[2] | 1 | /*
|
---|
| 2 | ---- Delphes ----
|
---|
| 3 | A Fast Simulator for general purpose LHC detector
|
---|
| 4 | S. Ovyn ~~~~ severine.ovyn@uclouvain.be
|
---|
| 5 |
|
---|
| 6 | Center for Particle Physics and Phenomenology (CP3)
|
---|
| 7 | Universite Catholique de Louvain (UCL)
|
---|
| 8 | Louvain-la-Neuve, Belgium
|
---|
| 9 | */
|
---|
| 10 |
|
---|
| 11 | /// \file SmearUtil.cc
|
---|
| 12 | /// \brief RESOLution class, and some generic definitions
|
---|
| 13 |
|
---|
| 14 |
|
---|
[219] | 15 | #include "SmearUtil.h"
|
---|
[2] | 16 | #include "TRandom.h"
|
---|
| 17 |
|
---|
| 18 | #include <iostream>
|
---|
[219] | 19 | #include <fstream>
|
---|
[2] | 20 | #include <sstream>
|
---|
[44] | 21 | #include <iomanip>
|
---|
[219] | 22 | using namespace std;
|
---|
[44] | 23 |
|
---|
| 24 |
|
---|
[219] | 25 | ParticleUtil::ParticleUtil(const TLorentzVector &genMomentum, int pid) {
|
---|
| 26 | _pid=pid;
|
---|
| 27 | _e = genMomentum.E();
|
---|
| 28 | _px = genMomentum.Px();
|
---|
| 29 | _py = genMomentum.Py();
|
---|
| 30 | _pz = genMomentum.Pz();
|
---|
| 31 | _pt = genMomentum.Pt();
|
---|
[44] | 32 |
|
---|
[219] | 33 | //_e, _px, _py, _pz, _pt;
|
---|
| 34 | //float _eta, _etaCalo, _phi, _phiCalo;
|
---|
| 35 | //int _pid;
|
---|
| 36 | }
|
---|
[2] | 37 |
|
---|
| 38 | //------------------------------------------------------------------------------
|
---|
| 39 |
|
---|
| 40 | RESOLution::RESOLution() {
|
---|
| 41 |
|
---|
[94] | 42 | // Detector characteristics
|
---|
| 43 | CEN_max_tracker = 2.5; // Maximum tracker coverage
|
---|
| 44 | CEN_max_calo_cen = 3.0; // central calorimeter coverage
|
---|
| 45 | CEN_max_calo_fwd = 5.0; // forward calorimeter pseudorapidity coverage
|
---|
| 46 | CEN_max_mu = 2.4; // muon chambers pseudorapidity coverage
|
---|
| 47 |
|
---|
| 48 | // Energy resolution for electron/photon
|
---|
| 49 | // \sigma/E = C + N/E + S/\sqrt{E}
|
---|
| 50 | ELG_Scen = 0.05; // S term for central ECAL
|
---|
| 51 | ELG_Ncen = 0.25; // N term for central ECAL
|
---|
| 52 | ELG_Ccen = 0.005; // C term for central ECAL
|
---|
| 53 | ELG_Cfwd = 0.107; // S term for forward ECAL
|
---|
| 54 | ELG_Sfwd = 2.084; // C term for forward ECAL
|
---|
| 55 | ELG_Nfwd = 0.0; // N term for central ECAL
|
---|
[2] | 56 |
|
---|
[94] | 57 | // Energy resolution for hadrons in ecal/hcal/hf
|
---|
| 58 | // \sigma/E = C + N/E + S/\sqrt{E}
|
---|
| 59 | HAD_Shcal = 1.5; // S term for central HCAL // hadronic calorimeter
|
---|
