
|
---|
| 458 | JET_overlap = DET.JET_overlap;
|
---|
| 459 | // MidPoint algorithm definition
|
---|
| 460 | JET_M_coneareafraction = DET.JET_M_coneareafraction;
|
---|
| 461 | JET_M_maxpairsize = DET.JET_M_maxpairsize;
|
---|
| 462 | JET_M_maxiterations = DET.JET_M_maxiterations;
|
---|
| 463 | // Define Cone algorithm.
|
---|
| 464 | JET_C_adjacencycut = DET.JET_C_adjacencycut;
|
---|
| 465 | JET_C_maxiterations = DET.JET_C_maxiterations;
|
---|
| 466 | JET_C_iratch = DET.JET_C_iratch;
|
---|
| 467 | //Define SISCone algorithm.
|
---|
| 468 | JET_S_npass = DET.JET_S_npass;
|
---|
| 469 | JET_S_protojet_ptmin = DET.JET_S_protojet_ptmin;
|
---|
| 470 |
|
---|
| 471 | //For Tau-jet definition
|
---|
| 472 | TAU_energy_scone = DET.TAU_energy_scone;
|
---|
| 473 | TAU_track_scone = DET.TAU_track_scone;
|
---|
| 474 | TAU_track_pt = DET.TAU_track_pt;
|
---|
| 475 | TAU_energy_frac = DET.TAU_energy_frac;
|
---|
| 476 |
|
---|
| 477 | PT_QUARKS_MIN = DET.PT_QUARKS_MIN;
|
---|
[380] | 478 |
|
---|
| 479 | PdgTableFilename = DET.PdgTableFilename;
|
---|
| 480 | PDGtable = DET.PDGtable;
|
---|
[219] | 481 | return *this;
|
---|
| 482 | }
|
---|
| 483 |
|
---|
| 484 |
|
---|
| 485 |
|
---|
| 486 |
|
---|
[2] | 487 | //------------------------------------------------------------------------------
|
---|
| 488 | void RESOLution::ReadDataCard(const string datacard) {
|
---|
| 489 |
|
---|
| 490 | string temp_string;
|
---|
| 491 | istringstream curstring;
|
---|
| 492 |
|
---|
| 493 | ifstream fichier_a_lire(datacard.c_str());
|
---|
| 494 | if(!fichier_a_lire.good()) {
|
---|
[249] | 495 | cout <<"** WARNING: Datadard not found, use default values **" << endl;
|
---|
[94] | 496 | return;
|
---|
[2] | 497 | }
|
---|
[94] | 498 |
|
---|
[2] | 499 | while (getline(fichier_a_lire,temp_string)) {
|
---|
| 500 | curstring.clear(); // needed when using several times istringstream::str(string)
|
---|
| 501 | curstring.str(temp_string);
|
---|
| 502 | string varname;
|
---|
[252] | 503 | float value; int ivalue; string svalue;
|
---|
[2] | 504 |
|
---|
| 505 | if(strstr(temp_string.c_str(),"#")) { }
|
---|
[94] | 506 | else if(strstr(temp_string.c_str(),"CEN_max_tracker")) {curstring >> varname >> value; CEN_max_tracker = value;}
|
---|
| 507 | else if(strstr(temp_string.c_str(),"CEN_max_calo_cen")) {curstring >> varname >> value; CEN_max_calo_cen = value;}
|
---|
| 508 | else if(strstr(temp_string.c_str(),"CEN_max_calo_fwd")) {curstring >> varname >> value; CEN_max_calo_fwd = value;}
|
---|
| 509 | else if(strstr(temp_string.c_str(),"CEN_max_mu")) {curstring >> varname >> value; CEN_max_mu = value;}
|
---|
| 510 |
|
---|
| 511 | else if(strstr(temp_string.c_str(),"VFD_min_calo_vfd")) {curstring >> varname >> value; VFD_min_calo_vfd = value;}
|
---|
| 512 | else if(strstr(temp_string.c_str(),"VFD_max_calo_vfd")) {curstring >> varname >> value; VFD_max_calo_vfd = value;}
|
---|
| 513 | else if(strstr(temp_string.c_str(),"VFD_min_zdc")) {curstring >> varname >> value; VFD_min_zdc = value;}
|
---|
| 514 | else if(strstr(temp_string.c_str(),"VFD_s_zdc")) {curstring >> varname >> value; VFD_s_zdc = value;}
|
---|
| 515 |
|
---|
| 516 | else if(strstr(temp_string.c_str(),"RP_220_s")) {curstring >> varname >> value; RP_220_s = value;}
|
---|
| 517 | else if(strstr(temp_string.c_str(),"RP_220_x")) {curstring >> varname >> value; RP_220_x = value;}
|
---|
| 518 | else if(strstr(temp_string.c_str(),"RP_420_s")) {curstring >> varname >> value; RP_420_s = value;}
|
---|
| 519 | else if(strstr(temp_string.c_str(),"RP_420_x")) {curstring >> varname >> value; RP_420_x = value;}
|
---|
[257] | 520 | else if(strstr(temp_string.c_str(),"RP_beam1Card")) {curstring >> varname >> svalue;RP_beam1Card = svalue;}
|
---|
| 521 | else if(strstr(temp_string.c_str(),"RP_beam2Card")) {curstring >> varname >> svalue;RP_beam2Card = svalue;}
|
---|
| 522 | else if(strstr(temp_string.c_str(),"RP_IP_name")) {curstring >> varname >> svalue;RP_IP_name = svalue;}
|
---|
[94] | 523 |
|
---|
| 524 | else if(strstr(temp_string.c_str(),"ELG_Scen")) {curstring >> varname >> value; ELG_Scen = value;}
|
---|
| 525 | else if(strstr(temp_string.c_str(),"ELG_Ncen")) {curstring >> varname >> value; ELG_Ncen = value;}
|
---|
| 526 | else if(strstr(temp_string.c_str(),"ELG_Ccen")) {curstring >> varname >> value; ELG_Ccen = value;}
|
---|
| 527 | else if(strstr(temp_string.c_str(),"ELG_Sfwd")) {curstring >> varname >> value; ELG_Sfwd = value;}
|
---|
| 528 | else if(strstr(temp_string.c_str(),"ELG_Cfwd")) {curstring >> varname >> value; ELG_Cfwd = value;}
|
---|
| 529 | else if(strstr(temp_string.c_str(),"ELG_Nfwd")) {curstring >> varname >> value; ELG_Nfwd = value;}
|
---|
[374] | 530 | else if(strstr(temp_string.c_str(),"ELG_Szdc")) {curstring >> varname >> value; ELG_Szdc = value;}
|
---|
| 531 | else if(strstr(temp_string.c_str(),"ELG_Czdc")) {curstring >> varname >> value; ELG_Czdc = value;}
|
---|
| 532 | else if(strstr(temp_string.c_str(),"ELG_Nzdc")) {curstring >> varname >> value; ELG_Nzdc = value;}
|
---|
| 533 |
|
---|
[94] | 534 | else if(strstr(temp_string.c_str(),"HAD_Shcal")) {curstring >> varname >> value; HAD_Shcal = value;}
|
---|
| 535 | else if(strstr(temp_string.c_str(),"HAD_Nhcal")) {curstring >> varname >> value; HAD_Nhcal = value;}
|
---|
| 536 | else if(strstr(temp_string.c_str(),"HAD_Chcal")) {curstring >> varname >> value; HAD_Chcal = value;}
|
---|
| 537 | else if(strstr(temp_string.c_str(),"HAD_Shf")) {curstring >> varname >> value; HAD_Shf = value;}
|
---|
| 538 | else if(strstr(temp_string.c_str(),"HAD_Nhf")) {curstring >> varname >> value; HAD_Nhf = value;}
|
---|
| 539 | else if(strstr(temp_string.c_str(),"HAD_Chf")) {curstring >> varname >> value; HAD_Chf = value;}
|
---|
[374] | 540 | else if(strstr(temp_string.c_str(),"HAD_Szdc")) {curstring >> varname >> value; HAD_Szdc = value;}
|
---|
| 541 | else if(strstr(temp_string.c_str(),"HAD_Nzdc")) {curstring >> varname >> value; HAD_Nzdc = value;}
|
---|
| 542 | else if(strstr(temp_string.c_str(),"HAD_Czdc")) {curstring >> varname >> value; HAD_Czdc = value;}
|
---|
| 543 | else if(strstr(temp_string.c_str(),"ZDC_T_resolution")) {curstring >> varname >> value; ZDC_T_resolution = value;}
|
---|
| 544 | else if(strstr(temp_string.c_str(),"RP220_T_resolution")) {curstring >> varname >> value; RP220_T_resolution = value;}
|
---|
| 545 | else if(strstr(temp_string.c_str(),"RP420_T_resolution")) {curstring >> varname >> value; RP420_T_resolution = value;}
|
---|
[94] | 546 | else if(strstr(temp_string.c_str(),"MU_SmearPt")) {curstring >> varname >> value; MU_SmearPt = value;}
|
---|
| 547 |
|
---|
| 548 | else if(strstr(temp_string.c_str(),"TRACK_radius")) {curstring >> varname >> ivalue;TRACK_radius = ivalue;}
|
---|
| 549 | else if(strstr(temp_string.c_str(),"TRACK_length")) {curstring >> varname >> ivalue;TRACK_length = ivalue;}
|
---|
| 550 | else if(strstr(temp_string.c_str(),"TRACK_bfield_x")) {curstring >> varname >> value; TRACK_bfield_x = value;}
|
---|
| 551 | else if(strstr(temp_string.c_str(),"TRACK_bfield_y")) {curstring >> varname >> value; TRACK_bfield_y = value;}
|
---|
| 552 | else if(strstr(temp_string.c_str(),"TRACK_bfield_z")) {curstring >> varname >> value; TRACK_bfield_z = value;}
|
---|
| 553 | else if(strstr(temp_string.c_str(),"FLAG_bfield")) {curstring >> varname >> ivalue; FLAG_bfield = ivalue;}
|
---|
| 554 | else if(strstr(temp_string.c_str(),"TRACK_ptmin")) {curstring >> varname >> value; TRACK_ptmin = value;}
