Fork me on GitHub

source: svn/trunk/src/SmearUtil.cc@ 308

Last change on this file since 308 was 307, checked in by severine ovyn, 16 years ago

LHCO advanced

File size: 61.8 KB
RevLine 
[260]1/***********************************************************************
2** **
3** /----------------------------------------------\ **
4** | Delphes, a framework for the fast simulation | **
5** | of a generic collider experiment | **
6** \----------------------------------------------/ **
7** **
8** **
9** This package uses: **
10** ------------------ **
11** FastJet algorithm: Phys. Lett. B641 (2006) [hep-ph/0512210] **
12** Hector: JINST 2:P09005 (2007) [physics.acc-ph:0707.1198v2] **
13** FROG: [hep-ex/0901.2718v1] **
14** **
15** ------------------------------------------------------------------ **
16** **
17** Main authors: **
18** ------------- **
19** **
20** Severine Ovyn Xavier Rouby **
21** severine.ovyn@uclouvain.be xavier.rouby@cern **
22** **
23** Center for Particle Physics and Phenomenology (CP3) **
24** Universite catholique de Louvain (UCL) **
25** Louvain-la-Neuve, Belgium **
26** **
27** Copyright (C) 2008-2009, **
28** All rights reserved. **
29** **
30***********************************************************************/
[2]31
[264]32
[2]33/// \file SmearUtil.cc
34/// \brief RESOLution class, and some generic definitions
35
36
[219]37#include "SmearUtil.h"
[2]38#include "TRandom.h"
39
40#include <iostream>
[219]41#include <fstream>
[2]42#include <sstream>
[44]43#include <iomanip>
[219]44using namespace std;
[44]45
[2]46//------------------------------------------------------------------------------
47
48RESOLution::RESOLution() {
49
[94]50 // Detector characteristics
51 CEN_max_tracker = 2.5; // Maximum tracker coverage
52 CEN_max_calo_cen = 3.0; // central calorimeter coverage
53 CEN_max_calo_fwd = 5.0; // forward calorimeter pseudorapidity coverage
54 CEN_max_mu = 2.4; // muon chambers pseudorapidity coverage
55
56 // Energy resolution for electron/photon
57 // \sigma/E = C + N/E + S/\sqrt{E}
58 ELG_Scen = 0.05; // S term for central ECAL
59 ELG_Ncen = 0.25; // N term for central ECAL
60 ELG_Ccen = 0.005; // C term for central ECAL
[257]61 ELG_Sfwd = 2.084; // S term for FCAL
62 ELG_Nfwd = 0.0; // N term for FCAL
63 ELG_Cfwd = 0.107; // C term for FCAL
[2]64
[94]65 // Energy resolution for hadrons in ecal/hcal/hf
66 // \sigma/E = C + N/E + S/\sqrt{E}
[264]67 HAD_Shcal = 1.5; // S term for central HCAL
[94]68 HAD_Nhcal = 0.; // N term for central HCAL
69 HAD_Chcal = 0.05; // C term for central HCAL
[264]70 HAD_Shf = 2.7; // S term for FCAL
[257]71 HAD_Nhf = 0.; // N term for FCAL
72 HAD_Chf = 0.13; // C term for FCAL
[2]73
[94]74 // Muon smearing
75 MU_SmearPt = 0.01;
[2]76
[94]77 // Tracking efficiencies
78 TRACK_ptmin = 0.9; // minimal pt needed to reach the calorimeter in GeV
79 TRACK_eff = 100; // efficiency associated to the tracking
[2]80
[94]81 // Calorimetric towers
82 TOWER_number = 40;
83 const float tower_eta_edges[41] = {
84 0., 0.087, 0.174, 0.261, 0.348, 0.435, 0.522, 0.609, 0.696, 0.783, 0.870, 0.957, 1.044, 1.131, 1.218, 1.305, 1.392, 1.479, 1.566,
85 1.653, 1.740, 1.830, 1.930, 2.043, 2.172, 2.322, 2.500, 2.650, 2.868, 2.950, 3.125, 3.300, 3.475, 3.650, 3.825, 4.000, 4.175,
86 4.350, 4.525, 4.700, 5.000}; // temporary object
87 TOWER_eta_edges = new float[TOWER_number+1];
88 for(unsigned int i=0; i<TOWER_number +1; i++) TOWER_eta_edges[i] = tower_eta_edges[i];
89
90 const float tower_dphi[40] = {
91 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 10,
92 10,10,10,10,10, 10,10,10,10,10, 10,10,10,10,10, 10,10,10,20, 20 }; // temporary object
93 TOWER_dphi = new float[TOWER_number];
94 for(unsigned int i=0; i<TOWER_number; i++) TOWER_dphi[i] = tower_dphi[i];
[2]95
96
[94]97 // Thresholds for reconstructed objetcs
98 PTCUT_elec = 10.0;
99 PTCUT_muon = 10.0;
100 PTCUT_jet = 20.0;
101 PTCUT_gamma = 10.0;
102 PTCUT_taujet = 10.0;
[33]103
[305]104 ISOL_PT = 2.0; //minimal pt of tracks for isolation criteria
105 ISOL_Cone = 0.5; //Cone for isolation criteria
106
107
[94]108 // General jet variable
109 JET_coneradius = 0.7; // generic jet radius ; not for tau's !!!
110 JET_jetalgo = 1; // 1 for Cone algorithm, 2 for MidPoint algorithm, 3 for SIScone algorithm, 4 for kt algorithm
111 JET_seed = 1.0; // minimum seed to start jet reconstruction
[33]112
[94]113 // Tagging definition
114 BTAG_b = 40;
115 BTAG_mistag_c = 10;
116 BTAG_mistag_l = 1;
[2]117
[94]118 // FLAGS
119 FLAG_bfield = 1; //1 to run the bfield propagation else 0
120 FLAG_vfd = 1; //1 to run the very forward detectors else 0
[307]121 FLAG_RP = 1; //1 to run the zero degree calorimeter else 0
[94]122 FLAG_trigger = 1; //1 to run the trigger selection else 0
123 FLAG_frog = 1; //1 to run the FROG event display
[307]124 FLAG_lhco = 1;
[2]125
[94]126 // In case BField propagation allowed
127 TRACK_radius = 129; //radius of the BField coverage
128 TRACK_length = 300; //length of the BField coverage
129 TRACK_bfield_x = 0; //X composant of the BField
130 TRACK_bfield_y = 0; //Y composant of the BField
131 TRACK_bfield_z = 3.8; //Z composant of the BField
[2]132
[94]133 // In case Very forward detectors allowed
134 VFD_min_calo_vfd = 5.2; // very forward calorimeter (if any) like CASTOR
135 VFD_max_calo_vfd = 6.6;
136 VFD_min_zdc = 8.3;
137 VFD_s_zdc = 140; // distance of the Zero Degree Calorimeter, from the Interaction poin, in [m]
[2]138
[94]139 RP_220_s = 220; // distance of the RP to the IP, in meters
140 RP_220_x = 0.002; // distance of the RP to the beam, in meters
141 RP_420_s = 420; // distance of the RP to the IP, in meters
142 RP_420_x = 0.004; // distance of the RP to the beam, in meters
[257]143 RP_IP_name = "IP5";
[252]144 RP_beam1Card = "data/LHCB1IR5_v6.500.tfs";
145 RP_beam2Card = "data/LHCB1IR5_v6.500.tfs";
[2]146
[94]147 // In case FROG event display allowed
148 NEvents_Frog = 10;
[2]149
[94]150 //********************************************
151 //jet stuffs not defined in the input datacard
152 //********************************************
153
154 JET_overlap = 0.75;
155 // MidPoint algorithm definition
156 JET_M_coneareafraction = 0.25;
157 JET_M_maxpairsize = 2;
158 JET_M_maxiterations = 100;
159 // Define Cone algorithm.
160 JET_C_adjacencycut = 2;
161 JET_C_maxiterations = 100;
162 JET_C_iratch = 1;
163 //Define SISCone algorithm.