| 60 | HAD_Nhcal = 0.; // N term for central HCAL
|
---|
| 61 | HAD_Chcal = 0.05; // C term for central HCAL
|
---|
| 62 | HAD_Shf = 2.7; // S term for HF // forward calorimeter
|
---|
| 63 | HAD_Nhf = 0.; // N term for HF
|
---|
| 64 | HAD_Chf = 0.13; // C term for HF
|
---|
[2] | 65 |
|
---|
[94] | 66 | // Muon smearing
|
---|
| 67 | MU_SmearPt = 0.01;
|
---|
[2] | 68 |
|
---|
[94] | 69 | // Tracking efficiencies
|
---|
| 70 | TRACK_ptmin = 0.9; // minimal pt needed to reach the calorimeter in GeV
|
---|
| 71 | TRACK_eff = 100; // efficiency associated to the tracking
|
---|
[2] | 72 |
|
---|
[94] | 73 | // Calorimetric towers
|
---|
| 74 | TOWER_number = 40;
|
---|
| 75 | const float tower_eta_edges[41] = {
|
---|
| 76 | 0., 0.087, 0.174, 0.261, 0.348, 0.435, 0.522, 0.609, 0.696, 0.783, 0.870, 0.957, 1.044, 1.131, 1.218, 1.305, 1.392, 1.479, 1.566,
|
---|
| 77 | 1.653, 1.740, 1.830, 1.930, 2.043, 2.172, 2.322, 2.500, 2.650, 2.868, 2.950, 3.125, 3.300, 3.475, 3.650, 3.825, 4.000, 4.175,
|
---|
| 78 | 4.350, 4.525, 4.700, 5.000}; // temporary object
|
---|
| 79 | TOWER_eta_edges = new float[TOWER_number+1];
|
---|
| 80 | for(unsigned int i=0; i<TOWER_number +1; i++) TOWER_eta_edges[i] = tower_eta_edges[i];
|
---|
| 81 |
|
---|
| 82 | const float tower_dphi[40] = {
|
---|
| 83 | 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 10,
|
---|
| 84 | 10,10,10,10,10, 10,10,10,10,10, 10,10,10,10,10, 10,10,10,20, 20 }; // temporary object
|
---|
| 85 | TOWER_dphi = new float[TOWER_number];
|
---|
| 86 | for(unsigned int i=0; i<TOWER_number; i++) TOWER_dphi[i] = tower_dphi[i];
|
---|
[2] | 87 |
|
---|
| 88 |
|
---|
[94] | 89 | // Thresholds for reconstructed objetcs
|
---|
| 90 | PTCUT_elec = 10.0;
|
---|
| 91 | PTCUT_muon = 10.0;
|
---|
| 92 | PTCUT_jet = 20.0;
|
---|
| 93 | PTCUT_gamma = 10.0;
|
---|
| 94 | PTCUT_taujet = 10.0;
|
---|
[33] | 95 |
|
---|
[94] | 96 | // General jet variable
|
---|
| 97 | JET_coneradius = 0.7; // generic jet radius ; not for tau's !!!
|
---|
| 98 | JET_jetalgo = 1; // 1 for Cone algorithm, 2 for MidPoint algorithm, 3 for SIScone algorithm, 4 for kt algorithm
|
---|
| 99 | JET_seed = 1.0; // minimum seed to start jet reconstruction
|
---|
[33] | 100 |
|
---|
[94] | 101 | // Tagging definition
|
---|
| 102 | BTAG_b = 40;
|
---|
| 103 | BTAG_mistag_c = 10;
|
---|
| 104 | BTAG_mistag_l = 1;
|
---|
[2] | 105 |
|
---|
[94] | 106 | // FLAGS
|
---|
| 107 | FLAG_bfield = 1; //1 to run the bfield propagation else 0
|
---|