|
---|
| 555 | else if(strstr(temp_string.c_str(),"TRACK_eff")) {curstring >> varname >> ivalue;TRACK_eff = ivalue;}
|
---|
[33] | 556 |
|
---|
[94] | 557 | else if(strstr(temp_string.c_str(),"TOWER_number")) {curstring >> varname >> ivalue;TOWER_number = ivalue;}
|
---|
| 558 | else if(strstr(temp_string.c_str(),"TOWER_eta_edges")){
|
---|
| 559 | curstring >> varname; for(unsigned int i=0; i<TOWER_number+1; i++) {curstring >> value; TOWER_eta_edges[i] = value;} }
|
---|
| 560 | else if(strstr(temp_string.c_str(),"TOWER_dphi")){
|
---|
| 561 | curstring >> varname; for(unsigned int i=0; i<TOWER_number; i++) {curstring >> value; TOWER_dphi[i] = value;} }
|
---|
[2] | 562 |
|
---|
[94] | 563 | else if(strstr(temp_string.c_str(),"PTCUT_elec")) {curstring >> varname >> value; PTCUT_elec = value;}
|
---|
| 564 | else if(strstr(temp_string.c_str(),"PTCUT_muon")) {curstring >> varname >> value; PTCUT_muon = value;}
|
---|
| 565 | else if(strstr(temp_string.c_str(),"PTCUT_jet")) {curstring >> varname >> value; PTCUT_jet = value;}
|
---|
| 566 | else if(strstr(temp_string.c_str(),"PTCUT_gamma")) {curstring >> varname >> value; PTCUT_gamma = value;}
|
---|
| 567 | else if(strstr(temp_string.c_str(),"PTCUT_taujet")) {curstring >> varname >> value; PTCUT_taujet = value;}
|
---|
[374] | 568 | else if(strstr(temp_string.c_str(),"ZDC_gamma_E")) {curstring >> varname >> value; ZDC_gamma_E = value;}
|
---|
| 569 | else if(strstr(temp_string.c_str(),"ZDC_n_E")) {curstring >> varname >> value; ZDC_n_E = value;}
|
---|
[43] | 570 |
|
---|
[321] | 571 | else if(strstr(temp_string.c_str(),"ISOL_PT")) {curstring >> varname >> value; ISOL_PT = value;}
|
---|
| 572 | else if(strstr(temp_string.c_str(),"ISOL_Cone")) {curstring >> varname >> value; ISOL_Cone = value;}
|
---|
| 573 | else if(strstr(temp_string.c_str(),"ISOL_Calo_ET")) {curstring >> varname >> value; ISOL_Calo_ET = value;}
|
---|
| 574 | else if(strstr(temp_string.c_str(),"ISOL_Calo_Grid")) {curstring >> varname >> ivalue; ISOL_Calo_Grid = ivalue;}
|
---|
[305] | 575 |
|
---|
[94] | 576 | else if(strstr(temp_string.c_str(),"JET_coneradius")) {curstring >> varname >> value; JET_coneradius = value;}
|
---|
| 577 | else if(strstr(temp_string.c_str(),"JET_jetalgo")) {curstring >> varname >> ivalue;JET_jetalgo = ivalue;}
|
---|
| 578 | else if(strstr(temp_string.c_str(),"JET_seed")) {curstring >> varname >> value; JET_seed = value;}
|
---|
[384] | 579 | else if(strstr(temp_string.c_str(),"JET_Eflow")) {curstring >> varname >> ivalue; JET_Eflow = ivalue;}
|
---|
[94] | 580 |
|
---|
| 581 | else if(strstr(temp_string.c_str(),"BTAG_b")) {curstring >> varname >> ivalue;BTAG_b = ivalue;}
|
---|
| 582 | else if(strstr(temp_string.c_str(),"BTAG_mistag_c")) {curstring >> varname >> ivalue;BTAG_mistag_c = ivalue;}
|
---|
| 583 | else if(strstr(temp_string.c_str(),"BTAG_mistag_l")) {curstring >> varname >> ivalue;BTAG_mistag_l = ivalue;}
|
---|
[2] | 584 |
|
---|
[94] | 585 | else if(strstr(temp_string.c_str(),"FLAG_vfd")) {curstring >> varname >> ivalue; FLAG_vfd = ivalue;}
|
---|
[306] | 586 | else if(strstr(temp_string.c_str(),"FLAG_RP")) {curstring >> varname >> ivalue; FLAG_RP = ivalue;}
|
---|
[94] | 587 | else if(strstr(temp_string.c_str(),"FLAG_trigger")) {curstring >> varname >> ivalue; FLAG_trigger = ivalue;}
|
---|
| 588 | else if(strstr(temp_string.c_str(),"FLAG_frog")) {curstring >> varname >> ivalue; FLAG_frog = ivalue;}
|
---|
[307] | 589 | else if(strstr(temp_string.c_str(),"FLAG_lhco")) {curstring >> varname >> ivalue; FLAG_lhco = ivalue;}
|
---|
[94] | 590 | else if(strstr(temp_string.c_str(),"NEvents_Frog")) {curstring >> varname >> ivalue; NEvents_Frog = ivalue;}
|
---|
[380] | 591 |
|
---|
| 592 | else if(strstr(temp_string.c_str(),"PdgTableFilename")) {curstring >> varname >> svalue; PdgTableFilename = svalue;}
|
---|
[94] | 593 | }
|
---|
[392] | 594 |
|
---|
| 595 | if(ISOL_Calo_Grid%2 ==0) {
|
---|
| 596 | ISOL_Calo_Grid++;
|
---|
| 597 | cout <<"** WARNING: ISOL_Calo_Grid is not odd. Set it to "<< ISOL_Calo_Grid << " **" << endl;
|
---|
| 598 | }
|
---|
| 599 |
|
---|
[94] | 600 | //jet stuffs not defined in the input datacard
|
---|
| 601 | JET_overlap = 0.75;
|
---|
| 602 | // MidPoint algorithm definition
|
---|
| 603 | JET_M_coneareafraction = 0.25;
|
---|
| 604 | JET_M_maxpairsize = 2;
|
---|
| 605 | JET_M_maxiterations = 100;
|
---|
| 606 | // Define Cone algorithm.
|
---|
| 607 | JET_C_adjacencycut = 2;
|
---|
| 608 | JET_C_maxiterations = 100;
|
---|
| 609 | JET_C_iratch = 1;
|
---|
| 610 | //Define SISCone algorithm.
|
---|
| 611 | JET_S_npass = 0;
|
---|
| 612 | JET_S_protojet_ptmin= 0.0;
|
---|
| 613 |
|
---|
| 614 | //For Tau-jet definition
|
---|
| 615 | TAU_energy_scone = 0.15; // radius R of the cone for tau definition, based on energy threshold
|
---|
| 616 | TAU_track_scone = 0.4; // radius R of the cone for tau definition, based on track number
|
---|
| 617 | TAU_track_pt = 2; // minimal pt [GeV] for tracks to be considered in tau definition
|
---|
| 618 | TAU_energy_frac = 0.95; // fraction of energy required in the central part of the cone, for tau jets
|
---|
| 619 |
|
---|
[2] | 620 | }
|
---|
| 621 |
|
---|
[219] | 622 | void RESOLution::Logfile(const string& LogName) {
|
---|
[94] | 623 | //void RESOLution::Logfile(string outputfilename) {
|
---|
| 624 |
|
---|
[44] | 625 | ofstream f_out(LogName.c_str());
|
---|
[260] | 626 |
|
---|
| 627 | f_out <<"**********************************************************************"<< endl;
|
---|
| 628 | f_out <<"**********************************************************************"<< endl;
|
---|
| 629 | f_out <<"** **"<< endl;
|
---|
| 630 | f_out <<"** Welcome to **"<< endl;
|
---|
| 631 | f_out <<"** **"<< endl;
|
---|
| 632 | f_out <<"** **"<< endl;
|
---|
| 633 | f_out <<"** .ddddddd- lL hH **"<< endl;
|
---|
| 634 | f_out <<"** -Dd` `dD: Ll hH` **"<< endl;
|
---|
| 635 | f_out <<"** dDd dDd eeee. lL .pp+pp Hh+hhh` -eeee- `sssss **"<< endl;
|
---|
| 636 | f_out <<"** -Dd `DD ee. ee Ll .Pp. PP Hh. HH. ee. ee sSs **"<< endl;
|
---|
| 637 | f_out <<"** dD` dDd eEeee: lL. pP. pP hH hH` eEeee:` -sSSSs. **"<< endl;
|
---|
| 638 | f_out <<"** .Dd :dd eE. LlL PpppPP Hh Hh eE sSS **"<< endl;
|
---|
| 639 | f_out <<"** dddddd:. eee+: lL. pp. hh. hh eee+ sssssS **"<< endl;
|
---|
| 640 | f_out <<"** Pp **"<< endl;
|
---|
| 641 | f_out <<"** **"<< endl;
|
---|
| 642 | f_out <<"** Delphes, a framework for the fast simulation **"<< endl;
|
---|
| 643 | f_out <<"** of a generic collider experiment **"<< endl;
|
---|
| 644 | f_out <<"** **"<< endl;
|
---|
[384] | 645 | f_out <<"** --- Version 1.6 of Delphes --- **"<< endl;
|
---|
| 646 | f_out <<"** Last date of change: 7 May 2009 **"<< endl;
|
---|
[260] | 647 | f_out <<"** **"<< endl;
|
---|
| 648 | f_out <<"** **"<< endl;
|
---|
| 649 | f_out <<"** This package uses: **"<< endl;
|
---|
| 650 | f_out <<"** ------------------ **"<< endl;
|
---|
| 651 | f_out <<"** FastJet algorithm: Phys. Lett. B641 (2006) [hep-ph/0512210] **"<< endl;
|
---|
| 652 | f_out <<"** Hector: JINST 2:P09005 (2007) [physics.acc-ph:0707.1198v2] **"<< endl;
|
---|
| 653 | f_out <<"** FROG: L. Quertenmont, V. Roberfroid [hep-ex/0901.2718v1] **"<< endl;
|
---|
| 654 | f_out <<"** **"<< endl;
|
---|
| 655 | f_out <<"** ---------------------------------------------------------------- **"<< endl;
|
---|
| 656 | f_out <<"** **"<< endl;