164 JET_S_npass = 0;
165 JET_S_protojet_ptmin= 0.0;
166
167 //For Tau-jet definition
168 TAU_energy_scone = 0.15; // radius R of the cone for tau definition, based on energy threshold
169 TAU_track_scone = 0.4; // radius R of the cone for tau definition, based on track number
170 TAU_track_pt = 2; // minimal pt [GeV] for tracks to be considered in tau definition
171 TAU_energy_frac = 0.95; // fraction of energy required in the central part of the cone, for tau jets
172
173 PT_QUARKS_MIN = 2.0 ; // minimal pt needed by quarks to do b-tag
[252]174
175 //for very forward detectors
176 RP_offsetEl_s = 120;
177 RP_offsetEl_x = 0.097;
[254]178 RP_cross_x = -500;
179 RP_cross_y = 0.0;
180 RP_cross_ang = 142.5;
[94]181
[2]182}
183
[219]184
185RESOLution::RESOLution(const RESOLution & DET) {
186 // Detector characteristics
187 CEN_max_tracker = DET.CEN_max_tracker;
188 CEN_max_calo_cen = DET.CEN_max_calo_cen;
189 CEN_max_calo_fwd = DET.CEN_max_calo_fwd;
190 CEN_max_mu = DET.CEN_max_mu;
191
192 // Energy resolution for electron/photon
193 ELG_Scen = DET.ELG_Scen;
194 ELG_Ncen = DET.ELG_Ncen;
195 ELG_Ccen = DET.ELG_Ccen;
196 ELG_Cfwd = DET.ELG_Cfwd;
197 ELG_Sfwd = DET.ELG_Sfwd;
198 ELG_Nfwd = DET.ELG_Nfwd;
199
200 // Energy resolution for hadrons in ecal/hcal/hf
201 HAD_Shcal = DET.HAD_Shcal;
202 HAD_Nhcal = DET.HAD_Nhcal;
203 HAD_Chcal = DET.HAD_Chcal;
204 HAD_Shf = DET.HAD_Shf;
205 HAD_Nhf = DET.HAD_Nhf;
206 HAD_Chf = DET.HAD_Chf;
207
208 // Muon smearing
209 MU_SmearPt = DET.MU_SmearPt;
210
211 // Tracking efficiencies
212 TRACK_ptmin = DET.TRACK_ptmin;
213 TRACK_eff = DET.TRACK_eff;
214
215 // Calorimetric towers
216 TOWER_number = DET.TOWER_number;
217 TOWER_eta_edges = new float[TOWER_number+1];
218 for(unsigned int i=0; i<TOWER_number +1; i++) TOWER_eta_edges[i] = DET.TOWER_eta_edges[i];
219
220 TOWER_dphi = new float[TOWER_number];
221 for(unsigned int i=0; i<TOWER_number; i++) TOWER_dphi[i] = DET.TOWER_dphi[i];
222
223 // Thresholds for reconstructed objetcs
224 PTCUT_elec = DET.PTCUT_elec;
225 PTCUT_muon = DET.PTCUT_muon;
226 PTCUT_jet = DET.PTCUT_jet;
227 PTCUT_gamma = DET.PTCUT_gamma;
228 PTCUT_taujet = DET.PTCUT_taujet;
229
[305]230 ISOL_PT = DET.ISOL_PT; //minimal pt of tracks for isolation criteria
231 ISOL_Cone = DET.ISOL_Cone; //Cone for isolation criteria
232
233
[219]234 // General jet variable
235 JET_coneradius = DET.JET_coneradius;
236 JET_jetalgo = DET.JET_jetalgo;
237 JET_seed = DET.JET_seed;
238
239 // Tagging definition
240 BTAG_b = DET.BTAG_b;
241 BTAG_mistag_c = DET.BTAG_mistag_c;
242 BTAG_mistag_l = DET.BTAG_mistag_l;
243
244 // FLAGS
245 FLAG_bfield = DET.FLAG_bfield;
246 FLAG_vfd = DET.FLAG_vfd;
[306]247 FLAG_RP = DET.FLAG_RP;
[219]248 FLAG_trigger = DET.FLAG_trigger;
249 FLAG_frog = DET.FLAG_frog;
[307]250 FLAG_lhco = DET.FLAG_lhco;
[219]251
252 // In case BField propagation allowed
253 TRACK_radius = DET.TRACK_radius;
254 TRACK_length = DET.TRACK_length;
255 TRACK_bfield_x = DET.TRACK_bfield_x;
256 TRACK_bfield_y = DET.TRACK_bfield_y;
257 TRACK_bfield_z = DET.TRACK_bfield_z;
258
259 // In case Very forward detectors allowed
260 VFD_min_calo_vfd = DET.VFD_min_calo_vfd;
261 VFD_max_calo_vfd = DET.VFD_max_calo_vfd;
262 VFD_min_zdc = DET.VFD_min_zdc;
263 VFD_s_zdc = DET.VFD_s_zdc;
264
265 RP_220_s = DET.RP_220_s;
266 RP_220_x = DET.RP_220_x;
267 RP_420_s = DET.RP_420_s;
268 RP_420_x = DET.RP_420_x;
[252]269 RP_beam1Card = DET.RP_beam1Card;
270 RP_beam2Card = DET.RP_beam2Card;
271 RP_offsetEl_s = DET.RP_offsetEl_s;
272 RP_offsetEl_x = DET.RP_offsetEl_x;
[254]273 RP_cross_x = DET.RP_cross_x;
274 RP_cross_y = DET.RP_cross_y;
275 RP_cross_ang = DET.RP_cross_ang;
[257]276 RP_IP_name = DET.RP_IP_name;
[219]277
278 // In case FROG event display allowed
279 NEvents_Frog = DET.NEvents_Frog;
280
281 JET_overlap = DET.JET_overlap;
282 // MidPoint algorithm definition
283 JET_M_coneareafraction = DET.JET_M_coneareafraction;
284 JET_M_maxpairsize = DET.JET_M_maxpairsize;
285 JET_M_maxiterations = DET.JET_M_maxiterations;
286 // Define Cone algorithm.
287 JET_C_adjacencycut = DET.JET_C_adjacencycut;
288 JET_C_maxiterations = DET.JET_C_maxiterations;
289 JET_C_iratch = DET.JET_C_iratch;
290 //Define SISCone algorithm.
291 JET_S_npass = DET.JET_S_npass;
292 JET_S_protojet_ptmin = DET.JET_S_protojet_ptmin;
293
294 //For Tau-jet definition
295 TAU_energy_scone = DET.TAU_energy_scone;
296 TAU_track_scone = DET.TAU_track_scone;
297 TAU_track_pt = DET.TAU_track_pt;
298 TAU_energy_frac = DET.TAU_energy_frac;
299
300 PT_QUARKS_MIN = DET.PT_QUARKS_MIN;
301}
302
303RESOLution& RESOLution::operator=(const RESOLution& DET) {
304 if(this==&DET) return *this;
305 // Detector characteristics
306 CEN_max_tracker = DET.CEN_max_tracker;
307 CEN_max_calo_cen = DET.CEN_max_calo_cen;
308 CEN_max_calo_fwd = DET.CEN_max_calo_fwd;
309 CEN_max_mu = DET.CEN_max_mu;
310
311 // Energy resolution for electron/photon
312 ELG_Scen = DET.ELG_Scen;
313 ELG_Ncen = DET.ELG_Ncen;
314 ELG_Ccen = DET.ELG_Ccen;
315 ELG_Cfwd = DET.ELG_Cfwd;
316 ELG_Sfwd = DET.ELG_Sfwd;
317 ELG_Nfwd = DET.ELG_Nfwd;
318
319 // Energy resolution for hadrons in ecal/hcal/hf
320 HAD_Shcal = DET.HAD_Shcal;
321 HAD_Nhcal = DET.HAD_Nhcal;
322 HAD_Chcal = DET.HAD_Chcal;
323 HAD_Shf = DET.HAD_Shf;
324 HAD_Nhf = DET.HAD_Nhf;
325 HAD_Chf = DET.HAD_Chf;
326
327 // Muon smearing
328 MU_SmearPt = DET.MU_SmearPt;
329
330 // Tracking efficiencies
331 TRACK_ptmin = DET.TRACK_ptmin;
332 TRACK_eff = DET.TRACK_eff;
333
334 // Calorimetric towers
335 TOWER_number = DET.TOWER_number;
336 TOWER_eta_edges = new float[TOWER_number+1];
337 for(unsigned int i=0; i<TOWER_number +1; i++) TOWER_eta_edges[i] = DET.TOWER_eta_edges[i];
338
339 TOWER_dphi = new float[TOWER_number];
340 for(unsigned int i=0; i<TOWER_number; i++) TOWER_dphi[i] = DET.TOWER_dphi[i];
341
342 // Thresholds for reconstructed objetcs
343 PTCUT_elec = DET.PTCUT_elec;
344 PTCUT_muon = DET.PTCUT_muon;
345 PTCUT_jet = DET.PTCUT_jet;
346 PTCUT_gamma = DET.PTCUT_gamma;
347 PTCUT_taujet = DET.PTCUT_taujet;
348
[305]349 ISOL_PT = DET.ISOL_PT; //minimal pt of tracks for isolation criteria
350 ISOL_Cone = DET.ISOL_Cone; //Cone for isolation criteria
351
352
[219]353 // General jet variable
354 JET_coneradius = DET.JET_coneradius;
355 JET_jetalgo = DET.JET_jetalgo;
356 JET_seed = DET.JET_seed;
357
358 // Tagging definition
359 BTAG_b = DET.BTAG_b;
360 BTAG_mistag_c = DET.BTAG_mistag_c;
361 BTAG_mistag_l = DET.BTAG_mistag_l;
362
363 // FLAGS
364 FLAG_bfield = DET.FLAG_bfield;
365 FLAG_vfd = DET.FLAG_vfd;
[306]366 FLAG_RP = DET.FLAG_RP;
[219]367 FLAG_trigger = DET.FLAG_trigger;
368 FLAG_frog = DET.FLAG_frog;
[307]369 FLAG_lhco = DET.FLAG_lhco;
[219]370
371 // In case BField propagation allowed
372 TRACK_radius = DET.TRACK_radius;
373 TRACK_length = DET.TRACK_length;
374 TRACK_bfield_x = DET.TRACK_bfield_x;
375 TRACK_bfield_y = DET.TRACK_bfield_y;
376 TRACK_bfield_z = DET.TRACK_bfield_z;
377
378 // In case Very forward detectors allowed
379 VFD_min_calo_vfd = DET.VFD_min_calo_vfd;
380 VFD_max_calo_vfd = DET.VFD_max_calo_vfd;
381 VFD_min_zdc = DET.VFD_min_zdc;
382 VFD_s_zdc = DET.VFD_s_zdc;
383
384 RP_220_s = DET.RP_220_s;
385 RP_220_x = DET.RP_220_x;
386 RP_420_s = DET.RP_420_s;
387 RP_420_x = DET.RP_420_x;
[252]388 RP_offsetEl_s = DET.RP_offsetEl_s;
389 RP_offsetEl_x = DET.RP_offsetEl_x;
390 RP_beam1Card = DET.RP_beam1Card;
391 RP_beam2Card = DET.RP_beam2Card;
[254]392 RP_cross_x = DET.RP_cross_x;
393 RP_cross_y = DET.RP_cross_y;
394 RP_cross_ang = DET.RP_cross_ang;
[257]395 RP_IP_name = DET.RP_IP_name;
[219]396
[252]397
[219]398 // In case FROG event display allowed
399 NEvents_Frog = DET.NEvents_Frog;
400
401 JET_overlap = DET.JET_overlap;
402 // MidPoint algorithm definition
403 JET_M_coneareafraction = DET.JET_M_coneareafraction;
404 JET_M_maxpairsize = DET.JET_M_maxpairsize;
405 JET_M_maxiterations = DET.JET_M_maxiterations;
406 // Define Cone algorithm.