| 108 | FLAG_vfd = 1; //1 to run the very forward detectors else 0
|
---|
| 109 | FLAG_trigger = 1; //1 to run the trigger selection else 0
|
---|
| 110 | FLAG_frog = 1; //1 to run the FROG event display
|
---|
[2] | 111 |
|
---|
[94] | 112 | // In case BField propagation allowed
|
---|
| 113 | TRACK_radius = 129; //radius of the BField coverage
|
---|
| 114 | TRACK_length = 300; //length of the BField coverage
|
---|
| 115 | TRACK_bfield_x = 0; //X composant of the BField
|
---|
| 116 | TRACK_bfield_y = 0; //Y composant of the BField
|
---|
| 117 | TRACK_bfield_z = 3.8; //Z composant of the BField
|
---|
[2] | 118 |
|
---|
[94] | 119 | // In case Very forward detectors allowed
|
---|
| 120 | VFD_min_calo_vfd = 5.2; // very forward calorimeter (if any) like CASTOR
|
---|
| 121 | VFD_max_calo_vfd = 6.6;
|
---|
| 122 | VFD_min_zdc = 8.3;
|
---|
| 123 | VFD_s_zdc = 140; // distance of the Zero Degree Calorimeter, from the Interaction poin, in [m]
|
---|
[2] | 124 |
|
---|
[94] | 125 | RP_220_s = 220; // distance of the RP to the IP, in meters
|
---|
| 126 | RP_220_x = 0.002; // distance of the RP to the beam, in meters
|
---|
| 127 | RP_420_s = 420; // distance of the RP to the IP, in meters
|
---|
| 128 | RP_420_x = 0.004; // distance of the RP to the beam, in meters
|
---|
[252] | 129 | RP_beam1Card = "data/LHCB1IR5_v6.500.tfs";
|
---|
| 130 | RP_beam2Card = "data/LHCB1IR5_v6.500.tfs";
|
---|
[2] | 131 |
|
---|
[94] | 132 | // In case FROG event display allowed
|
---|
| 133 | NEvents_Frog = 10;
|
---|
[2] | 134 |
|
---|
[94] | 135 | //********************************************
|
---|
| 136 | //jet stuffs not defined in the input datacard
|
---|
| 137 | //********************************************
|
---|
| 138 |
|
---|
| 139 | JET_overlap = 0.75;
|
---|
| 140 | // MidPoint algorithm definition
|
---|
| 141 | JET_M_coneareafraction = 0.25;
|
---|
| 142 | JET_M_maxpairsize = 2;
|
---|
| 143 | JET_M_maxiterations = 100;
|
---|
| 144 | // Define Cone algorithm.
|
---|
| 145 | JET_C_adjacencycut = 2;
|
---|
| 146 | JET_C_maxiterations = 100;
|
---|
| 147 | JET_C_iratch = 1;
|
---|
| 148 | //Define SISCone algorithm.
|
---|
| 149 | JET_S_npass = 0;
|
---|
| 150 | JET_S_protojet_ptmin= 0.0;
|
---|
| 151 |
|
---|
| 152 | //For Tau-jet definition
|
---|
| 153 | TAU_energy_scone = 0.15; // radius R of the cone for tau definition, based on energy threshold
|
---|
| 154 | TAU_track_scone = 0.4; // radius R of the cone for tau definition, based on track number
|