|
---|
| 657 | f_out <<"** Main authors: **"<< endl;
|
---|
| 658 | f_out <<"** ------------- **"<< endl;
|
---|
| 659 | f_out <<"** **"<< endl;
|
---|
| 660 | f_out <<"** Séverine Ovyn Xavier Rouby **"<< endl;
|
---|
| 661 | f_out <<"** severine.ovyn@uclouvain.be xavier.rouby@cern **"<< endl;
|
---|
| 662 | f_out <<"** Center for Particle Physics and Phenomenology (CP3) **"<< endl;
|
---|
| 663 | f_out <<"** Universite Catholique de Louvain (UCL) **"<< endl;
|
---|
| 664 | f_out <<"** Louvain-la-Neuve, Belgium **"<< endl;
|
---|
| 665 | f_out <<"** **"<< endl;
|
---|
| 666 | f_out <<"** ---------------------------------------------------------------- **"<< endl;
|
---|
| 667 | f_out <<"** **"<< endl;
|
---|
| 668 | f_out <<"** Former Delphes versions and documentation can be found on : **"<< endl;
|
---|
| 669 | f_out <<"** http://www.fynu.ucl.ac.be/delphes.html **"<< endl;
|
---|
| 670 | f_out <<"** **"<< endl;
|
---|
| 671 | f_out <<"** **"<< endl;
|
---|
| 672 | f_out <<"** Disclaimer: this program is a beta version of Delphes and **"<< endl;
|
---|
| 673 | f_out <<"** therefore comes without guarantees. Beware of errors and please **"<< endl;
|
---|
| 674 | f_out <<"** give us your feedbacks about potential bugs **"<< endl;
|
---|
| 675 | f_out <<"** **"<< endl;
|
---|
| 676 | f_out <<"**********************************************************************"<< endl;
|
---|
| 677 | f_out <<"** **"<< endl;
|
---|
[380] | 678 | f_out<<"#>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>"<<"\n";
|
---|
| 679 | f_out<<"# Input PDG table : " << PdgTableFilename << " *"<<"\n";
|
---|
[44] | 680 | f_out<<"* *"<<"\n";
|
---|
[380] | 681 | f_out<<"* *"<<"\n";
|
---|
[44] | 682 | f_out<<"#******************************** *"<<"\n";
|
---|
| 683 | f_out<<"# Central detector caracteristics *"<<"\n";
|
---|
| 684 | f_out<<"#******************************** *"<<"\n";
|
---|
| 685 | f_out<<"* *"<<"\n";
|
---|
| 686 | f_out << left << setw(30) <<"* Maximum tracking system: "<<""
|
---|
[94] | 687 | << left << setw(10) <<CEN_max_tracker <<""<< right << setw(15)<<"*"<<"\n";
|
---|
[44] | 688 | f_out << left << setw(30) <<"* Maximum central calorimeter: "<<""
|
---|
[94] | 689 | << left << setw(10) <<CEN_max_calo_cen <<""<< right << setw(15)<<"*"<<"\n";
|
---|
[44] | 690 | f_out << left << setw(30) <<"* Maximum forward calorimeter: "<<""
|
---|
[94] | 691 | << left << setw(10) <<CEN_max_calo_fwd <<""<< right << setw(15)<<"*"<<"\n";
|
---|
[44] | 692 | f_out << left << setw(30) <<"* Muon chambers coverage: "<<""
|
---|
[94] | 693 | << left << setw(10) <<CEN_max_mu <<""<< right << setw(15)<<"*"<<"\n";
|
---|
[44] | 694 | f_out<<"* *"<<"\n";
|
---|
[306] | 695 | if(FLAG_RP==1){
|
---|
| 696 | f_out<<"#************************************ *"<<"\n";
|
---|
| 697 | f_out<<"# Very forward Roman Pots switched on *"<<"\n";
|
---|
| 698 | f_out<<"#************************************ *"<<"\n";
|
---|
[94] | 699 | f_out<<"* *"<<"\n";
|
---|
[306] | 700 | f_out << left << setw(55) <<"* Distance of the 220 RP to the IP in meters:"<<""
|
---|
[94] | 701 | << left << setw(5) <<RP_220_s <<""<< right << setw(10)<<"*"<<"\n";
|
---|
[306] | 702 | f_out << left << setw(55) <<"* Distance of the 220 RP to the beam in meters:"<<""
|
---|
[94] | 703 | << left << setw(5) <<RP_220_x <<""<< right << setw(10)<<"*"<<"\n";
|
---|
[306] | 704 | f_out << left << setw(55) <<"* Distance of the 420 RP to the IP in meters:"<<""
|
---|
[94] | 705 | << left << setw(5) <<RP_420_s <<""<< right << setw(10)<<"*"<<"\n";
|
---|
[306] | 706 | f_out << left << setw(55) <<"* Distance of the 420 RP to the beam in meters:"<<""
|
---|
[94] | 707 | << left << setw(5) <<RP_420_x <<""<< right << setw(10)<<"*"<<"\n";
|
---|
[257] | 708 | f_out << left << setw(55) <<"* Interaction point at the LHC named: "<<""
|
---|
| 709 | << left << setw(5) <<RP_IP_name <<""<< right << setw(10)<<"*"<<"\n";
|
---|
[252] | 710 | f_out << left << setw(35) <<"* Datacard for beam 1: "<<""
|
---|
| 711 | << left << setw(25) <<RP_beam1Card <<""<< right << setw(10)<<"*"<<"\n";
|
---|
| 712 | f_out << left << setw(35) <<"* Datacard for beam 2: "<<""
|
---|
| 713 | << left << setw(25) <<RP_beam2Card <<""<< right << setw(10)<<"*"<<"\n";
|
---|
[254] | 714 | f_out << left << setw(44) <<"* Beam separation, in meters: "<<""
|
---|
| 715 | << left << setw(6) << RP_offsetEl_x <<""<< right << setw(20)<<"! not in datacard *"<<"\n";
|
---|
[252] | 716 | f_out << left << setw(44) <<"* Distance from IP for Beam separation (m):"<<""
|
---|
| 717 | << left << setw(6) <<RP_offsetEl_s <<""<< right << setw(20)<<"! not in datacard *"<<"\n";
|
---|
[254] | 718 | f_out << left << setw(44) <<"* X offset of beam crossing in micrometers:"<<""
|
---|
| 719 | << left << setw(6) <<RP_cross_x <<""<< right << setw(20)<<"! not in datacard *"<<"\n";
|
---|
| 720 | f_out << left << setw(44) <<"* Y offset of beam crossing in micrometers:"<<""
|
---|
| 721 | << left << setw(6) <<RP_cross_y <<""<< right << setw(20)<<"! not in datacard *"<<"\n";
|
---|
| 722 | f_out << left << setw(44) <<"* Angle of beam crossing:"<<""
|
---|
| 723 | << left << setw(6) <<RP_cross_ang <<""<< right << setw(20)<<"! not in datacard *"<<"\n";
|
---|
[94] | 724 | f_out<<"* *"<<"\n";
|
---|
| 725 | }
|
---|
| 726 | else {
|
---|
[306] | 727 | f_out<<"#************************************* *"<<"\n";
|
---|
| 728 | f_out<<"# Very forward Roman Pots switched off *"<<"\n";
|
---|
| 729 | f_out<<"#************************************* *"<<"\n";
|
---|
[94] | 730 | f_out<<"* *"<<"\n";
|
---|
| 731 | }
|
---|
[306] | 732 | if(FLAG_vfd==1){
|
---|
| 733 | f_out<<"#************************************** *"<<"\n";
|
---|
| 734 | f_out<<"# Very forward calorimeters switched on *"<<"\n";
|
---|
| 735 | f_out<<"#************************************** *"<<"\n";
|
---|
| 736 | f_out<<"* *"<<"\n";
|
---|
| 737 | f_out << left << setw(55) <<"* Minimum very forward calorimeter: "<<""
|
---|
| 738 | << left << setw(5) <<VFD_min_calo_vfd <<""<< right << setw(10)<<"*"<<"\n";
|
---|
| 739 | f_out << left << setw(55) <<"* Maximum very forward calorimeter: "<<""
|
---|
| 740 | << left << setw(5) <<VFD_max_calo_vfd <<""<< right << setw(10)<<"*"<<"\n";
|
---|
| 741 | f_out << left << setw(55) <<"* Minimum coverage zero_degree calorimeter "<<""
|
---|
| 742 | << left << setw(5) <<VFD_min_zdc <<""<< right << setw(10)<<"*"<<"\n";
|
---|
| 743 | f_out << left << setw(55) <<"* Distance of the ZDC to the IP, in meters: "<<""
|
---|
| 744 | << left << setw(5) <<VFD_s_zdc <<""<< right << setw(10)<<"*"<<"\n";
|
---|
| 745 | f_out<<"* *"<<"\n";
|
---|
| 746 | }
|
---|
| 747 | else {
|
---|
| 748 | f_out<<"#*************************************** *"<<"\n";
|
---|
| 749 | f_out<<"# Very forward calorimeters switched off *"<<"\n";
|
---|
| 750 | f_out<<"#*************************************** *"<<"\n";
|
---|
| 751 | f_out<<"* *"<<"\n";
|
---|
| 752 | }
|
---|
| 753 |
|
---|
[44] | 754 | f_out<<"#************************************ *"<<"\n";
|
---|
| 755 | f_out<<"# Electromagnetic smearing parameters *"<<"\n";
|
---|
| 756 | f_out<<"#************************************ *"<<"\n";
|
---|
| 757 | f_out<<"* *"<<"\n";
|
---|
| 758 | //# \sigma/E = C + N/E + S/\sqrt{E}
|
---|
| 759 | f_out << left << setw(30) <<"* S term for central ECAL: "<<""
|
---|
| 760 | << left << setw(30) <<ELG_Scen <<""<< right << setw(10)<<"*"<<"\n";
|
---|
| 761 | f_out << left << setw(30) <<"* N term for central ECAL: "<<""