407 JET_C_adjacencycut = DET.JET_C_adjacencycut;
408 JET_C_maxiterations = DET.JET_C_maxiterations;
409 JET_C_iratch = DET.JET_C_iratch;
410 //Define SISCone algorithm.
411 JET_S_npass = DET.JET_S_npass;
412 JET_S_protojet_ptmin = DET.JET_S_protojet_ptmin;
413
414 //For Tau-jet definition
415 TAU_energy_scone = DET.TAU_energy_scone;
416 TAU_track_scone = DET.TAU_track_scone;
417 TAU_track_pt = DET.TAU_track_pt;
418 TAU_energy_frac = DET.TAU_energy_frac;
419
420 PT_QUARKS_MIN = DET.PT_QUARKS_MIN;
421 return *this;
422}
423
424
425
426
[2]427//------------------------------------------------------------------------------
428void RESOLution::ReadDataCard(const string datacard) {
429
430 string temp_string;
431 istringstream curstring;
432
433 ifstream fichier_a_lire(datacard.c_str());
434 if(!fichier_a_lire.good()) {
[249]435 cout <<"** WARNING: Datadard not found, use default values **" << endl;
[94]436 return;
[2]437 }
[94]438
[2]439 while (getline(fichier_a_lire,temp_string)) {
440 curstring.clear(); // needed when using several times istringstream::str(string)
441 curstring.str(temp_string);
442 string varname;
[252]443 float value; int ivalue; string svalue;
[2]444
445 if(strstr(temp_string.c_str(),"#")) { }
[94]446 else if(strstr(temp_string.c_str(),"CEN_max_tracker")) {curstring >> varname >> value; CEN_max_tracker = value;}
447 else if(strstr(temp_string.c_str(),"CEN_max_calo_cen")) {curstring >> varname >> value; CEN_max_calo_cen = value;}
448 else if(strstr(temp_string.c_str(),"CEN_max_calo_fwd")) {curstring >> varname >> value; CEN_max_calo_fwd = value;}
449 else if(strstr(temp_string.c_str(),"CEN_max_mu")) {curstring >> varname >> value; CEN_max_mu = value;}
450
451 else if(strstr(temp_string.c_str(),"VFD_min_calo_vfd")) {curstring >> varname >> value; VFD_min_calo_vfd = value;}
452 else if(strstr(temp_string.c_str(),"VFD_max_calo_vfd")) {curstring >> varname >> value; VFD_max_calo_vfd = value;}
453 else if(strstr(temp_string.c_str(),"VFD_min_zdc")) {curstring >> varname >> value; VFD_min_zdc = value;}
454 else if(strstr(temp_string.c_str(),"VFD_s_zdc")) {curstring >> varname >> value; VFD_s_zdc = value;}
455
456 else if(strstr(temp_string.c_str(),"RP_220_s")) {curstring >> varname >> value; RP_220_s = value;}
457 else if(strstr(temp_string.c_str(),"RP_220_x")) {curstring >> varname >> value; RP_220_x = value;}
458 else if(strstr(temp_string.c_str(),"RP_420_s")) {curstring >> varname >> value; RP_420_s = value;}
459 else if(strstr(temp_string.c_str(),"RP_420_x")) {curstring >> varname >> value; RP_420_x = value;}
[257]460 else if(strstr(temp_string.c_str(),"RP_beam1Card")) {curstring >> varname >> svalue;RP_beam1Card = svalue;}
461 else if(strstr(temp_string.c_str(),"RP_beam2Card")) {curstring >> varname >> svalue;RP_beam2Card = svalue;}
462 else if(strstr(temp_string.c_str(),"RP_IP_name")) {curstring >> varname >> svalue;RP_IP_name = svalue;}
[94]463
464 else if(strstr(temp_string.c_str(),"ELG_Scen")) {curstring >> varname >> value; ELG_Scen = value;}
465 else if(strstr(temp_string.c_str(),"ELG_Ncen")) {curstring >> varname >> value; ELG_Ncen = value;}
466 else if(strstr(temp_string.c_str(),"ELG_Ccen")) {curstring >> varname >> value; ELG_Ccen = value;}
467 else if(strstr(temp_string.c_str(),"ELG_Sfwd")) {curstring >> varname >> value; ELG_Sfwd = value;}
468 else if(strstr(temp_string.c_str(),"ELG_Cfwd")) {curstring >> varname >> value; ELG_Cfwd = value;}
469 else if(strstr(temp_string.c_str(),"ELG_Nfwd")) {curstring >> varname >> value; ELG_Nfwd = value;}
470 else if(strstr(temp_string.c_str(),"HAD_Shcal")) {curstring >> varname >> value; HAD_Shcal = value;}
471 else if(strstr(temp_string.c_str(),"HAD_Nhcal")) {curstring >> varname >> value; HAD_Nhcal = value;}
472 else if(strstr(temp_string.c_str(),"HAD_Chcal")) {curstring >> varname >> value; HAD_Chcal = value;}
473 else if(strstr(temp_string.c_str(),"HAD_Shf")) {curstring >> varname >> value; HAD_Shf = value;}
474 else if(strstr(temp_string.c_str(),"HAD_Nhf")) {curstring >> varname >> value; HAD_Nhf = value;}
475 else if(strstr(temp_string.c_str(),"HAD_Chf")) {curstring >> varname >> value; HAD_Chf = value;}
476 else if(strstr(temp_string.c_str(),"MU_SmearPt")) {curstring >> varname >> value; MU_SmearPt = value;}
477
478 else if(strstr(temp_string.c_str(),"TRACK_radius")) {curstring >> varname >> ivalue;TRACK_radius = ivalue;}
479 else if(strstr(temp_string.c_str(),"TRACK_length")) {curstring >> varname >> ivalue;TRACK_length = ivalue;}
480 else if(strstr(temp_string.c_str(),"TRACK_bfield_x")) {curstring >> varname >> value; TRACK_bfield_x = value;}
481 else if(strstr(temp_string.c_str(),"TRACK_bfield_y")) {curstring >> varname >> value; TRACK_bfield_y = value;}
482 else if(strstr(temp_string.c_str(),"TRACK_bfield_z")) {curstring >> varname >> value; TRACK_bfield_z = value;}
483 else if(strstr(temp_string.c_str(),"FLAG_bfield")) {curstring >> varname >> ivalue; FLAG_bfield = ivalue;}
484 else if(strstr(temp_string.c_str(),"TRACK_ptmin")) {curstring >> varname >> value; TRACK_ptmin = value;}
485 else if(strstr(temp_string.c_str(),"TRACK_eff")) {curstring >> varname >> ivalue;TRACK_eff = ivalue;}
[33]486
[94]487 else if(strstr(temp_string.c_str(),"TOWER_number")) {curstring >> varname >> ivalue;TOWER_number = ivalue;}
488 else if(strstr(temp_string.c_str(),"TOWER_eta_edges")){
489 curstring >> varname; for(unsigned int i=0; i<TOWER_number+1; i++) {curstring >> value; TOWER_eta_edges[i] = value;} }
490 else if(strstr(temp_string.c_str(),"TOWER_dphi")){
491 curstring >> varname; for(unsigned int i=0; i<TOWER_number; i++) {curstring >> value; TOWER_dphi[i] = value;} }
[2]492
[94]493 else if(strstr(temp_string.c_str(),"PTCUT_elec")) {curstring >> varname >> value; PTCUT_elec = value;}
494 else if(strstr(temp_string.c_str(),"PTCUT_muon")) {curstring >> varname >> value; PTCUT_muon = value;}
495 else if(strstr(temp_string.c_str(),"PTCUT_jet")) {curstring >> varname >> value; PTCUT_jet = value;}
496 else if(strstr(temp_string.c_str(),"PTCUT_gamma")) {curstring >> varname >> value; PTCUT_gamma = value;}
497 else if(strstr(temp_string.c_str(),"PTCUT_taujet")) {curstring >> varname >> value; PTCUT_taujet = value;}
[43]498
[305]499 else if(strstr(temp_string.c_str(),"ISOL_PT")) {curstring >> varname >> value; ISOL_PT = value;}
500 else if(strstr(temp_string.c_str(),"ISOL_Cone")) {curstring >> varname >> value; ISOL_Cone = value;}
501
502
[94]503 else if(strstr(temp_string.c_str(),"JET_coneradius")) {curstring >> varname >> value; JET_coneradius = value;}
504 else if(strstr(temp_string.c_str(),"JET_jetalgo")) {curstring >> varname >> ivalue;JET_jetalgo = ivalue;}
505 else if(strstr(temp_string.c_str(),"JET_seed")) {curstring >> varname >> value; JET_seed = value;}
506
507 else if(strstr(temp_string.c_str(),"BTAG_b")) {curstring >> varname >> ivalue;BTAG_b = ivalue;}