---|
| 155 | TAU_track_pt = 2; // minimal pt [GeV] for tracks to be considered in tau definition
|
---|
| 156 | TAU_energy_frac = 0.95; // fraction of energy required in the central part of the cone, for tau jets
|
---|
| 157 |
|
---|
| 158 | PT_QUARKS_MIN = 2.0 ; // minimal pt needed by quarks to do b-tag
|
---|
[252] | 159 |
|
---|
| 160 | //for very forward detectors
|
---|
| 161 | RP_offsetEl_s = 120;
|
---|
| 162 | RP_offsetEl_x = 0.097;
|
---|
[254] | 163 | RP_cross_x = -500;
|
---|
| 164 | RP_cross_y = 0.0;
|
---|
| 165 | RP_cross_ang = 142.5;
|
---|
[252] | 166 |
|
---|
[254] | 167 |
|
---|
[94] | 168 |
|
---|
[2] | 169 | }
|
---|
| 170 |
|
---|
[219] | 171 |
|
---|
| 172 | RESOLution::RESOLution(const RESOLution & DET) {
|
---|
| 173 | // Detector characteristics
|
---|
| 174 | CEN_max_tracker = DET.CEN_max_tracker;
|
---|
| 175 | CEN_max_calo_cen = DET.CEN_max_calo_cen;
|
---|
| 176 | CEN_max_calo_fwd = DET.CEN_max_calo_fwd;
|
---|
| 177 | CEN_max_mu = DET.CEN_max_mu;
|
---|
| 178 |
|
---|
| 179 | // Energy resolution for electron/photon
|
---|
| 180 | ELG_Scen = DET.ELG_Scen;
|
---|
| 181 | ELG_Ncen = DET.ELG_Ncen;
|
---|
| 182 | ELG_Ccen = DET.ELG_Ccen;
|
---|
| 183 | ELG_Cfwd = DET.ELG_Cfwd;
|
---|
| 184 | ELG_Sfwd = DET.ELG_Sfwd;
|
---|
| 185 | ELG_Nfwd = DET.ELG_Nfwd;
|
---|
| 186 |
|
---|
| 187 | // Energy resolution for hadrons in ecal/hcal/hf
|
---|
| 188 | HAD_Shcal = DET.HAD_Shcal;
|
---|
| 189 | HAD_Nhcal = DET.HAD_Nhcal;
|
---|
| 190 | HAD_Chcal = DET.HAD_Chcal;
|
---|
| 191 | HAD_Shf = DET.HAD_Shf;
|
---|
| 192 | HAD_Nhf = DET.HAD_Nhf;
|
---|
| 193 | HAD_Chf = DET.HAD_Chf;
|
---|
| 194 |
|
---|
| 195 | // Muon smearing
|
---|
| 196 | MU_SmearPt = DET.MU_SmearPt;
|
---|
| 197 |
|
---|
| 198 | // Tracking efficiencies
|
---|
| 199 | TRACK_ptmin = DET.TRACK_ptmin;
|
---|
| 200 | TRACK_eff = DET.TRACK_eff;
|
---|
| 201 |
|
---|
| 202 | // Calorimetric towers
|
---|
| 203 | TOWER_number = DET.TOWER_number;
|
---|
| 204 | TOWER_eta_edges = new float[TOWER_number+1];
|
---|
| 205 | for(unsigned int i=0; i<TOWER_number +1; i++) TOWER_eta_edges[i] = DET.TOWER_eta_edges[i];
|
---|
| 206 |
|
---|
| 207 | TOWER_dphi = new float[TOWER_number];
|
---|
| 208 | for(unsigned int i=0; i<TOWER_number; i++) TOWER_dphi[i] = DET.TOWER_dphi[i];
|
---|
| 209 |
|
---|
| 210 | // Thresholds for reconstructed objetcs
|
---|
| 211 | PTCUT_elec = DET.PTCUT_elec;
|
---|
| 212 | PTCUT_muon = DET.PTCUT_muon;
|
---|
| 213 | PTCUT_jet = DET.PTCUT_jet;
|
---|