|
---|
| 762 | << left << setw(30) <<ELG_Ncen <<""<< right << setw(10)<<"*"<<"\n";
|
---|
| 763 | f_out << left << setw(30) <<"* C term for central ECAL: "<<""
|
---|
| 764 | << left << setw(30) <<ELG_Ccen <<""<< right << setw(10)<<"*"<<"\n";
|
---|
[257] | 765 | f_out << left << setw(30) <<"* S term for FCAL: "<<""
|
---|
[44] | 766 | << left << setw(30) <<ELG_Sfwd <<""<< right << setw(10)<<"*"<<"\n";
|
---|
[257] | 767 | f_out << left << setw(30) <<"* N term for FCAL: "<<""
|
---|
[44] | 768 | << left << setw(30) <<ELG_Nfwd <<""<< right << setw(10)<<"*"<<"\n";
|
---|
[257] | 769 | f_out << left << setw(30) <<"* C term for FCAL: "<<""
|
---|
[44] | 770 | << left << setw(30) <<ELG_Cfwd <<""<< right << setw(10)<<"*"<<"\n";
|
---|
[374] | 771 | f_out << left << setw(30) <<"* S term for ZDC: "<<""
|
---|
| 772 | << left << setw(30) <<ELG_Szdc <<""<< right << setw(10)<<"*"<<"\n";
|
---|
| 773 | f_out << left << setw(30) <<"* N term for ZDC: "<<""
|
---|
| 774 | << left << setw(30) <<ELG_Nzdc <<""<< right << setw(10)<<"*"<<"\n";
|
---|
| 775 | f_out << left << setw(30) <<"* C term for ZDC: "<<""
|
---|
| 776 | << left << setw(30) <<ELG_Czdc <<""<< right << setw(10)<<"*"<<"\n";
|
---|
| 777 |
|
---|
[44] | 778 | f_out<<"* *"<<"\n";
|
---|
| 779 | f_out<<"#***************************** *"<<"\n";
|
---|
| 780 | f_out<<"# Hadronic smearing parameters *"<<"\n";
|
---|
| 781 | f_out<<"#***************************** *"<<"\n";
|
---|
| 782 | f_out<<"* *"<<"\n";
|
---|
| 783 | f_out << left << setw(30) <<"* S term for central HCAL: "<<""
|
---|
| 784 | << left << setw(30) <<HAD_Shcal <<""<< right << setw(10)<<"*"<<"\n";
|
---|
| 785 | f_out << left << setw(30) <<"* N term for central HCAL: "<<""
|
---|
| 786 | << left << setw(30) <<HAD_Nhcal <<""<< right << setw(10)<<"*"<<"\n";
|
---|
| 787 | f_out << left << setw(30) <<"* C term for central HCAL: "<<""
|
---|
| 788 | << left << setw(30) <<HAD_Chcal <<""<< right << setw(10)<<"*"<<"\n";
|
---|
[257] | 789 | f_out << left << setw(30) <<"* S term for FCAL: "<<""
|
---|
[44] | 790 | << left << setw(30) <<HAD_Shf <<""<< right << setw(10)<<"*"<<"\n";
|
---|
[257] | 791 | f_out << left << setw(30) <<"* N term for FCAL: "<<""
|
---|
[44] | 792 | << left << setw(30) <<HAD_Nhf <<""<< right << setw(10)<<"*"<<"\n";
|
---|
[257] | 793 | f_out << left << setw(30) <<"* C term for FCAL: "<<""
|
---|
[44] | 794 | << left << setw(30) <<HAD_Chf <<""<< right << setw(10)<<"*"<<"\n";
|
---|
[374] | 795 | f_out << left << setw(30) <<"* S term for ZDC: "<<""
|
---|
| 796 | << left << setw(30) <<HAD_Szdc <<""<< right << setw(10)<<"*"<<"\n";
|
---|
| 797 | f_out << left << setw(30) <<"* N term for ZDC: "<<""
|
---|
| 798 | << left << setw(30) <<HAD_Nzdc <<""<< right << setw(10)<<"*"<<"\n";
|
---|
| 799 | f_out << left << setw(30) <<"* C term for ZDC: "<<""
|
---|
| 800 | << left << setw(30) <<HAD_Czdc <<""<< right << setw(10)<<"*"<<"\n";
|
---|
| 801 |
|
---|
[44] | 802 | f_out<<"* *"<<"\n";
|
---|
| 803 | f_out<<"#************************* *"<<"\n";
|
---|
[374] | 804 | f_out<<"# Time smearing parameters *"<<"\n";
|
---|
| 805 | f_out<<"#************************* *"<<"\n";
|
---|
| 806 | f_out<<"* *"<<"\n";
|
---|
| 807 | f_out << left << setw(55) <<"* Time resolution for ZDC : "<<""
|
---|
| 808 | << left << setw(5) <<ZDC_T_resolution <<""<< right << setw(10)<<"*"<<"\n";
|
---|
| 809 | f_out << left << setw(55) <<"* Time resolution for RP220 : "<<""
|
---|
| 810 | << left << setw(5) <<RP220_T_resolution <<""<< right << setw(10)<<"*"<<"\n";
|
---|
| 811 | f_out << left << setw(55) <<"* Time resolution for RP420 : "<<""
|
---|
| 812 | << left << setw(5) <<RP420_T_resolution <<""<< right << setw(10)<<"*"<<"\n";
|
---|
| 813 | f_out<<"* *"<<"\n";
|
---|
| 814 |
|
---|
| 815 | f_out<<"* *"<<"\n";
|
---|
| 816 | f_out<<"#************************* *"<<"\n";
|
---|
[44] | 817 | f_out<<"# Muon smearing parameters *"<<"\n";
|
---|
| 818 | f_out<<"#************************* *"<<"\n";
|
---|
| 819 | f_out<<"* *"<<"\n";
|
---|
[94] | 820 | f_out << left << setw(55) <<"* PT resolution for muons : "<<""
|
---|
| 821 | << left << setw(5) <<MU_SmearPt <<""<< right << setw(10)<<"*"<<"\n";
|
---|
[44] | 822 | f_out<<"* *"<<"\n";
|
---|
[94] | 823 | if(FLAG_bfield==1){
|
---|
| 824 | f_out<<"#*************************** *"<<"\n";
|
---|
[264] | 825 | f_out<<"# Magnetic field switched on *"<<"\n";
|
---|
[94] | 826 | f_out<<"#*************************** *"<<"\n";
|
---|
| 827 | f_out<<"* *"<<"\n";
|
---|
| 828 | f_out << left << setw(55) <<"* Radius of the BField coverage: "<<""
|
---|
| 829 | << left << setw(5) <<TRACK_radius <<""<< right << setw(10)<<"*"<<"\n";
|
---|
| 830 | f_out << left << setw(55) <<"* Length of the BField coverage: "<<""
|
---|
| 831 | << left << setw(5) <<TRACK_length <<""<< right << setw(10)<<"*"<<"\n";
|
---|
| 832 | f_out << left << setw(55) <<"* BField X component: "<<""
|
---|
| 833 | << left << setw(5) <<TRACK_bfield_x <<""<< right << setw(10)<<"*"<<"\n";
|
---|
| 834 | f_out << left << setw(55) <<"* BField Y component: "<<""
|
---|
| 835 | << left << setw(5) <<TRACK_bfield_y <<""<< right << setw(10)<<"*"<<"\n";
|
---|
| 836 | f_out << left << setw(55) <<"* BField Z component: "<<""
|
---|
| 837 | << left << setw(5) <<TRACK_bfield_z <<""<< right << setw(10)<<"*"<<"\n";
|
---|
| 838 | f_out << left << setw(55) <<"* Minimal pT needed to reach the calorimeter [GeV]: "<<""
|
---|
| 839 | << left << setw(10) <<TRACK_ptmin <<""<< right << setw(5)<<"*"<<"\n";
|
---|
| 840 | f_out << left << setw(55) <<"* Efficiency associated to the tracking: "<<""
|
---|
| 841 | << left << setw(10) <<TRACK_eff <<""<< right << setw(5)<<"*"<<"\n";
|
---|
| 842 | f_out<<"* *"<<"\n";
|
---|
| 843 | }
|
---|
| 844 | else {
|
---|
| 845 | f_out<<"#**************************** *"<<"\n";
|
---|
[264] | 846 | f_out<<"# Magnetic field switched off *"<<"\n";
|
---|
[94] | 847 | f_out<<"#**************************** *"<<"\n";
|
---|
| 848 | f_out << left << setw(55) <<"* Minimal pT needed to reach the calorimeter [GeV]: "<<""
|
---|
| 849 | << left << setw(10) <<TRACK_ptmin <<""<< right << setw(5)<<"*"<<"\n";
|
---|
| 850 | f_out << left << setw(55) <<"* Efficiency associated to the tracking: "<<""
|
---|
| 851 | << left << setw(10) <<TRACK_eff <<""<< right << setw(5)<<"*"<<"\n";
|
---|
| 852 | f_out<<"* *"<<"\n";
|
---|
| 853 | }
|
---|
| 854 | f_out<<"#******************** *"<<"\n";
|
---|
| 855 | f_out<<"# Calorimetric Towers *"<<"\n";
|
---|
| 856 | f_out<<"#******************** *"<<"\n";
|
---|
| 857 | f_out << left << setw(55) <<"* Number of calorimetric towers in eta, for eta>0: "<<""
|
---|
| 858 | << left << setw(5) << TOWER_number <<""<< right << setw(10)<<"*"<<"\n";
|
---|
| 859 | f_out << left << setw(55) <<"* Tower edges in eta, for eta>0: "<<"" << right << setw(15)<<"*"<<"\n";
|
---|
| 860 | f_out << "* ";
|
---|
| 861 | for (unsigned int i=0; i<TOWER_number+1; i++) {
|
---|
| 862 | f_out << left << setw(7) << TOWER_eta_edges[i];
|
---|
| 863 | if(!( (i+1) %9 )) f_out << right << setw(3) << "*" << "\n" << "* ";
|
---|
| 864 | }
|
---|
| 865 | for (unsigned int i=(TOWER_number+1)%9; i<9; i++) f_out << left << setw(7) << "";
|
---|
| 866 | f_out << right << setw(3)<<"*"<<"\n";
|
---|
| 867 | f_out << left << setw(55) <<"* Tower sizes in phi, for eta>0 [degree]:"<<"" << right << setw(15)<<"*"<<"\n";
|
---|
| 868 | f_out << "* ";
|
---|
| 869 | for (unsigned int i=0; i<TOWER_number; i++) {