508 else if(strstr(temp_string.c_str(),"BTAG_mistag_c")) {curstring >> varname >> ivalue;BTAG_mistag_c = ivalue;}
509 else if(strstr(temp_string.c_str(),"BTAG_mistag_l")) {curstring >> varname >> ivalue;BTAG_mistag_l = ivalue;}
[2]510
[94]511 else if(strstr(temp_string.c_str(),"FLAG_vfd")) {curstring >> varname >> ivalue; FLAG_vfd = ivalue;}
[306]512 else if(strstr(temp_string.c_str(),"FLAG_RP")) {curstring >> varname >> ivalue; FLAG_RP = ivalue;}
[94]513 else if(strstr(temp_string.c_str(),"FLAG_trigger")) {curstring >> varname >> ivalue; FLAG_trigger = ivalue;}
514 else if(strstr(temp_string.c_str(),"FLAG_frog")) {curstring >> varname >> ivalue; FLAG_frog = ivalue;}
[307]515 else if(strstr(temp_string.c_str(),"FLAG_lhco")) {curstring >> varname >> ivalue; FLAG_lhco = ivalue;}
[94]516 else if(strstr(temp_string.c_str(),"NEvents_Frog")) {curstring >> varname >> ivalue; NEvents_Frog = ivalue;}
517 }
518
519 //jet stuffs not defined in the input datacard
520 JET_overlap = 0.75;
521 // MidPoint algorithm definition
522 JET_M_coneareafraction = 0.25;
523 JET_M_maxpairsize = 2;
524 JET_M_maxiterations = 100;
525 // Define Cone algorithm.
526 JET_C_adjacencycut = 2;
527 JET_C_maxiterations = 100;
528 JET_C_iratch = 1;
529 //Define SISCone algorithm.
530 JET_S_npass = 0;
531 JET_S_protojet_ptmin= 0.0;
532
533 //For Tau-jet definition
534 TAU_energy_scone = 0.15; // radius R of the cone for tau definition, based on energy threshold
535 TAU_track_scone = 0.4; // radius R of the cone for tau definition, based on track number
536 TAU_track_pt = 2; // minimal pt [GeV] for tracks to be considered in tau definition
537 TAU_energy_frac = 0.95; // fraction of energy required in the central part of the cone, for tau jets
538
[2]539}
540
[219]541void RESOLution::Logfile(const string& LogName) {
[94]542 //void RESOLution::Logfile(string outputfilename) {
543
[44]544 ofstream f_out(LogName.c_str());
[260]545
546 f_out <<"**********************************************************************"<< endl;
547 f_out <<"**********************************************************************"<< endl;
548 f_out <<"** **"<< endl;
549 f_out <<"** Welcome to **"<< endl;
550 f_out <<"** **"<< endl;
551 f_out <<"** **"<< endl;
552 f_out <<"** .ddddddd- lL hH **"<< endl;
553 f_out <<"** -Dd` `dD: Ll hH` **"<< endl;
554 f_out <<"** dDd dDd eeee. lL .pp+pp Hh+hhh` -eeee- `sssss **"<< endl;
555 f_out <<"** -Dd `DD ee. ee Ll .Pp. PP Hh. HH. ee. ee sSs **"<< endl;
556 f_out <<"** dD` dDd eEeee: lL. pP. pP hH hH` eEeee:` -sSSSs. **"<< endl;
557 f_out <<"** .Dd :dd eE. LlL PpppPP Hh Hh eE sSS **"<< endl;
558 f_out <<"** dddddd:. eee+: lL. pp. hh. hh eee+ sssssS **"<< endl;
559 f_out <<"** Pp **"<< endl;
560 f_out <<"** **"<< endl;
561 f_out <<"** Delphes, a framework for the fast simulation **"<< endl;
562 f_out <<"** of a generic collider experiment **"<< endl;
563 f_out <<"** **"<< endl;
[261]564 f_out <<"** --- Version 1.4beta of Delphes --- **"<< endl;
565 f_out <<"** Last date of change: 9 February 2009 **"<< endl;
[260]566 f_out <<"** **"<< endl;
567 f_out <<"** **"<< endl;
568 f_out <<"** This package uses: **"<< endl;
569 f_out <<"** ------------------ **"<< endl;
570 f_out <<"** FastJet algorithm: Phys. Lett. B641 (2006) [hep-ph/0512210] **"<< endl;
571 f_out <<"** Hector: JINST 2:P09005 (2007) [physics.acc-ph:0707.1198v2] **"<< endl;
572 f_out <<"** FROG: L. Quertenmont, V. Roberfroid [hep-ex/0901.2718v1] **"<< endl;
573 f_out <<"** **"<< endl;
574 f_out <<"** ---------------------------------------------------------------- **"<< endl;
575 f_out <<"** **"<< endl;
576 f_out <<"** Main authors: **"<< endl;
577 f_out <<"** ------------- **"<< endl;
578 f_out <<"** **"<< endl;
579 f_out <<"** Séverine Ovyn Xavier Rouby **"<< endl;
580 f_out <<"** severine.ovyn@uclouvain.be xavier.rouby@cern **"<< endl;
581 f_out <<"** Center for Particle Physics and Phenomenology (CP3) **"<< endl;
582 f_out <<"** Universite Catholique de Louvain (UCL) **"<< endl;
583 f_out <<"** Louvain-la-Neuve, Belgium **"<< endl;
584 f_out <<"** **"<< endl;
585 f_out <<"** ---------------------------------------------------------------- **"<< endl;
586 f_out <<"** **"<< endl;
587 f_out <<"** Former Delphes versions and documentation can be found on : **"<< endl;
588 f_out <<"** http://www.fynu.ucl.ac.be/delphes.html **"<< endl;
589 f_out <<"** **"<< endl;
590 f_out <<"** **"<< endl;
591 f_out <<"** Disclaimer: this program is a beta version of Delphes and **"<< endl;
592 f_out <<"** therefore comes without guarantees. Beware of errors and please **"<< endl;
593 f_out <<"** give us your feedbacks about potential bugs **"<< endl;
594 f_out <<"** **"<< endl;
595 f_out <<"**********************************************************************"<< endl;
596 f_out <<"** **"<< endl;
[44]597 f_out<<"#>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>"<<"\n";
598 f_out<<"* *"<<"\n";
599 f_out<<"#******************************** *"<<"\n";
600 f_out<<"# Central detector caracteristics *"<<"\n";
601 f_out<<"#******************************** *"<<"\n";
602 f_out<<"* *"<<"\n";
603 f_out << left << setw(30) <<"* Maximum tracking system: "<<""
[94]604 << left << setw(10) <<CEN_max_tracker <<""<< right << setw(15)<<"*"<<"\n";
[44]605 f_out << left << setw(30) <<"* Maximum central calorimeter: "<<""
[94]606 << left << setw(10) <<CEN_max_calo_cen <<""<< right << setw(15)<<"*"<<"\n";
[44]607 f_out << left << setw(30) <<"* Maximum forward calorimeter: "<<""
[94]608 << left << setw(10) <<CEN_max_calo_fwd <<""<< right << setw(15)<<"*"<<"\n";
[44]609 f_out << left << setw(30) <<"* Muon chambers coverage: "<<""
[94]610 << left << setw(10) <<CEN_max_mu <<""<< right << setw(15)<<"*"<<"\n";
[44]611 f_out<<"* *"<<"\n";
[306]612 if(FLAG_RP==1){
613 f_out<<"#************************************ *"<<"\n";
614 f_out<<"# Very forward Roman Pots switched on *"<<"\n";
615 f_out<<"#************************************ *"<<"\n";
[94]616 f_out<<"* *"<<"\n";
[306]617 f_out << left << setw(55) <<"* Distance of the 220 RP to the IP in meters:"<<""
[94]618 << left << setw(5) <<RP_220_s <<""<< right << setw(10)<<"*"<<"\n";
[306]619 f_out << left << setw(55) <<"* Distance of the 220 RP to the beam in meters:"<<""
[94]620 << left << setw(5) <<RP_220_x <<""<< right << setw(10)<<"*"<<"\n";
[306]621 f_out << left << setw(55) <<"* Distance of the 420 RP to the IP in meters:"<<""
[94]622 << left << setw(5) <<RP_420_s <<""<< right << setw(10)<<"*"<<"\n";
[306]623 f_out << left << setw(55) <<"* Distance of the 420 RP to the beam in meters:"<<""
[94]624 << left << setw(5) <<RP_420_x <<""<< right << setw(10)<<"*"<<"\n";
[257]625 f_out << left << setw(55) <<"* Interaction point at the LHC named: "<<""
626 << left << setw(5) <<RP_IP_name <<""<< right << setw(10)<<"*"<<"\n";
[252]627 f_out << left << setw(35) <<"* Datacard for beam 1: "<<""