| 214 | PTCUT_gamma = DET.PTCUT_gamma;
|
---|
| 215 | PTCUT_taujet = DET.PTCUT_taujet;
|
---|
| 216 |
|
---|
| 217 | // General jet variable
|
---|
| 218 | JET_coneradius = DET.JET_coneradius;
|
---|
| 219 | JET_jetalgo = DET.JET_jetalgo;
|
---|
| 220 | JET_seed = DET.JET_seed;
|
---|
| 221 |
|
---|
| 222 | // Tagging definition
|
---|
| 223 | BTAG_b = DET.BTAG_b;
|
---|
| 224 | BTAG_mistag_c = DET.BTAG_mistag_c;
|
---|
| 225 | BTAG_mistag_l = DET.BTAG_mistag_l;
|
---|
| 226 |
|
---|
| 227 | // FLAGS
|
---|
| 228 | FLAG_bfield = DET.FLAG_bfield;
|
---|
| 229 | FLAG_vfd = DET.FLAG_vfd;
|
---|
| 230 | FLAG_trigger = DET.FLAG_trigger;
|
---|
| 231 | FLAG_frog = DET.FLAG_frog;
|
---|
| 232 |
|
---|
| 233 | // In case BField propagation allowed
|
---|
| 234 | TRACK_radius = DET.TRACK_radius;
|
---|
| 235 | TRACK_length = DET.TRACK_length;
|
---|
| 236 | TRACK_bfield_x = DET.TRACK_bfield_x;
|
---|
| 237 | TRACK_bfield_y = DET.TRACK_bfield_y;
|
---|
| 238 | TRACK_bfield_z = DET.TRACK_bfield_z;
|
---|
| 239 |
|
---|
| 240 | // In case Very forward detectors allowed
|
---|
| 241 | VFD_min_calo_vfd = DET.VFD_min_calo_vfd;
|
---|
| 242 | VFD_max_calo_vfd = DET.VFD_max_calo_vfd;
|
---|
| 243 | VFD_min_zdc = DET.VFD_min_zdc;
|
---|
| 244 | VFD_s_zdc = DET.VFD_s_zdc;
|
---|
| 245 |
|
---|
| 246 | RP_220_s = DET.RP_220_s;
|
---|
| 247 | RP_220_x = DET.RP_220_x;
|
---|
| 248 | RP_420_s = DET.RP_420_s;
|
---|
| 249 | RP_420_x = DET.RP_420_x;
|
---|
[252] | 250 | RP_beam1Card = DET.RP_beam1Card;
|
---|
| 251 | RP_beam2Card = DET.RP_beam2Card;
|
---|
| 252 | RP_offsetEl_s = DET.RP_offsetEl_s;
|
---|
| 253 | RP_offsetEl_x = DET.RP_offsetEl_x;
|
---|
[254] | 254 | RP_cross_x = DET.RP_cross_x;
|
---|
| 255 | RP_cross_y = DET.RP_cross_y;
|
---|
| 256 | RP_cross_ang = DET.RP_cross_ang;
|
---|
[219] | 257 |
|
---|
[254] | 258 |
|
---|
[219] | 259 | // In case FROG event display allowed
|
---|
| 260 | NEvents_Frog = DET.NEvents_Frog;
|
---|
| 261 |
|
---|
| 262 | JET_overlap = DET.JET_overlap;
|
---|
| 263 | // MidPoint algorithm definition
|
---|
| 264 | JET_M_coneareafraction = DET.JET_M_coneareafraction;
|
---|
| 265 | JET_M_maxpairsize = DET.JET_M_maxpairsize;
|
---|
| 266 | JET_M_maxiterations = DET.JET_M_maxiterations;
|
---|
| 267 | // Define Cone algorithm.
|
---|
| 268 | JET_C_adjacencycut = DET.JET_C_adjacencycut;
|
---|
| 269 | JET_C_maxiterations = DET.JET_C_maxiterations;
|
---|
| 270 | JET_C_iratch = DET.JET_C_iratch;
|
---|
| 271 | //Define SISCone algorithm.