|
---|
| 870 | f_out << left << setw(7) << TOWER_dphi[i];
|
---|
| 871 | if(!( (i+1) %9 )) f_out << right << setw(3) << "*" << "\n" << "* ";
|
---|
| 872 | }
|
---|
| 873 | for (unsigned int i=(TOWER_number)%9; i<9; i++) f_out << left << setw(7) << "";
|
---|
| 874 | f_out << right << setw(3)<<"*"<<"\n";
|
---|
[44] | 875 | f_out<<"* *"<<"\n";
|
---|
| 876 | f_out<<"#******************* *"<<"\n";
|
---|
| 877 | f_out<<"# Minimum pT's [GeV] *"<<"\n";
|
---|
| 878 | f_out<<"#******************* *"<<"\n";
|
---|
| 879 | f_out<<"* *"<<"\n";
|
---|
| 880 | f_out << left << setw(40) <<"* Minimum pT for electrons: "<<""
|
---|
[94] | 881 | << left << setw(20) <<PTCUT_elec <<""<< right << setw(10)<<"*"<<"\n";
|
---|
[44] | 882 | f_out << left << setw(40) <<"* Minimum pT for muons: "<<""
|
---|
[94] | 883 | << left << setw(20) <<PTCUT_muon <<""<< right << setw(10)<<"*"<<"\n";
|
---|
[44] | 884 | f_out << left << setw(40) <<"* Minimum pT for jets: "<<""
|
---|
[94] | 885 | << left << setw(20) <<PTCUT_jet <<""<< right << setw(10)<<"*"<<"\n";
|
---|
[44] | 886 | f_out << left << setw(40) <<"* Minimum pT for Tau-jets: "<<""
|
---|
[94] | 887 | << left << setw(20) <<PTCUT_taujet <<""<< right << setw(10)<<"*"<<"\n";
|
---|
[74] | 888 | f_out << left << setw(40) <<"* Minimum pT for photons: "<<""
|
---|
[94] | 889 | << left << setw(20) <<PTCUT_gamma <<""<< right << setw(10)<<"*"<<"\n";
|
---|
[374] | 890 | f_out << left << setw(40) <<"* Minimum E for photons in ZDC: "<<""
|
---|
| 891 | << left << setw(20) <<ZDC_gamma_E <<""<< right << setw(10)<<"*"<<"\n";
|
---|
| 892 | f_out << left << setw(40) <<"* Minimum E for neutrons in ZDC: "<<""
|
---|
| 893 | << left << setw(20) <<ZDC_n_E <<""<< right << setw(10)<<"*"<<"\n";
|
---|
| 894 |
|
---|
[44] | 895 | f_out<<"* *"<<"\n";
|
---|
[305] | 896 | f_out<<"#******************* *"<<"\n";
|
---|
| 897 | f_out<<"# Isolation criteria *"<<"\n";
|
---|
| 898 | f_out<<"#******************* *"<<"\n";
|
---|
| 899 | f_out<<"* *"<<"\n";
|
---|
| 900 | f_out << left << setw(40) <<"* Minimum pT for tracks [GeV]: "<<""
|
---|
| 901 | << left << setw(20) <<ISOL_PT <<""<< right << setw(10)<<"*"<<"\n";
|
---|
| 902 | f_out << left << setw(40) <<"* Cone for isolation criteria: "<<""
|
---|
| 903 | << left << setw(20) <<ISOL_Cone <<""<< right << setw(10)<<"*"<<"\n";
|
---|
[321] | 904 |
|
---|
| 905 | if(ISOL_Calo_ET > 1E98) f_out<<"# No Calorimetric isolation applied *"<<"\n";
|
---|
| 906 | else {
|
---|
| 907 | f_out << left << setw(40) <<"* Minimum ET for towers [GeV]: "<<""
|
---|
| 908 | << left << setw(20) <<ISOL_Calo_ET <<""<< right << setw(10)<<"*"<<"\n";
|
---|
| 909 | f_out << left << setw(40) <<"* Grid size (NxN) for calorimetric isolation: "<<""
|
---|
| 910 | << left << setw(20) <<ISOL_Calo_Grid <<""<< right << setw(10)<<"*"<<"\n";
|
---|
| 911 | }
|
---|
| 912 |
|
---|
| 913 |
|
---|
[305] | 914 | f_out<<"* *"<<"\n";
|
---|
[44] | 915 | f_out<<"#*************** *"<<"\n";
|
---|
| 916 | f_out<<"# Jet definition *"<<"\n";
|
---|
| 917 | f_out<<"#*************** *"<<"\n";
|
---|
[383] | 918 | if(JET_Eflow)
|
---|
| 919 | {
|
---|
| 920 | f_out<<"#*************** *"<<"\n";
|
---|
| 921 | f_out<<"#* Running considering perfect energy flow on the tracker coverage *"<<"\n";
|
---|
| 922 | }
|
---|
| 923 | else
|
---|
| 924 | {
|
---|
| 925 | f_out<<"#* Running considering no energy flow on the tracker coverage *"<<"\n";
|
---|
| 926 | f_out<<"#* --> jet algo applied on the calorimetric towers *"<<"\n";
|
---|
| 927 | }
|
---|
[44] | 928 | f_out<<"* *"<<"\n";
|
---|
[49] | 929 | f_out<<"* Six algorithms are currently available: *"<<"\n";
|
---|
| 930 | f_out<<"* - 1) CDF cone algorithm, *"<<"\n";
|
---|
| 931 | f_out<<"* - 2) CDF MidPoint algorithm, *"<<"\n";
|
---|
| 932 | f_out<<"* - 3) SIScone algorithm, *"<<"\n";
|
---|
| 933 | f_out<<"* - 4) kt algorithm, *"<<"\n";
|
---|
| 934 | f_out<<"* - 5) Cambrigde/Aachen algorithm, *"<<"\n";
|
---|
| 935 | f_out<<"* - 6) Anti-kt algorithm. *"<<"\n";
|
---|
| 936 | f_out<<"* *"<<"\n";
|
---|
| 937 | f_out<<"* You have chosen *"<<"\n";
|
---|
[94] | 938 | switch(JET_jetalgo) {
|
---|
[44] | 939 | default:
|
---|
| 940 | case 1: {
|
---|
[94] | 941 | f_out<<"* CDF JetClu jet algorithm with parameters: *"<<"\n";
|
---|
| 942 | f_out << left << setw(40) <<"* - Seed threshold: "<<""
|
---|
| 943 | << left << setw(10) <<JET_seed <<""<< right << setw(20)<<"! not in datacard *"<<"\n";
|
---|
| 944 | f_out << left << setw(40) <<"* - Cone radius: "<<""
|
---|
| 945 | << left << setw(10) <<JET_coneradius <<""<< right << setw(20)<<"*"<<"\n";
|
---|
| 946 | f_out << left << setw(40) <<"* - Adjacency cut: "<<""
|
---|
| 947 | << left << setw(10) <<JET_C_adjacencycut <<""<< right << setw(20)<<"! not in datacard *"<<"\n";
|
---|
| 948 | f_out << left << setw(40) <<"* - Max iterations: "<<""
|
---|
| 949 | << left << setw(10) <<JET_C_maxiterations <<""<< right << setw(20)<<"! not in datacard *"<<"\n";
|
---|
| 950 | f_out << left << setw(40) <<"* - Iratch: "<<""
|
---|
| 951 | << left << setw(10) <<JET_C_iratch <<""<< right << setw(20)<<"! not in datacard *"<<"\n";
|
---|
| 952 | f_out << left << setw(40) <<"* - Overlap threshold: "<<""
|
---|
| 953 | << left << setw(10) <<JET_overlap <<""<< right << setw(20)<<"! not in datacard *"<<"\n";
|
---|
[44] | 954 | }
|
---|
| 955 | break;
|
---|
| 956 | case 2: {
|
---|
[94] | 957 | f_out<<"* CDF midpoint jet algorithm with parameters: *"<<"\n";
|
---|
| 958 | f_out << left << setw(40) <<"* - Seed threshold: "<<""
|
---|
| 959 | << left << setw(20) <<JET_seed <<""<< right << setw(10)<<"! not in datacard *"<<"\n";
|
---|
| 960 | f_out << left << setw(40) <<"* - Cone radius: "<<""
|
---|
| 961 | << left << setw(20) <<JET_coneradius <<""<< right << setw(10)<<"*"<<"\n";
|
---|
| 962 | f_out << left << setw(40) <<"* - Cone area fraction:"<<""
|
---|
| 963 | << left << setw(20) <<JET_M_coneareafraction <<""<< right << setw(10)<<"! not in datacard *"<<"\n";
|
---|
| 964 | f_out << left << setw(40) <<"* - Maximum pair size: "<<""
|
---|
| 965 | << left << setw(20) <<JET_M_maxpairsize <<""<< right << setw(10)<<"! not in datacard *"<<"\n";
|
---|
| 966 | f_out << left << setw(40) <<"* - Max iterations: "<<""
|
---|
| 967 | << left << setw(20) <<JET_M_maxiterations <<""<< right << setw(10)<<"! not in datacard *"<<"\n";
|
---|
| 968 | f_out << left << setw(40) <<"* - Overlap threshold: "<<""
|
---|
| 969 | << left << setw(20) <<JET_overlap <<""<< right << setw(10)<<"! not in datacard *"<<"\n";
|
---|
[44] | 970 | }
|
---|
| 971 | break;
|
---|
| 972 | case 3: {
|
---|
[94] | 973 | f_out <<"* SISCone jet algorithm with parameters: *"<<"\n";
|
---|
| 974 | f_out << left << setw(40) <<"* - Cone radius: "<<""
|
---|
| 975 | << left << setw(20) <<JET_coneradius <<""<< right << setw(10)<<"*"<<"\n";
|
---|
| 976 | f_out << left << setw(40) <<"* - Overlap threshold: "<<""
|
---|
| 977 | << left << setw(20) <<JET_overlap <<""<< right << setw(10)<<"! not in datacard *"<<"\n";
|
---|
| 978 | f_out << left << setw(40) <<"* - Number pass max: "<<""
|
---|
| 979 | << left << setw(20) <<JET_S_npass <<""<< right << setw(10)<<"! not in datacard *"<<"\n";
|
---|
| 980 | f_out << left << setw(40) <<"* - Minimum pT for protojet: "<<""
|
---|
| 981 | << left << setw(20) <<JET_S_protojet_ptmin <<""<< right << setw(10)<<"! not in datacard *"<<"\n";
|
---|
[44] | 982 | }
|
---|
| 983 | break;
|
---|
| 984 | case 4: {