628 << left << setw(25) <<RP_beam1Card <<""<< right << setw(10)<<"*"<<"\n";
629 f_out << left << setw(35) <<"* Datacard for beam 2: "<<""
630 << left << setw(25) <<RP_beam2Card <<""<< right << setw(10)<<"*"<<"\n";
[254]631 f_out << left << setw(44) <<"* Beam separation, in meters: "<<""
632 << left << setw(6) << RP_offsetEl_x <<""<< right << setw(20)<<"! not in datacard *"<<"\n";
[252]633 f_out << left << setw(44) <<"* Distance from IP for Beam separation (m):"<<""
634 << left << setw(6) <<RP_offsetEl_s <<""<< right << setw(20)<<"! not in datacard *"<<"\n";
[254]635 f_out << left << setw(44) <<"* X offset of beam crossing in micrometers:"<<""
636 << left << setw(6) <<RP_cross_x <<""<< right << setw(20)<<"! not in datacard *"<<"\n";
637 f_out << left << setw(44) <<"* Y offset of beam crossing in micrometers:"<<""
638 << left << setw(6) <<RP_cross_y <<""<< right << setw(20)<<"! not in datacard *"<<"\n";
639 f_out << left << setw(44) <<"* Angle of beam crossing:"<<""
640 << left << setw(6) <<RP_cross_ang <<""<< right << setw(20)<<"! not in datacard *"<<"\n";
[94]641 f_out<<"* *"<<"\n";
642 }
643 else {
[306]644 f_out<<"#************************************* *"<<"\n";
645 f_out<<"# Very forward Roman Pots switched off *"<<"\n";
646 f_out<<"#************************************* *"<<"\n";
[94]647 f_out<<"* *"<<"\n";
648 }
[306]649 if(FLAG_vfd==1){
650 f_out<<"#************************************** *"<<"\n";
651 f_out<<"# Very forward calorimeters switched on *"<<"\n";
652 f_out<<"#************************************** *"<<"\n";
653 f_out<<"* *"<<"\n";
654 f_out << left << setw(55) <<"* Minimum very forward calorimeter: "<<""
655 << left << setw(5) <<VFD_min_calo_vfd <<""<< right << setw(10)<<"*"<<"\n";
656 f_out << left << setw(55) <<"* Maximum very forward calorimeter: "<<""
657 << left << setw(5) <<VFD_max_calo_vfd <<""<< right << setw(10)<<"*"<<"\n";
658 f_out << left << setw(55) <<"* Minimum coverage zero_degree calorimeter "<<""
659 << left << setw(5) <<VFD_min_zdc <<""<< right << setw(10)<<"*"<<"\n";
660 f_out << left << setw(55) <<"* Distance of the ZDC to the IP, in meters: "<<""
661 << left << setw(5) <<VFD_s_zdc <<""<< right << setw(10)<<"*"<<"\n";
662 f_out<<"* *"<<"\n";
663 }
664 else {
665 f_out<<"#*************************************** *"<<"\n";
666 f_out<<"# Very forward calorimeters switched off *"<<"\n";
667 f_out<<"#*************************************** *"<<"\n";
668 f_out<<"* *"<<"\n";
669 }
670
[44]671 f_out<<"#************************************ *"<<"\n";
672 f_out<<"# Electromagnetic smearing parameters *"<<"\n";
673 f_out<<"#************************************ *"<<"\n";
674 f_out<<"* *"<<"\n";
675 //# \sigma/E = C + N/E + S/\sqrt{E}
676 f_out << left << setw(30) <<"* S term for central ECAL: "<<""
677 << left << setw(30) <<ELG_Scen <<""<< right << setw(10)<<"*"<<"\n";
678 f_out << left << setw(30) <<"* N term for central ECAL: "<<""
679 << left << setw(30) <<ELG_Ncen <<""<< right << setw(10)<<"*"<<"\n";
680 f_out << left << setw(30) <<"* C term for central ECAL: "<<""
681 << left << setw(30) <<ELG_Ccen <<""<< right << setw(10)<<"*"<<"\n";
[257]682 f_out << left << setw(30) <<"* S term for FCAL: "<<""
[44]683 << left << setw(30) <<ELG_Sfwd <<""<< right << setw(10)<<"*"<<"\n";
[257]684 f_out << left << setw(30) <<"* N term for FCAL: "<<""
[44]685 << left << setw(30) <<ELG_Nfwd <<""<< right << setw(10)<<"*"<<"\n";
[257]686 f_out << left << setw(30) <<"* C term for FCAL: "<<""
[44]687 << left << setw(30) <<ELG_Cfwd <<""<< right << setw(10)<<"*"<<"\n";
688 f_out<<"* *"<<"\n";
689 f_out<<"#***************************** *"<<"\n";
690 f_out<<"# Hadronic smearing parameters *"<<"\n";
691 f_out<<"#***************************** *"<<"\n";
692 f_out<<"* *"<<"\n";
693 f_out << left << setw(30) <<"* S term for central HCAL: "<<""
694 << left << setw(30) <<HAD_Shcal <<""<< right << setw(10)<<"*"<<"\n";
695 f_out << left << setw(30) <<"* N term for central HCAL: "<<""
696 << left << setw(30) <<HAD_Nhcal <<""<< right << setw(10)<<"*"<<"\n";
697 f_out << left << setw(30) <<"* C term for central HCAL: "<<""
698 << left << setw(30) <<HAD_Chcal <<""<< right << setw(10)<<"*"<<"\n";
[257]699 f_out << left << setw(30) <<"* S term for FCAL: "<<""
[44]700 << left << setw(30) <<HAD_Shf <<""<< right << setw(10)<<"*"<<"\n";
[257]701 f_out << left << setw(30) <<"* N term for FCAL: "<<""
[44]702 << left << setw(30) <<HAD_Nhf <<""<< right << setw(10)<<"*"<<"\n";
[257]703 f_out << left << setw(30) <<"* C term for FCAL: "<<""
[44]704 << left << setw(30) <<HAD_Chf <<""<< right << setw(10)<<"*"<<"\n";
705 f_out<<"* *"<<"\n";
706 f_out<<"#************************* *"<<"\n";
707 f_out<<"# Muon smearing parameters *"<<"\n";
708 f_out<<"#************************* *"<<"\n";
709 f_out<<"* *"<<"\n";
[94]710 f_out << left << setw(55) <<"* PT resolution for muons : "<<""
711 << left << setw(5) <<MU_SmearPt <<""<< right << setw(10)<<"*"<<"\n";
[44]712 f_out<<"* *"<<"\n";
[94]713 if(FLAG_bfield==1){
714 f_out<<"#*************************** *"<<"\n";
[264]715 f_out<<"# Magnetic field switched on *"<<"\n";
[94]716 f_out<<"#*************************** *"<<"\n";
717 f_out<<"* *"<<"\n";
718 f_out << left << setw(55) <<"* Radius of the BField coverage: "<<""
719 << left << setw(5) <<TRACK_radius <<""<< right << setw(10)<<"*"<<"\n";
720 f_out << left << setw(55) <<"* Length of the BField coverage: "<<""
721 << left << setw(5) <<TRACK_length <<""<< right << setw(10)<<"*"<<"\n";
722 f_out << left << setw(55) <<"* BField X component: "<<""
723 << left << setw(5) <<TRACK_bfield_x <<""<< right << setw(10)<<"*"<<"\n";
724 f_out << left << setw(55) <<"* BField Y component: "<<""
725 << left << setw(5) <<TRACK_bfield_y <<""<< right << setw(10)<<"*"<<"\n";
726 f_out << left << setw(55) <<"* BField Z component: "<<""
727 << left << setw(5) <<TRACK_bfield_z <<""<< right << setw(10)<<"*"<<"\n";
728 f_out << left << setw(55) <<"* Minimal pT needed to reach the calorimeter [GeV]: "<<""
729 << left << setw(10) <<TRACK_ptmin <<""<< right << setw(5)<<"*"<<"\n";
730 f_out << left << setw(55) <<"* Efficiency associated to the tracking: "<<""
731 << left << setw(10) <<TRACK_eff <<""<< right << setw(5)<<"*"<<"\n";
732 f_out<<"* *"<<"\n";
733 }
734 else {
735 f_out<<"#**************************** *"<<"\n";
[264]736 f_out<<"# Magnetic field switched off *"<<"\n";
[94]737 f_out<<"#**************************** *"<<"\n";
738 f_out << left << setw(55) <<"* Minimal pT needed to reach the calorimeter [GeV]: "<<""
739 << left << setw(10) <<TRACK_ptmin <<""<< right << setw(5)<<"*"<<"\n";
740 f_out << left << setw(55) <<"* Efficiency associated to the tracking: "<<""
741 << left << setw(10) <<TRACK_eff <<""<< right << setw(5)<<"*"<<"\n";
742 f_out<<"* *"<<"\n";
743 }
744 f_out<<"#******************** *"<<"\n";
745 f_out<<"# Calorimetric Towers *"<<"\n";
746 f_out<<"#******************** *"<<"\n";