|
---|
| 272 | JET_S_npass = DET.JET_S_npass;
|
---|
| 273 | JET_S_protojet_ptmin = DET.JET_S_protojet_ptmin;
|
---|
| 274 |
|
---|
| 275 | //For Tau-jet definition
|
---|
| 276 | TAU_energy_scone = DET.TAU_energy_scone;
|
---|
| 277 | TAU_track_scone = DET.TAU_track_scone;
|
---|
| 278 | TAU_track_pt = DET.TAU_track_pt;
|
---|
| 279 | TAU_energy_frac = DET.TAU_energy_frac;
|
---|
| 280 |
|
---|
| 281 | PT_QUARKS_MIN = DET.PT_QUARKS_MIN;
|
---|
| 282 | }
|
---|
| 283 |
|
---|
| 284 | RESOLution& RESOLution::operator=(const RESOLution& DET) {
|
---|
| 285 | if(this==&DET) return *this;
|
---|
| 286 | // Detector characteristics
|
---|
| 287 | CEN_max_tracker = DET.CEN_max_tracker;
|
---|
| 288 | CEN_max_calo_cen = DET.CEN_max_calo_cen;
|
---|
| 289 | CEN_max_calo_fwd = DET.CEN_max_calo_fwd;
|
---|
| 290 | CEN_max_mu = DET.CEN_max_mu;
|
---|
| 291 |
|
---|
| 292 | // Energy resolution for electron/photon
|
---|
| 293 | ELG_Scen = DET.ELG_Scen;
|
---|
| 294 | ELG_Ncen = DET.ELG_Ncen;
|
---|
| 295 | ELG_Ccen = DET.ELG_Ccen;
|
---|
| 296 | ELG_Cfwd = DET.ELG_Cfwd;
|
---|
| 297 | ELG_Sfwd = DET.ELG_Sfwd;
|
---|
| 298 | ELG_Nfwd = DET.ELG_Nfwd;
|
---|
| 299 |
|
---|
| 300 | // Energy resolution for hadrons in ecal/hcal/hf
|
---|
| 301 | HAD_Shcal = DET.HAD_Shcal;
|
---|
| 302 | HAD_Nhcal = DET.HAD_Nhcal;
|
---|
| 303 | HAD_Chcal = DET.HAD_Chcal;
|
---|
| 304 | HAD_Shf = DET.HAD_Shf;
|
---|
| 305 | HAD_Nhf = DET.HAD_Nhf;
|
---|
| 306 | HAD_Chf = DET.HAD_Chf;
|
---|
| 307 |
|
---|
| 308 | // Muon smearing
|
---|
| 309 | MU_SmearPt = DET.MU_SmearPt;
|
---|
| 310 |
|
---|
| 311 | // Tracking efficiencies
|
---|
| 312 | TRACK_ptmin = DET.TRACK_ptmin;
|
---|
| 313 | TRACK_eff = DET.TRACK_eff;
|
---|
| 314 |
|
---|
| 315 | // Calorimetric towers
|
---|
| 316 | TOWER_number = DET.TOWER_number;
|
---|
| 317 | TOWER_eta_edges = new float[TOWER_number+1];
|
---|
| 318 | for(unsigned int i=0; i<TOWER_number +1; i++) TOWER_eta_edges[i] = DET.TOWER_eta_edges[i];
|
---|
| 319 |
|
---|
| 320 | TOWER_dphi = new float[TOWER_number];
|
---|
| 321 | for(unsigned int i=0; i<TOWER_number; i++) TOWER_dphi[i] = DET.TOWER_dphi[i];
|
---|
| 322 |
|
---|
| 323 | // Thresholds for reconstructed objetcs
|
---|
| 324 | PTCUT_elec = DET.PTCUT_elec;
|
---|
| 325 | PTCUT_muon = DET.PTCUT_muon;
|
---|
| 326 | PTCUT_jet = DET.PTCUT_jet;
|
---|
| 327 | PTCUT_gamma = DET.PTCUT_gamma;
|
---|
| 328 | PTCUT_taujet = DET.PTCUT_taujet;