|
---|
[94] | 985 | f_out <<"* KT jet algorithm with parameters: *"<<"\n";
|
---|
| 986 | f_out << left << setw(40) <<"* - Cone radius: "<<""
|
---|
| 987 | << left << setw(20) <<JET_coneradius <<""<< right << setw(10)<<"*"<<"\n";
|
---|
[44] | 988 | }
|
---|
| 989 | break;
|
---|
[49] | 990 | case 5: {
|
---|
[94] | 991 | f_out <<"* Cambridge/Aachen jet algorithm with parameters: *"<<"\n";
|
---|
| 992 | f_out << left << setw(40) <<"* - Cone radius: "<<""
|
---|
| 993 | << left << setw(20) <<JET_coneradius <<""<< right << setw(10)<<"*"<<"\n";
|
---|
[44] | 994 | }
|
---|
[49] | 995 | break;
|
---|
| 996 | case 6: {
|
---|
[94] | 997 | f_out <<"* Anti-kt jet algorithm with parameters: *"<<"\n";
|
---|
| 998 | f_out << left << setw(40) <<"* - Cone radius: "<<""
|
---|
| 999 | << left << setw(20) <<JET_coneradius <<""<< right << setw(10)<<"*"<<"\n";
|
---|
[49] | 1000 | }
|
---|
| 1001 | break;
|
---|
| 1002 | }
|
---|
[44] | 1003 | f_out<<"* *"<<"\n";
|
---|
[94] | 1004 | f_out<<"#****************************** *"<<"\n";
|
---|
| 1005 | f_out<<"# Tau-jet definition parameters *"<<"\n";
|
---|
| 1006 | f_out<<"#****************************** *"<<"\n";
|
---|
| 1007 | f_out<<"* *"<<"\n";
|
---|
| 1008 | f_out << left << setw(45) <<"* Cone radius for calorimeter tagging: "<<""
|
---|
| 1009 | << left << setw(5) <<TAU_energy_scone <<""<< right << setw(20)<<"*"<<"\n";
|
---|
| 1010 | f_out << left << setw(45) <<"* Fraction of energy in the small cone: "<<""
|
---|
| 1011 | << left << setw(5) <<TAU_energy_frac*100 <<""<< right << setw(20)<<"! not in datacard *"<<"\n";
|
---|
| 1012 | f_out << left << setw(45) <<"* Cone radius for tracking tagging: "<<""
|
---|
| 1013 | << left << setw(5) <<TAU_track_scone <<""<< right << setw(20)<<"*"<<"\n";
|
---|
| 1014 | f_out << left << setw(45) <<"* Minimum track pT [GeV]: "<<""
|
---|
| 1015 | << left << setw(5) <<TAU_track_pt <<""<< right << setw(20)<<"*"<<"\n";
|
---|
| 1016 | f_out<<"* *"<<"\n";
|
---|
| 1017 | f_out<<"#*************************** *"<<"\n";
|
---|
| 1018 | f_out<<"# B-tagging efficiencies [%] *"<<"\n";
|
---|
| 1019 | f_out<<"#*************************** *"<<"\n";
|
---|
| 1020 | f_out<<"* *"<<"\n";
|
---|
| 1021 | f_out << left << setw(50) <<"* Efficiency to tag a \"b\" as a b-jet: "<<""
|
---|
| 1022 | << left << setw(10) <<BTAG_b <<""<< right << setw(10)<<"*"<<"\n";
|
---|
| 1023 | f_out << left << setw(50) <<"* Efficiency to mistag a c-jet as a b-jet: "<<""
|
---|
| 1024 | << left << setw(10) <<BTAG_mistag_c <<""<< right << setw(10)<<"*"<<"\n";
|
---|
| 1025 | f_out << left << setw(50) <<"* Efficiency to mistag a light jet as a b-jet: "<<""
|
---|
| 1026 | << left << setw(10) <<BTAG_mistag_l <<""<< right << setw(10)<<"*"<<"\n";
|
---|
| 1027 | f_out<<"* *"<<"\n";
|
---|
| 1028 | f_out<<"* *"<<"\n";
|
---|
[44] | 1029 | f_out<<"#....................................................................*"<<"\n";
|
---|
| 1030 | f_out<<"#>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>"<<"\n";
|
---|
[94] | 1031 |
|
---|
[44] | 1032 | }
|
---|
| 1033 |
|
---|
[2] | 1034 | // **********Provides the smeared TLorentzVector for the electrons********
|
---|
| 1035 | // Smears the electron energy, and changes the 4-momentum accordingly
|
---|
| 1036 | // different smearing if the electron is central (eta < 2.5) or forward
|
---|
| 1037 | void RESOLution::SmearElectron(TLorentzVector &electron) {
|
---|
| 1038 | // the 'electron' variable will be changed by the function
|
---|
| 1039 | float energy = electron.E(); // before smearing
|
---|
| 1040 | float energyS = 0.0; // after smearing // \sigma/E = C + N/E + S/\sqrt{E}
|
---|
[71] | 1041 |
|
---|
[94] | 1042 | if(fabs(electron.Eta()) < CEN_max_tracker) { // if the electron is inside the tracker
|
---|
[2] | 1043 | energyS = gRandom->Gaus(energy, sqrt(
|
---|
| 1044 | pow(ELG_Ncen,2) +
|
---|
| 1045 | pow(ELG_Ccen*energy,2) +
|
---|
[22] | 1046 | pow(ELG_Scen*sqrt(energy),2) ));
|
---|
[55] | 1047 | }
|
---|
[94] | 1048 | if(fabs(electron.Eta()) > CEN_max_tracker && fabs(electron.Eta()) < CEN_max_calo_fwd){
|
---|
[2] | 1049 | energyS = gRandom->Gaus(energy, sqrt(
|
---|
| 1050 | pow(ELG_Nfwd,2) +
|
---|
| 1051 | pow(ELG_Cfwd*energy,2) +
|
---|
| 1052 | pow(ELG_Sfwd*sqrt(energy),2) ) );
|
---|
| 1053 | }
|
---|
| 1054 | electron.SetPtEtaPhiE(energyS/cosh(electron.Eta()), electron.Eta(), electron.Phi(), energyS);
|
---|
| 1055 | if(electron.E() < 0)electron.SetPxPyPzE(0,0,0,0); // no negative values after smearing !
|
---|
| 1056 | }
|
---|
| 1057 |
|
---|
| 1058 |
|
---|
| 1059 | // **********Provides the smeared TLorentzVector for the muons********
|
---|
| 1060 | // Smears the muon pT and changes the 4-momentum accordingly
|
---|
| 1061 | void RESOLution::SmearMu(TLorentzVector &muon) {
|
---|
| 1062 | // the 'muon' variable will be changed by the function
|
---|
| 1063 | float pt = muon.Pt(); // before smearing
|
---|
[61] | 1064 | float ptS=pt;
|
---|
| 1065 |
|
---|
[94] | 1066 | if(fabs(muon.Eta()) < CEN_max_mu )
|
---|
[61] | 1067 | {
|
---|
| 1068 | ptS = gRandom->Gaus(pt, MU_SmearPt*pt ); // after smearing // \sigma/E = C + N/E + S/\sqrt{E}
|
---|
| 1069 | }
|
---|
| 1070 | muon.SetPtEtaPhiE(ptS, muon.Eta(), muon.Phi(), ptS*cosh(muon.Eta()));
|
---|
[2] | 1071 |
|
---|
| 1072 | if(muon.E() < 0)muon.SetPxPyPzE(0,0,0,0); // no negative values after smearing !
|
---|
| 1073 | }
|
---|
| 1074 |
|
---|
| 1075 |
|
---|
| 1076 | // **********Provides the smeared TLorentzVector for the hadrons********
|
---|
| 1077 | // Smears the hadron 4-momentum
|
---|
| 1078 | void RESOLution::SmearHadron(TLorentzVector &hadron, const float frac)
|
---|
| 1079 | // the 'hadron' variable will be changed by the function
|
---|
| 1080 | // the 'frac' variable describes the long-living particles. Should be 0.7 for K0S and Lambda, 1. otherwise
|
---|
| 1081 | {
|
---|
| 1082 | float energy = hadron.E(); // before smearing
|
---|
| 1083 | float energyS = 0.0; // after smearing // \sigma/E = C + N/E + S/\sqrt{E}
|
---|
| 1084 | float energy_ecal = (1.0 - frac)*energy; // electromagnetic calorimeter
|
---|
| 1085 | float energy_hcal = frac*energy; // hadronic calorimeter
|
---|
| 1086 | // frac takes into account the decay of long-living particles, that decay in the calorimeters
|
---|
| 1087 | // some of the particles decay mostly in the ecal, some mostly in the hcal
|
---|
| 1088 |
|
---|
[31] | 1089 | float energyS1,energyS2;
|
---|
[94] | 1090 | if(fabs(hadron.Eta()) < CEN_max_calo_cen) {
|
---|
[10] | 1091 | energyS1 = gRandom->Gaus(energy_hcal, sqrt(
|
---|
[2] | 1092 | pow(HAD_Nhcal,2) +
|
---|
| 1093 | pow(HAD_Chcal*energy_hcal,2) +
|
---|
[9] | 1094 | pow(HAD_Shcal*sqrt(energy_hcal),2) )) ;
|
---|
[10] | 1095 |
|
---|
[9] | 1096 |
|
---|
[10] | 1097 | energyS2 = gRandom->Gaus(energy_ecal, sqrt(
|
---|
[32] | 1098 | pow(ELG_Ncen,2) +
|
---|
| 1099 | pow(ELG_Ccen*energy_ecal,2) +
|
---|
| 1100 | pow(ELG_Scen*sqrt(energy_ecal),2) ) );
|
---|
[9] | 1101 |
|
---|
[10] | 1102 | energyS = ((energyS1>0)?energyS1:0) + ((energyS2>0)?energyS2:0);
|
---|
[55] | 1103 | }
|
---|
[219] | 1104 | if(fabs(hadron.Eta()) > CEN_max_calo_cen && fabs(hadron.Eta()) < CEN_max_calo_fwd){
|
---|
[22] | 1105 | energyS = gRandom->Gaus(energy, sqrt(
|
---|
[2] | 1106 | pow(HAD_Nhf,2) +
|
---|
| 1107 | pow(HAD_Chf*energy,2) +
|
---|
[22] | 1108 | pow(HAD_Shf*sqrt(energy),2) ));
|
---|
[55] | 1109 | }
|
---|
| 1110 |
|
---|
[10] | 1111 |
|