747 f_out << left << setw(55) <<"* Number of calorimetric towers in eta, for eta>0: "<<""
748 << left << setw(5) << TOWER_number <<""<< right << setw(10)<<"*"<<"\n";
749 f_out << left << setw(55) <<"* Tower edges in eta, for eta>0: "<<"" << right << setw(15)<<"*"<<"\n";
750 f_out << "* ";
751 for (unsigned int i=0; i<TOWER_number+1; i++) {
752 f_out << left << setw(7) << TOWER_eta_edges[i];
753 if(!( (i+1) %9 )) f_out << right << setw(3) << "*" << "\n" << "* ";
754 }
755 for (unsigned int i=(TOWER_number+1)%9; i<9; i++) f_out << left << setw(7) << "";
756 f_out << right << setw(3)<<"*"<<"\n";
757 f_out << left << setw(55) <<"* Tower sizes in phi, for eta>0 [degree]:"<<"" << right << setw(15)<<"*"<<"\n";
758 f_out << "* ";
759 for (unsigned int i=0; i<TOWER_number; i++) {
760 f_out << left << setw(7) << TOWER_dphi[i];
761 if(!( (i+1) %9 )) f_out << right << setw(3) << "*" << "\n" << "* ";
762 }
763 for (unsigned int i=(TOWER_number)%9; i<9; i++) f_out << left << setw(7) << "";
764 f_out << right << setw(3)<<"*"<<"\n";
[44]765 f_out<<"* *"<<"\n";
766 f_out<<"#******************* *"<<"\n";
767 f_out<<"# Minimum pT's [GeV] *"<<"\n";
768 f_out<<"#******************* *"<<"\n";
769 f_out<<"* *"<<"\n";
770 f_out << left << setw(40) <<"* Minimum pT for electrons: "<<""
[94]771 << left << setw(20) <<PTCUT_elec <<""<< right << setw(10)<<"*"<<"\n";
[44]772 f_out << left << setw(40) <<"* Minimum pT for muons: "<<""
[94]773 << left << setw(20) <<PTCUT_muon <<""<< right << setw(10)<<"*"<<"\n";
[44]774 f_out << left << setw(40) <<"* Minimum pT for jets: "<<""
[94]775 << left << setw(20) <<PTCUT_jet <<""<< right << setw(10)<<"*"<<"\n";
[44]776 f_out << left << setw(40) <<"* Minimum pT for Tau-jets: "<<""
[94]777 << left << setw(20) <<PTCUT_taujet <<""<< right << setw(10)<<"*"<<"\n";
[74]778 f_out << left << setw(40) <<"* Minimum pT for photons: "<<""
[94]779 << left << setw(20) <<PTCUT_gamma <<""<< right << setw(10)<<"*"<<"\n";
[44]780 f_out<<"* *"<<"\n";
[305]781 f_out<<"#******************* *"<<"\n";
782 f_out<<"# Isolation criteria *"<<"\n";
783 f_out<<"#******************* *"<<"\n";
784 f_out<<"* *"<<"\n";
785 f_out << left << setw(40) <<"* Minimum pT for tracks [GeV]: "<<""
786 << left << setw(20) <<ISOL_PT <<""<< right << setw(10)<<"*"<<"\n";
787 f_out << left << setw(40) <<"* Cone for isolation criteria: "<<""
788 << left << setw(20) <<ISOL_Cone <<""<< right << setw(10)<<"*"<<"\n";
789 f_out<<"* *"<<"\n";
[44]790 f_out<<"#*************** *"<<"\n";
791 f_out<<"# Jet definition *"<<"\n";
792 f_out<<"#*************** *"<<"\n";
793 f_out<<"* *"<<"\n";
[49]794 f_out<<"* Six algorithms are currently available: *"<<"\n";
795 f_out<<"* - 1) CDF cone algorithm, *"<<"\n";
796 f_out<<"* - 2) CDF MidPoint algorithm, *"<<"\n";
797 f_out<<"* - 3) SIScone algorithm, *"<<"\n";
798 f_out<<"* - 4) kt algorithm, *"<<"\n";
799 f_out<<"* - 5) Cambrigde/Aachen algorithm, *"<<"\n";
800 f_out<<"* - 6) Anti-kt algorithm. *"<<"\n";
801 f_out<<"* *"<<"\n";
802 f_out<<"* You have chosen *"<<"\n";
[94]803 switch(JET_jetalgo) {
[44]804 default:
805 case 1: {
[94]806 f_out<<"* CDF JetClu jet algorithm with parameters: *"<<"\n";
807 f_out << left << setw(40) <<"* - Seed threshold: "<<""
808 << left << setw(10) <<JET_seed <<""<< right << setw(20)<<"! not in datacard *"<<"\n";
809 f_out << left << setw(40) <<"* - Cone radius: "<<""
810 << left << setw(10) <<JET_coneradius <<""<< right << setw(20)<<"*"<<"\n";
811 f_out << left << setw(40) <<"* - Adjacency cut: "<<""
812 << left << setw(10) <<JET_C_adjacencycut <<""<< right << setw(20)<<"! not in datacard *"<<"\n";
813 f_out << left << setw(40) <<"* - Max iterations: "<<""
814 << left << setw(10) <<JET_C_maxiterations <<""<< right << setw(20)<<"! not in datacard *"<<"\n";
815 f_out << left << setw(40) <<"* - Iratch: "<<""
816 << left << setw(10) <<JET_C_iratch <<""<< right << setw(20)<<"! not in datacard *"<<"\n";
817 f_out << left << setw(40) <<"* - Overlap threshold: "<<""
818 << left << setw(10) <<JET_overlap <<""<< right << setw(20)<<"! not in datacard *"<<"\n";
[44]819 }
820 break;
821 case 2: {
[94]822 f_out<<"* CDF midpoint jet algorithm with parameters: *"<<"\n";
823 f_out << left << setw(40) <<"* - Seed threshold: "<<""
824 << left << setw(20) <<JET_seed <<""<< right << setw(10)<<"! not in datacard *"<<"\n";
825 f_out << left << setw(40) <<"* - Cone radius: "<<""
826 << left << setw(20) <<JET_coneradius <<""<< right << setw(10)<<"*"<<"\n";
827 f_out << left << setw(40) <<"* - Cone area fraction:"<<""
828 << left << setw(20) <<JET_M_coneareafraction <<""<< right << setw(10)<<"! not in datacard *"<<"\n";
829 f_out << left << setw(40) <<"* - Maximum pair size: "<<""
830 << left << setw(20) <<JET_M_maxpairsize <<""<< right << setw(10)<<"! not in datacard *"<<"\n";
831 f_out << left << setw(40) <<"* - Max iterations: "<<""
832 << left << setw(20) <<JET_M_maxiterations <<""<< right << setw(10)<<"! not in datacard *"<<"\n";
833 f_out << left << setw(40) <<"* - Overlap threshold: "<<""
834 << left << setw(20) <<JET_overlap <<""<< right << setw(10)<<"! not in datacard *"<<"\n";
[44]835 }
836 break;
837 case 3: {
[94]838 f_out <<"* SISCone jet algorithm with parameters: *"<<"\n";
839 f_out << left << setw(40) <<"* - Cone radius: "<<""
840 << left << setw(20) <<JET_coneradius <<""<< right << setw(10)<<"*"<<"\n";
841 f_out << left << setw(40) <<"* - Overlap threshold: "<<""
842 << left << setw(20) <<JET_overlap <<""<< right << setw(10)<<"! not in datacard *"<<"\n";
843 f_out << left << setw(40) <<"* - Number pass max: "<<""
844 << left << setw(20) <<JET_S_npass <<""<< right << setw(10)<<"! not in datacard *"<<"\n";
845 f_out << left << setw(40) <<"* - Minimum pT for protojet: "<<""
846 << left << setw(20) <<JET_S_protojet_ptmin <<""<< right << setw(10)<<"! not in datacard *"<<"\n";
[44]847 }
848 break;
849 case 4: {
[94]850 f_out <<"* KT jet algorithm with parameters: *"<<"\n";
851 f_out << left << setw(40) <<"* - Cone radius: "<<""
852 << left << setw(20) <<JET_coneradius <<""<< right << setw(10)<<"*"<<"\n";
[44]853 }
854 break;
[49]855 case 5: {
[94]856 f_out <<"* Cambridge/Aachen jet algorithm with parameters: *"<<"\n";
857 f_out << left << setw(40) <<"* - Cone radius: "<<""
858 << left << setw(20) <<JET_coneradius <<""<< right << setw(10)<<"*"<<"\n";
[44]859 }
[49]860 break;
861 case 6: {
[94]862 f_out <<"* Anti-kt jet algorithm with parameters: *"<<"\n";
863 f_out << left << setw(40) <<"* - Cone radius: "<<""
864 << left << setw(20) <<JET_coneradius <<""<< right << setw(10)<<"*"<<"\n";
[49]865 }
866 break;
867 }
[44]868 f_out<<"* *"<<"\n";
[94]869 f_out<<"#****************************** *"<<"\n";
870 f_out<<"# Tau-jet definition parameters *"<<"\n";
871 f_out<<"#****************************** *"<<"\n";
872 f_out<<"* *"<<"\n";
873 f_out << left << setw(45) <<"* Cone radius for calorimeter tagging: "<<""