|
---|
| 329 |
|
---|
| 330 | // General jet variable
|
---|
| 331 | JET_coneradius = DET.JET_coneradius;
|
---|
| 332 | JET_jetalgo = DET.JET_jetalgo;
|
---|
| 333 | JET_seed = DET.JET_seed;
|
---|
| 334 |
|
---|
| 335 | // Tagging definition
|
---|
| 336 | BTAG_b = DET.BTAG_b;
|
---|
| 337 | BTAG_mistag_c = DET.BTAG_mistag_c;
|
---|
| 338 | BTAG_mistag_l = DET.BTAG_mistag_l;
|
---|
| 339 |
|
---|
| 340 | // FLAGS
|
---|
| 341 | FLAG_bfield = DET.FLAG_bfield;
|
---|
| 342 | FLAG_vfd = DET.FLAG_vfd;
|
---|
| 343 | FLAG_trigger = DET.FLAG_trigger;
|
---|
| 344 | FLAG_frog = DET.FLAG_frog;
|
---|
| 345 |
|
---|
| 346 | // In case BField propagation allowed
|
---|
| 347 | TRACK_radius = DET.TRACK_radius;
|
---|
| 348 | TRACK_length = DET.TRACK_length;
|
---|
| 349 | TRACK_bfield_x = DET.TRACK_bfield_x;
|
---|
| 350 | TRACK_bfield_y = DET.TRACK_bfield_y;
|
---|
| 351 | TRACK_bfield_z = DET.TRACK_bfield_z;
|
---|
| 352 |
|
---|
| 353 | // In case Very forward detectors allowed
|
---|
| 354 | VFD_min_calo_vfd = DET.VFD_min_calo_vfd;
|
---|
| 355 | VFD_max_calo_vfd = DET.VFD_max_calo_vfd;
|
---|
| 356 | VFD_min_zdc = DET.VFD_min_zdc;
|
---|
| 357 | VFD_s_zdc = DET.VFD_s_zdc;
|
---|
| 358 |
|
---|
| 359 | RP_220_s = DET.RP_220_s;
|
---|
| 360 | RP_220_x = DET.RP_220_x;
|
---|
| 361 | RP_420_s = DET.RP_420_s;
|
---|
| 362 | RP_420_x = DET.RP_420_x;
|
---|
[252] | 363 | RP_offsetEl_s = DET.RP_offsetEl_s;
|
---|
| 364 | RP_offsetEl_x = DET.RP_offsetEl_x;
|
---|
| 365 | RP_beam1Card = DET.RP_beam1Card;
|
---|
| 366 | RP_beam2Card = DET.RP_beam2Card;
|
---|
[254] | 367 | RP_cross_x = DET.RP_cross_x;
|
---|
| 368 | RP_cross_y = DET.RP_cross_y;
|
---|
| 369 | RP_cross_ang = DET.RP_cross_ang;
|
---|
[219] | 370 |
|
---|
[252] | 371 |
|
---|
[254] | 372 |
|
---|
[219] | 373 | // In case FROG event display allowed
|
---|
| 374 | NEvents_Frog = DET.NEvents_Frog;
|
---|
| 375 |
|
---|
| 376 | JET_overlap = DET.JET_overlap;
|
---|
| 377 | // MidPoint algorithm definition
|
---|
| 378 | JET_M_coneareafraction = DET.JET_M_coneareafraction;
|
---|
| 379 | JET_M_maxpairsize = DET.JET_M_maxpairsize;
|
---|
| 380 | JET_M_maxiterations = DET.JET_M_maxiterations;
|
---|
| 381 | // Define Cone algorithm.
|
---|
| 382 | JET_C_adjacencycut = DET.JET_C_adjacencycut;
|
---|
| 383 | JET_C_maxiterations = DET.JET_C_maxiterations;
|
---|
| 384 | JET_C_iratch = DET.JET_C_iratch;
|
---|
| 385 | //Define SISCone algorithm.