---|
| 1112 |
|
---|
[2] | 1113 | hadron.SetPtEtaPhiE(energyS/cosh(hadron.Eta()),hadron.Eta(), hadron.Phi(), energyS);
|
---|
| 1114 |
|
---|
| 1115 | if(hadron.E() < 0)hadron.SetPxPyPzE(0,0,0,0);
|
---|
| 1116 | }
|
---|
| 1117 |
|
---|
[74] | 1118 | //******************************************************************************************
|
---|
| 1119 |
|
---|
[264] | 1120 | //void RESOLution::SortedVector(vector<ParticleUtil> &vect)
|
---|
| 1121 | void RESOLution::SortedVector(vector<D_Particle> &vect)
|
---|
[74] | 1122 | {
|
---|
| 1123 | int i,j = 0;
|
---|
| 1124 | TLorentzVector tmp;
|
---|
| 1125 | bool en_desordre = true;
|
---|
| 1126 | int entries=vect.size();
|
---|
| 1127 | for(i = 0 ; (i < entries) && en_desordre; i++)
|
---|
| 1128 | {
|
---|
| 1129 | en_desordre = false;
|
---|
| 1130 | for(j = 1 ; j < entries - i ; j++)
|
---|
| 1131 | {
|
---|
| 1132 | if ( vect[j].Pt() > vect[j-1].Pt() )
|
---|
| 1133 | {
|
---|
[264] | 1134 | //ParticleUtil tmp = vect[j-1];
|
---|
| 1135 | D_Particle tmp = vect[j-1];
|
---|
[74] | 1136 | vect[j-1] = vect[j];
|
---|
| 1137 | vect[j] = tmp;
|
---|
| 1138 | en_desordre = true;
|
---|
| 1139 | }
|
---|
| 1140 | }
|
---|
| 1141 | }
|
---|
| 1142 | }
|
---|
| 1143 |
|
---|
[2] | 1144 | // **********Provides the energy in the cone of radius TAU_CONE_ENERGY for the tau identification********
|
---|
| 1145 | // to be taken into account, a calo tower should
|
---|
| 1146 | // 1) have a transverse energy \f$ E_T = \sqrt{E_X^2 + E_Y^2} \f$ above a given threshold
|
---|
| 1147 | // 2) be inside a cone with a radius R and the axis defined by (eta,phi)
|
---|
| 1148 | double RESOLution::EnergySmallCone(const vector<PhysicsTower> &towers, const float eta, const float phi) {
|
---|
| 1149 | double Energie=0;
|
---|
| 1150 | for(unsigned int i=0; i < towers.size(); i++) {
|
---|
[94] | 1151 | if(towers[i].fourVector.pt() < JET_seed) continue;
|
---|
| 1152 | if((DeltaR(phi,eta,towers[i].fourVector.phi(),towers[i].fourVector.eta()) < TAU_energy_scone)) {
|
---|
[2] | 1153 | Energie += towers[i].fourVector.E;
|
---|
| 1154 | }
|
---|
| 1155 | }
|
---|
| 1156 | return Energie;
|
---|
| 1157 | }
|
---|
| 1158 |
|
---|
| 1159 |
|
---|
| 1160 | // **********Provides the number of tracks in the cone of radius TAU_CONE_TRACKS for the tau identification********
|
---|
| 1161 | // to be taken into account, a track should
|
---|
| 1162 | // 1) avec a transverse momentum \$f p_T \$ above a given threshold
|
---|
| 1163 | // 2) be inside a cone with a radius R and the axis defined by (eta,phi)
|
---|
| 1164 | // IMPORTANT REMARK !!!!!
|
---|
[287] | 1165 | // NEW : "charge" will contain the sum of all charged tracks in the cone TAU_track_scone
|
---|
| 1166 | unsigned int RESOLution::NumTracks(float& charge, const vector<TRootTracks> &tracks, const float pt_track, const float eta, const float phi) {
|
---|
| 1167 | unsigned int numbtrack=0; // number of track in the tau-jet cone, which is smaller than R;
|
---|
| 1168 | charge=0;
|
---|
[2] | 1169 | for(unsigned int i=0; i < tracks.size(); i++) {
|
---|
[287] | 1170 | if(tracks[i].PT < pt_track ) continue;
|
---|
[319] | 1171 | //float dr = DeltaR(phi,eta,tracks[i].PhiOuter,tracks[i].EtaOuter);
|
---|
[287] | 1172 | float dr = DeltaR(phi,eta,tracks[i].Phi,tracks[i].Eta);
|
---|
| 1173 | if (dr > TAU_track_scone) continue;
|
---|
| 1174 | numbtrack++;
|
---|
| 1175 | charge += tracks[i].Charge; // total charge in the cone for Tau-jet
|
---|
[2] | 1176 | }
|
---|
[287] | 1177 | return numbtrack;
|
---|
[2] | 1178 | }
|
---|
| 1179 |
|
---|
| 1180 | //*** Returns the PID of the particle with the highest energy, in a cone with a radius CONERADIUS and an axis (eta,phi) *********
|
---|
| 1181 | //used by Btaggedjet
|
---|
| 1182 | ///// Attention : bug removed => CONERADIUS/2 -> CONERADIUS !!
|
---|
[350] | 1183 | int RESOLution::Bjets(const TSimpleArray<TRootC::GenParticle> &subarray, const float& eta, const float& phi) {
|
---|
[2] | 1184 | float emax=0;
|
---|
| 1185 | int Ppid=0;
|
---|
| 1186 | if(subarray.GetEntries()>0) {
|
---|
| 1187 | for(int i=0; i < subarray.GetEntries();i++) { // should have pt>PT_JETMIN and a small cone radius (r<CONE_JET)
|
---|
| 1188 | float genDeltaR = DeltaR(subarray[i]->Phi,subarray[i]->Eta,phi,eta);
|
---|
[94] | 1189 | if(genDeltaR < JET_coneradius && subarray[i]->E > emax) {
|
---|
[2] | 1190 | emax=subarray[i]->E;
|
---|
| 1191 | Ppid=abs(subarray[i]->PID);
|
---|
| 1192 | }
|
---|
| 1193 | }
|
---|
| 1194 | }
|
---|
| 1195 | return Ppid;
|
---|
| 1196 | }
|
---|
| 1197 |
|
---|
| 1198 |
|
---|
| 1199 | //******************** Simulates the b-tagging efficiency for real bjet, or the misendentification for other jets****************
|
---|
[350] | 1200 | bool RESOLution::Btaggedjet(const TLorentzVector &JET, const TSimpleArray<TRootC::GenParticle> &subarray) {
|
---|
[94] | 1201 | if( rand()%100 < (BTAG_b+1) && Bjets(subarray,JET.Eta(),JET.Phi())==pB ) return true; // b-tag of b-jets is 40%
|
---|
| 1202 | else if( rand()%100 < (BTAG_mistag_c+1) && Bjets(subarray,JET.Eta(),JET.Phi())==pC ) return true; // b-tag of c-jets is 10%
|
---|
| 1203 | else if( rand()%100 < (BTAG_mistag_l+1) && Bjets(subarray,JET.Eta(),JET.Phi())!=0) return true; // b-tag of light jets is 1%
|
---|
[2] | 1204 | return false;
|
---|
| 1205 | }
|
---|
| 1206 |
|
---|
[31] | 1207 | //***********************Isolation criteria***********************
|
---|
| 1208 | //****************************************************************
|
---|
[321] | 1209 | bool RESOLution::Isolation(const D_Particle& part, const vector<TRootTracks> &tracks, const float& pt_second_track, const float& isolCone, float& ptiso )
|
---|
[31] | 1210 | {
|
---|
| 1211 | bool isolated = false;
|
---|
[321] | 1212 | ptiso = 0; // sum of all track pt in isolation cone
|
---|
| 1213 | float deltar=1E99; // Initial value; should be high; no further repercussion
|
---|
| 1214 |
|
---|
| 1215 | // loop on all tracks, with p_t above threshold, close enough from the charged lepton
|
---|
| 1216 | for(unsigned int i=0; i < tracks.size(); i++) {
|
---|
| 1217 | if(tracks[i].PT < pt_second_track) continue; // ptcut on tracks
|
---|
| 1218 | float genDeltaR = DeltaR(part.Phi(),part.Eta(),tracks[i].Phi,tracks[i].Eta);
|
---|
[31] | 1219 | if(
|
---|
| 1220 | (genDeltaR > deltar) ||
|
---|
[321] | 1221 | (genDeltaR==0) // rejets the track of the particle itself
|
---|
[31] | 1222 | ) continue ;
|
---|
[321] | 1223 | deltar=genDeltaR; // finds the closest track
|
---|
| 1224 |
|
---|
| 1225 | // as long as (genDeltaR==0) is put above, the particle itself is not taken into account
|
---|
| 1226 | if( genDeltaR < ISOL_Cone) ptiso += tracks[i].PT; // dR cut on tracks
|
---|
[31] | 1227 | }
|
---|
[305] | 1228 | if(deltar > isolCone) isolated = true;
|
---|
[31] | 1229 | return isolated;
|
---|
| 1230 | }
|
---|
| 1231 |
|
---|
[321] | 1232 | // ******* Calorimetric isolation
|
---|
[392] | 1233 | float RESOLution::CaloIsolation(const D_Particle& part, const D_CaloTowerList & towers, const float iPhi, const float iEta) {
|
---|
[321] | 1234 | // etrat, which is a percentage between 00 and 99. It is the ratio of the transverse energy
|
---|
| 1235 | // in a 3Ã3 grid surrounding the muon to the pT of the muon. For well-isolated muons, both ptiso and etrat will be small.
|
---|
| 1236 | if(ISOL_Calo_ET>1E10) return UNDEFINED; // avoid doing anything unreasonable...