874 << left << setw(5) <<TAU_energy_scone <<""<< right << setw(20)<<"*"<<"\n";
875 f_out << left << setw(45) <<"* Fraction of energy in the small cone: "<<""
876 << left << setw(5) <<TAU_energy_frac*100 <<""<< right << setw(20)<<"! not in datacard *"<<"\n";
877 f_out << left << setw(45) <<"* Cone radius for tracking tagging: "<<""
878 << left << setw(5) <<TAU_track_scone <<""<< right << setw(20)<<"*"<<"\n";
879 f_out << left << setw(45) <<"* Minimum track pT [GeV]: "<<""
880 << left << setw(5) <<TAU_track_pt <<""<< right << setw(20)<<"*"<<"\n";
881 f_out<<"* *"<<"\n";
882 f_out<<"#*************************** *"<<"\n";
883 f_out<<"# B-tagging efficiencies [%] *"<<"\n";
884 f_out<<"#*************************** *"<<"\n";
885 f_out<<"* *"<<"\n";
886 f_out << left << setw(50) <<"* Efficiency to tag a \"b\" as a b-jet: "<<""
887 << left << setw(10) <<BTAG_b <<""<< right << setw(10)<<"*"<<"\n";
888 f_out << left << setw(50) <<"* Efficiency to mistag a c-jet as a b-jet: "<<""
889 << left << setw(10) <<BTAG_mistag_c <<""<< right << setw(10)<<"*"<<"\n";
890 f_out << left << setw(50) <<"* Efficiency to mistag a light jet as a b-jet: "<<""
891 << left << setw(10) <<BTAG_mistag_l <<""<< right << setw(10)<<"*"<<"\n";
892 f_out<<"* *"<<"\n";
893 f_out<<"* *"<<"\n";
[44]894 f_out<<"#....................................................................*"<<"\n";
895 f_out<<"#>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>"<<"\n";
[94]896
[44]897}
898
[2]899// **********Provides the smeared TLorentzVector for the electrons********
900// Smears the electron energy, and changes the 4-momentum accordingly
901// different smearing if the electron is central (eta < 2.5) or forward
902void RESOLution::SmearElectron(TLorentzVector &electron) {
903 // the 'electron' variable will be changed by the function
904 float energy = electron.E(); // before smearing
905 float energyS = 0.0; // after smearing // \sigma/E = C + N/E + S/\sqrt{E}
[71]906
[94]907 if(fabs(electron.Eta()) < CEN_max_tracker) { // if the electron is inside the tracker
[2]908 energyS = gRandom->Gaus(energy, sqrt(
909 pow(ELG_Ncen,2) +
910 pow(ELG_Ccen*energy,2) +
[22]911 pow(ELG_Scen*sqrt(energy),2) ));
[55]912 }
[94]913 if(fabs(electron.Eta()) > CEN_max_tracker && fabs(electron.Eta()) < CEN_max_calo_fwd){
[2]914 energyS = gRandom->Gaus(energy, sqrt(
915 pow(ELG_Nfwd,2) +
916 pow(ELG_Cfwd*energy,2) +
917 pow(ELG_Sfwd*sqrt(energy),2) ) );
918 }
919 electron.SetPtEtaPhiE(energyS/cosh(electron.Eta()), electron.Eta(), electron.Phi(), energyS);
920 if(electron.E() < 0)electron.SetPxPyPzE(0,0,0,0); // no negative values after smearing !
921}
922
923
924// **********Provides the smeared TLorentzVector for the muons********
925// Smears the muon pT and changes the 4-momentum accordingly
926void RESOLution::SmearMu(TLorentzVector &muon) {
927 // the 'muon' variable will be changed by the function
928 float pt = muon.Pt(); // before smearing
[61]929 float ptS=pt;
930
[94]931 if(fabs(muon.Eta()) < CEN_max_mu )
[61]932 {
933 ptS = gRandom->Gaus(pt, MU_SmearPt*pt ); // after smearing // \sigma/E = C + N/E + S/\sqrt{E}
934 }
935 muon.SetPtEtaPhiE(ptS, muon.Eta(), muon.Phi(), ptS*cosh(muon.Eta()));
[2]936
937 if(muon.E() < 0)muon.SetPxPyPzE(0,0,0,0); // no negative values after smearing !
938}
939
940
941// **********Provides the smeared TLorentzVector for the hadrons********
942// Smears the hadron 4-momentum
943void RESOLution::SmearHadron(TLorentzVector &hadron, const float frac)
944 // the 'hadron' variable will be changed by the function
945 // the 'frac' variable describes the long-living particles. Should be 0.7 for K0S and Lambda, 1. otherwise
946{
947 float energy = hadron.E(); // before smearing
948 float energyS = 0.0; // after smearing // \sigma/E = C + N/E + S/\sqrt{E}
949 float energy_ecal = (1.0 - frac)*energy; // electromagnetic calorimeter
950 float energy_hcal = frac*energy; // hadronic calorimeter
951 // frac takes into account the decay of long-living particles, that decay in the calorimeters
952 // some of the particles decay mostly in the ecal, some mostly in the hcal
953
[31]954 float energyS1,energyS2;
[94]955 if(fabs(hadron.Eta()) < CEN_max_calo_cen) {
[10]956 energyS1 = gRandom->Gaus(energy_hcal, sqrt(
[2]957 pow(HAD_Nhcal,2) +
958 pow(HAD_Chcal*energy_hcal,2) +
[9]959 pow(HAD_Shcal*sqrt(energy_hcal),2) )) ;
[10]960
[9]961
[10]962 energyS2 = gRandom->Gaus(energy_ecal, sqrt(
[32]963 pow(ELG_Ncen,2) +
964 pow(ELG_Ccen*energy_ecal,2) +
965 pow(ELG_Scen*sqrt(energy_ecal),2) ) );
[9]966
[10]967 energyS = ((energyS1>0)?energyS1:0) + ((energyS2>0)?energyS2:0);
[55]968 }
[219]969 if(fabs(hadron.Eta()) > CEN_max_calo_cen && fabs(hadron.Eta()) < CEN_max_calo_fwd){
[22]970 energyS = gRandom->Gaus(energy, sqrt(
[2]971 pow(HAD_Nhf,2) +
972 pow(HAD_Chf*energy,2) +
[22]973 pow(HAD_Shf*sqrt(energy),2) ));
[55]974}
975
[10]976
977
[2]978 hadron.SetPtEtaPhiE(energyS/cosh(hadron.Eta()),hadron.Eta(), hadron.Phi(), energyS);
979
980 if(hadron.E() < 0)hadron.SetPxPyPzE(0,0,0,0);
981}
982
[74]983//******************************************************************************************
984
[264]985//void RESOLution::SortedVector(vector<ParticleUtil> &vect)
986void RESOLution::SortedVector(vector<D_Particle> &vect)
[74]987{
988 int i,j = 0;
989 TLorentzVector tmp;
990 bool en_desordre = true;
991 int entries=vect.size();
992 for(i = 0 ; (i < entries) && en_desordre; i++)
993 {
994 en_desordre = false;
995 for(j = 1 ; j < entries - i ; j++)
996 {
997 if ( vect[j].Pt() > vect[j-1].Pt() )
998 {
[264]999 //ParticleUtil tmp = vect[j-1];
1000 D_Particle tmp = vect[j-1];
[74]1001 vect[j-1] = vect[j];
1002 vect[j] = tmp;
1003 en_desordre = true;
1004 }
1005 }
1006 }
1007}
1008
[2]1009// **********Provides the energy in the cone of radius TAU_CONE_ENERGY for the tau identification********
1010// to be taken into account, a calo tower should
1011// 1) have a transverse energy \f$ E_T = \sqrt{E_X^2 + E_Y^2} \f$ above a given threshold
1012// 2) be inside a cone with a radius R and the axis defined by (eta,phi)
1013double RESOLution::EnergySmallCone(const vector<PhysicsTower> &towers, const float eta, const float phi) {
1014 double Energie=0;
1015 for(unsigned int i=0; i < towers.size(); i++) {
[94]1016 if(towers[i].fourVector.pt() < JET_seed) continue;
1017 if((DeltaR(phi,eta,towers[i].fourVector.phi(),towers[i].fourVector.eta()) < TAU_energy_scone)) {
[2]1018 Energie += towers[i].fourVector.E;
1019 }
1020 }
1021 return Energie;
1022}
1023
1024
1025// **********Provides the number of tracks in the cone of radius TAU_CONE_TRACKS for the tau identification********
1026// to be taken into account, a track should
1027// 1) avec a transverse momentum \$f p_T \$ above a given threshold
1028// 2) be inside a cone with a radius R and the axis defined by (eta,phi)
1029// IMPORTANT REMARK !!!!!