|
---|
[392] | 1237 | float et_sum=0;
|
---|
[332] | 1238 | // available parameters: ISOL_Calo_ET , ISOL_Calo_Grid
|
---|
[392] | 1239 | // Get the EtaCalo/PhiCalo of the muon ;
|
---|
| 1240 | // transform it into iEta/iPhi to get the towers, and their neighbourh (i-1, i-2, etc)
|
---|
| 1241 |
|
---|
| 1242 | unsigned int N = ISOL_Calo_Grid;
|
---|
| 1243 | int index= iUNDEFINED; // index of the central tower of the grid in TOWER_eta_edges[.];
|
---|
| 1244 | // !! TOWER_eta_edges is only with eta>0
|
---|
| 1245 | // finds the index of the central tower of the NxN grid
|
---|
| 1246 | for (unsigned int i=1; i< TOWER_number+1; i++) {
|
---|
| 1247 | if(fabs(iEta) >= TOWER_eta_edges[i-1] && fabs(iEta) < TOWER_eta_edges[i]) {
|
---|
| 1248 | index = i-1;
|
---|
| 1249 | break;
|
---|
| 1250 | }
|
---|
| 1251 | }
|
---|
| 1252 | if(index != iUNDEFINED) {
|
---|
| 1253 | // finds the size in phi of the cells for this eta
|
---|
| 1254 | float dphi = TOWER_dphi[index]*pi/180.; // in rad
|
---|
| 1255 |
|
---|
| 1256 | //cout << "Grid " << " ----------\n";
|
---|
| 1257 | for (unsigned int i_eta=0; i_eta<N; i_eta++) {
|
---|
| 1258 | unsigned int real_index = (iEta>0) ? index+i_eta-(N-1)/2 : index+1+i_eta-(N-1)/2 ;
|
---|
| 1259 | float eta_ith_tower = TOWER_eta_edges[real_index];
|
---|
| 1260 | if(iEta<0) eta_ith_tower *= -1;
|
---|
| 1261 |
|
---|
| 1262 | for (unsigned int i_phi=0; i_phi<N; i_phi++) {
|
---|
| 1263 | float phi_ith_tower = iPhi + (float)(i_phi - (N-1.)/2.)*dphi;
|
---|
| 1264 | D_CaloTower calMuon(towers.getElement(eta_ith_tower,phi_ith_tower));
|
---|
| 1265 | if(calMuon.getEta() != UNDEFINED && calMuon.getE() > ISOL_Calo_ET) {
|
---|
| 1266 | et_sum += calMuon.getE();
|
---|
| 1267 | //cout << "eta/phi = " << eta_ith_tower << "\t" << phi_ith_tower << "\t" << calMuon.getE() << " GeV" << endl;
|
---|
| 1268 | }
|
---|
| 1269 | //else cout << "eta/phi = " << eta_ith_tower << "\t" << phi_ith_tower << "\tnot active\n";
|
---|
| 1270 | }
|
---|
| 1271 |
|
---|
| 1272 | } // NxN grid
|
---|
| 1273 | //cout << "-----------" << etrat << endl;
|
---|
| 1274 | }
|
---|
| 1275 | else if (CEN_max_mu < CEN_max_calo_fwd)
|
---|
| 1276 | cout << "** ERROR in RESOLution::CaloIsolation: 'muon'-tower not found! **" << endl;
|
---|
| 1277 | // should never happen ! this would be a bug
|
---|
| 1278 | //cout << "etrat = " << et_sum << "\t Pt=" << part.Pt() << endl;
|
---|
| 1279 |
|
---|
| 1280 | // should return a number between 0 and 99 (due to LHCO definitions)
|
---|
| 1281 | // which is Pt(muon) / sum(ET)
|
---|
| 1282 | float etrat = 0.;
|
---|
| 1283 | if(et_sum==0) etrat = 99.;
|
---|
| 1284 | else if(et_sum>0) etrat = 100*part.Pt()/et_sum;
|
---|
[321] | 1285 | if(etrat<0) cout << "Error: negative etrat in CaloIsolation (" << etrat <<")\n";
|
---|
[392] | 1286 | //else if(etrat>99) cout << "Error: etrat should be in [0;99] in CaloIsolation (" << etrat <<")\n";
|
---|
| 1287 | if(etrat>99) etrat = 99;
|
---|
[321] | 1288 | return etrat;
|
---|
| 1289 | }
|
---|
[31] | 1290 |
|
---|
[321] | 1291 |
|
---|
[71] | 1292 | //********** returns a segmented value for eta and phi, for calo towers *****
|
---|
| 1293 | void RESOLution::BinEtaPhi(const float phi, const float eta, float& iPhi, float& iEta){
|
---|
[264] | 1294 | iEta = UNDEFINED;
|
---|
| 1295 | int index= iUNDEFINED;
|
---|
[94] | 1296 | for (unsigned int i=1; i< TOWER_number+1; i++) {
|
---|
| 1297 | if(fabs(eta)>TOWER_eta_edges[i-1] && fabs(eta)<TOWER_eta_edges[i]) {
|
---|
| 1298 | iEta = (eta>0) ? TOWER_eta_edges[i-1] : -TOWER_eta_edges[i];
|
---|
[71] | 1299 | index = i-1;
|
---|
| 1300 | break;
|
---|
| 1301 | }
|
---|
| 1302 | }
|
---|
[264] | 1303 | if(index==UNDEFINED) return;
|
---|
| 1304 | iPhi = UNDEFINED;
|
---|
[244] | 1305 | float dphi = TOWER_dphi[index]*pi/180.;
|
---|
[94] | 1306 | for (unsigned int i=1; i < 360/TOWER_dphi[index]; i++ ) {
|
---|
[244] | 1307 | float low = -pi+(i-1)*dphi;
|
---|
[71] | 1308 | float high= low+dphi;
|
---|
| 1309 | if(phi > low && phi < high ){
|
---|
| 1310 | iPhi = low;
|
---|
| 1311 | break;
|
---|
| 1312 | }
|
---|
| 1313 | }
|
---|
[244] | 1314 | if (phi > pi-dphi) iPhi = pi-dphi;
|
---|
[71] | 1315 | }
|
---|
| 1316 |
|
---|
[264] | 1317 |
|
---|
| 1318 |
|
---|
[2] | 1319 | //**************************** Returns the delta Phi ****************************
|
---|
| 1320 | float DeltaPhi(const float phi1, const float phi2) {
|
---|
[244] | 1321 | float deltaphi=phi1-phi2; // in here, -pi < phi < pi
|
---|
| 1322 | if(fabs(deltaphi) > pi) {
|
---|
| 1323 | deltaphi=2.*pi -fabs(deltaphi);// put deltaphi between 0 and pi
|
---|
[219] | 1324 | }
|
---|
[2] | 1325 | else deltaphi=fabs(deltaphi);
|
---|
| 1326 |
|
---|
| 1327 | return deltaphi;
|
---|
| 1328 | }
|
---|
| 1329 |
|
---|
| 1330 | //**************************** Returns the delta R****************************
|
---|
| 1331 | float DeltaR(const float phi1, const float eta1, const float phi2, const float eta2) {
|
---|
| 1332 | return sqrt(pow(DeltaPhi(phi1,phi2),2) + pow(eta1-eta2,2));
|
---|
| 1333 | }
|
---|
| 1334 |
|
---|
| 1335 | int sign(const int myint) {
|
---|
| 1336 | if (myint >0) return 1;
|
---|
| 1337 | else if (myint <0) return -1;
|
---|
| 1338 | else return 0;
|
---|
| 1339 | }
|
---|
| 1340 |
|
---|
| 1341 | int sign(const float myfloat) {
|
---|
| 1342 | if (myfloat >0) return 1;
|
---|
| 1343 | else if (myfloat <0) return -1;
|
---|
| 1344 | else return 0;
|
---|
| 1345 | }
|
---|
| 1346 |
|
---|
[270] | 1347 | int ChargeVal(const int pid)
|
---|
[55] | 1348 | {
|
---|
[380] | 1349 | cout << "ChargeVal :: deprecated function, do not use it anymore" << endl;
|
---|
[55] | 1350 | int charge;
|
---|
| 1351 | if(
|
---|
| 1352 | (pid == pGAMMA) ||
|
---|
| 1353 | (pid == pPI0) ||
|
---|
| 1354 | (pid == pK0L) ||
|
---|
| 1355 | (pid == pN) ||
|
---|
| 1356 | (pid == pSIGMA0) ||
|
---|
| 1357 | (pid == pDELTA0) ||
|
---|
| 1358 | (pid == pK0S) // not charged particles : invisible by tracker
|
---|
| 1359 | )
|
---|
| 1360 | charge = 0;
|
---|
[376] | 1361 | else charge = sign(pid);
|
---|
[55] | 1362 | return charge;
|
---|
| 1363 |
|
---|
[2] | 1364 | }
|
---|
[380] | 1365 |
|
---|
| 1366 | //------------------------------------------------------------------------------
|
---|
| 1367 | void RESOLution::ReadParticleDataGroupTable() {
|
---|
| 1368 |
|
---|
| 1369 | string temp_string;
|
---|
| 1370 | istringstream curstring;
|
---|
| 1371 |
|
---|
| 1372 | ifstream fichier_a_lire(PdgTableFilename.c_str());
|
---|
| 1373 | if(!fichier_a_lire.good()) {
|
---|
| 1374 | cout <<"** ERROR: PDG Table ("<< PdgTableFilename
|
---|
| 1375 | << ") not found! exit. **" << endl;
|
---|
| 1376 | exit(1);
|
---|
| 1377 | return;
|
---|
| 1378 | }
|
---|
| 1379 | // first three lines of the file are useless
|
---|
| 1380 | getline(fichier_a_lire,temp_string);
|
---|
| 1381 | getline(fichier_a_lire,temp_string);
|
---|
| 1382 | getline(fichier_a_lire,temp_string);
|
---|
| 1383 |
|
---|
| 1384 |
|
---|
| 1385 | while (getline(fichier_a_lire,temp_string)) {
|
---|
| 1386 | curstring.clear(); // needed when using several times istringstream::str(string)
|
---|
| 1387 | curstring.str(temp_string);
|
---|
| 1388 | int ID; string name; int charge; float mass; float width; float lifetime;
|
---|
| 1389 | // ID name chg mass total width lifetime
|
---|
| 1390 | // 1 d -1 0.33000 0.00000 0.00000E+00
|
---|
| 1391 | curstring >> ID >> name >> charge >> mass >> width >> lifetime;
|
---|
| 1392 | PdgParticle particle(ID,name,mass,charge/3.,width,lifetime);
|
---|
| 1393 | PDGtable.insert(ID,particle);
|
---|
| 1394 | //PdgTable.insert(pair<int,PdgParticle>(ID,particle));
|
---|
| 1395 | //cout << PDGtable[ID].name() << "\t" << PDGtable[ID].mass() << "\t" << PDGtable[ID].charge() << endl;
|
---|
| 1396 | }
|
---|
| 1397 |
|
---|
| 1398 | } // ReadParticleDataGroupTable
|
---|