[287]1030// NEW : "charge" will contain the sum of all charged tracks in the cone TAU_track_scone
1031unsigned int RESOLution::NumTracks(float& charge, const vector<TRootTracks> &tracks, const float pt_track, const float eta, const float phi) {
1032 unsigned int numbtrack=0; // number of track in the tau-jet cone, which is smaller than R;
1033 charge=0;
[2]1034 for(unsigned int i=0; i < tracks.size(); i++) {
[287]1035 if(tracks[i].PT < pt_track ) continue;
1036 float dr = DeltaR(phi,eta,tracks[i].Phi,tracks[i].Eta);
1037 if (dr > TAU_track_scone) continue;
1038 numbtrack++;
1039 charge += tracks[i].Charge; // total charge in the cone for Tau-jet
[2]1040 }
[287]1041 return numbtrack;
[2]1042}
[287]1043/*
1044unsigned int RESOLution::NumTracks(unsigned int& NumTracksR, float& charge, const vector<TRootTracks> &tracks, const float pt_track, const float eta, const float phi, const float R) {
1045 unsigned int numbtrack=0; // number of track in the tau-jet cone, which is smaller than R;
1046 charge=0; NumTracksR=0; // total number of tracks
1047 if (R<TAU_track_scone) cout << "Warning: jet radius smaller than tau-jet radius in RESOLution::NumTracks\n";
1048 for(unsigned int i=0; i < tracks.size(); i++) {
1049 if(tracks[i].PT < pt_track ) continue;
1050 float dr = DeltaR(phi,eta,tracks[i].Phi,tracks[i].Eta);
1051 if (dr > R) continue;
[2]1052
[287]1053 NumTracksR++;
1054 if(dr < TAU_track_scone) {// previously R==TAU_track_scone, for tau-jets only
1055 numbtrack++;
1056 charge += tracks[i].Charge; // total charge in the cone for Tau-jet
1057 }
[2]1058
[287]1059 }
1060 return numbtrack;
1061}
1062*/
1063
1064
[2]1065//*** Returns the PID of the particle with the highest energy, in a cone with a radius CONERADIUS and an axis (eta,phi) *********
1066//used by Btaggedjet
1067///// Attention : bug removed => CONERADIUS/2 -> CONERADIUS !!
1068int RESOLution::Bjets(const TSimpleArray<TRootGenParticle> &subarray, const float eta, const float phi) {
1069 float emax=0;
1070 int Ppid=0;
1071 if(subarray.GetEntries()>0) {
1072 for(int i=0; i < subarray.GetEntries();i++) { // should have pt>PT_JETMIN and a small cone radius (r<CONE_JET)
1073 float genDeltaR = DeltaR(subarray[i]->Phi,subarray[i]->Eta,phi,eta);
[94]1074 if(genDeltaR < JET_coneradius && subarray[i]->E > emax) {
[2]1075 emax=subarray[i]->E;
1076 Ppid=abs(subarray[i]->PID);
1077 }
1078 }
1079 }
1080 return Ppid;
1081}
1082
1083
1084//******************** Simulates the b-tagging efficiency for real bjet, or the misendentification for other jets****************
1085bool RESOLution::Btaggedjet(const TLorentzVector &JET, const TSimpleArray<TRootGenParticle> &subarray) {
[94]1086 if( rand()%100 < (BTAG_b+1) && Bjets(subarray,JET.Eta(),JET.Phi())==pB ) return true; // b-tag of b-jets is 40%
1087 else if( rand()%100 < (BTAG_mistag_c+1) && Bjets(subarray,JET.Eta(),JET.Phi())==pC ) return true; // b-tag of c-jets is 10%
1088 else if( rand()%100 < (BTAG_mistag_l+1) && Bjets(subarray,JET.Eta(),JET.Phi())!=0) return true; // b-tag of light jets is 1%
[2]1089 return false;
1090}
1091
[31]1092//***********************Isolation criteria***********************
1093//****************************************************************
[287]1094//bool RESOLution::Isolation(const float phi, const float eta,const vector<TLorentzVector> &tracks, const float pt_second_track)
[305]1095bool RESOLution::Isolation(const float phi, const float eta,const vector<TRootTracks> &tracks, const float pt_second_track, const float isolCone)
[31]1096{
1097 bool isolated = false;
[219]1098 float deltar=5000.; // Initial value; should be high; no further repercussion
[31]1099 // loop on all final charged particles, with p_t >2, close enough from the electron
1100 for(unsigned int i=0; i < tracks.size(); i++)
1101 {
[287]1102 if(tracks[i].PT < pt_second_track)continue;
1103 float genDeltaR = DeltaR(phi,eta,tracks[i].Phi,tracks[i].Eta);
[31]1104 if(
1105 (genDeltaR > deltar) ||
1106 (genDeltaR==0)
1107 ) continue ;
1108 deltar=genDeltaR;
1109 }
[305]1110 if(deltar > isolCone) isolated = true;
[31]1111 return isolated;
1112}
1113
1114
[71]1115 //********** returns a segmented value for eta and phi, for calo towers *****
1116void RESOLution::BinEtaPhi(const float phi, const float eta, float& iPhi, float& iEta){
[264]1117 iEta = UNDEFINED;
1118 int index= iUNDEFINED;
[94]1119 for (unsigned int i=1; i< TOWER_number+1; i++) {
1120 if(fabs(eta)>TOWER_eta_edges[i-1] && fabs(eta)<TOWER_eta_edges[i]) {
1121 iEta = (eta>0) ? TOWER_eta_edges[i-1] : -TOWER_eta_edges[i];
[71]1122 index = i-1;
1123 //cout << setw(15) << left << eta << "\t" << iEta << endl;
1124 break;
1125 }
1126 }
[264]1127 if(index==UNDEFINED) return;
1128 iPhi = UNDEFINED;
[244]1129 float dphi = TOWER_dphi[index]*pi/180.;
[94]1130 for (unsigned int i=1; i < 360/TOWER_dphi[index]; i++ ) {
[244]1131 float low = -pi+(i-1)*dphi;
[71]1132 float high= low+dphi;
1133 if(phi > low && phi < high ){
1134 iPhi = low;
1135 break;
1136 }
1137 }
[244]1138 if (phi > pi-dphi) iPhi = pi-dphi;
[71]1139}
1140
[264]1141
1142
[2]1143//**************************** Returns the delta Phi ****************************
1144float DeltaPhi(const float phi1, const float phi2) {
[244]1145 float deltaphi=phi1-phi2; // in here, -pi < phi < pi
1146 if(fabs(deltaphi) > pi) {
1147 deltaphi=2.*pi -fabs(deltaphi);// put deltaphi between 0 and pi
[219]1148 }
[2]1149 else deltaphi=fabs(deltaphi);
1150
1151 return deltaphi;
1152}
1153
1154//**************************** Returns the delta R****************************
1155float DeltaR(const float phi1, const float eta1, const float phi2, const float eta2) {
1156 return sqrt(pow(DeltaPhi(phi1,phi2),2) + pow(eta1-eta2,2));
1157}
1158
1159int sign(const int myint) {
1160 if (myint >0) return 1;
1161 else if (myint <0) return -1;
1162 else return 0;
1163}
1164
1165int sign(const float myfloat) {
1166 if (myfloat >0) return 1;
1167 else if (myfloat <0) return -1;
1168 else return 0;
1169}
1170
[270]1171int ChargeVal(const int pid)
[55]1172{
1173 int charge;
1174 if(
1175 (pid == pGAMMA) ||
1176 (pid == pPI0) ||
1177 (pid == pK0L) ||
1178 (pid == pN) ||
1179 (pid == pSIGMA0) ||
1180 (pid == pDELTA0) ||
1181 (pid == pK0S) // not charged particles : invisible by tracker
1182 )
1183 charge = 0;
1184 else charge = (sign(pid));
1185 return charge;
1186
[2]1187}
Note: See TracBrowser for help on using the repository browser.