|
---|
| 386 | JET_S_npass = DET.JET_S_npass;
|
---|
| 387 | JET_S_protojet_ptmin = DET.JET_S_protojet_ptmin;
|
---|
| 388 |
|
---|
| 389 | //For Tau-jet definition
|
---|
| 390 | TAU_energy_scone = DET.TAU_energy_scone;
|
---|
| 391 | TAU_track_scone = DET.TAU_track_scone;
|
---|
| 392 | TAU_track_pt = DET.TAU_track_pt;
|
---|
| 393 | TAU_energy_frac = DET.TAU_energy_frac;
|
---|
| 394 |
|
---|
| 395 | PT_QUARKS_MIN = DET.PT_QUARKS_MIN;
|
---|
| 396 | return *this;
|
---|
| 397 | }
|
---|
| 398 |
|
---|
| 399 |
|
---|
| 400 |
|
---|
| 401 |
|
---|
[2] | 402 | //------------------------------------------------------------------------------
|
---|
| 403 | void RESOLution::ReadDataCard(const string datacard) {
|
---|
| 404 |
|
---|
| 405 | string temp_string;
|
---|
| 406 | istringstream curstring;
|
---|
| 407 |
|
---|
| 408 | ifstream fichier_a_lire(datacard.c_str());
|
---|
| 409 | if(!fichier_a_lire.good()) {
|
---|
[249] | 410 | cout <<"** WARNING: Datadard not found, use default values **" << endl;
|
---|
[94] | 411 | return;
|
---|
[2] | 412 | }
|
---|
[94] | 413 |
|
---|
[2] | 414 | while (getline(fichier_a_lire,temp_string)) {
|
---|
| 415 | curstring.clear(); // needed when using several times istringstream::str(string)
|
---|
| 416 | curstring.str(temp_string);
|
---|
| 417 | string varname;
|
---|
[252] | 418 | float value; int ivalue; string svalue;
|
---|
[2] | 419 |
|
---|
| 420 | if(strstr(temp_string.c_str(),"#")) { }
|
---|
[94] | 421 | else if(strstr(temp_string.c_str(),"CEN_max_tracker")) {curstring >> varname >> value; CEN_max_tracker = value;}
|
---|
| 422 | else if(strstr(temp_string.c_str(),"CEN_max_calo_cen")) {curstring >> varname >> value; CEN_max_calo_cen = value;}
|
---|
| 423 | else if(strstr(temp_string.c_str(),"CEN_max_calo_fwd")) {curstring >> varname >> value; CEN_max_calo_fwd = value;}
|
---|
| 424 | else if(strstr(temp_string.c_str(),"CEN_max_mu")) {curstring >> varname >> value; CEN_max_mu = value;}
|
---|
| 425 |
|
---|
| 426 | else if(strstr(temp_string.c_str(),"VFD_min_calo_vfd")) {curstring >> varname >> value; VFD_min_calo_vfd = value;}
|
---|
| 427 | else if(strstr(temp_string.c_str(),"VFD_max_calo_vfd")) {curstring >> varname >> value; VFD_max_calo_vfd = value;}
|
---|
| 428 | else if(strstr(temp_string.c_str(),"VFD_min_zdc")) {curstring >> varname >> value; VFD_min_zdc = value;}
|
---|
| 429 | else if(strstr(temp_string.c_str(),"VFD_s_zdc")) {curstring >> varname >> value; VFD_s_zdc = value;}
|
---|
| 430 |
|
---|
| 431 | else if(strstr(temp_string.c_str(),"RP_220_s")) {curstring >> varname >> value; RP_220_s = value;}
|
---|
| 432 | else if(strstr(temp_string.c_str(),"RP_220_x")) {curstring >> varname >> value; RP_220_x = value;}
|
---|
| 433 | else if(strstr(temp_string.c_str(),"RP_420_s")) {curstring >> varname >> value; RP_420_s = value;}
|
---|
| 434 | else if(strstr(temp_string.c_str(),"RP_420_x")) {curstring >> varname >> value; RP_420_x = value;}
|
---|
[254] | 435 | else if(strstr(temp_string.c_str(),"Beam1Card")) {curstring >> varname >> svalue;RP_beam1Card = svalue;}
|
---|
| 436 | else if(strstr(temp_string.c_str(),"Beam2Card")) {curstring >> varname >> svalue;RP_beam2Card = svalue;}
|
---|
[94] | 437 |
|
---|
| 438 | else if(strstr(temp_string.c_str(),"ELG_Scen")) {curstring >> varname >> value; ELG_Scen = value;}
|
---|
| 439 | else if(strstr(temp_string.c_str(),"ELG_Ncen")) {curstring >> varname >> value; ELG_Ncen = value;}
|
---|
| 440 | else if(strstr(temp_string.c_str(),"ELG_Ccen")) {curstring >> varname >> value; ELG_Ccen = value;}
|
---|
| 441 | else if(strstr(temp_string.c_str(),"ELG_Sfwd")) {curstring >> varname >> value; ELG_Sfwd = value;}
|
---|
| 442 | else if(strstr(temp_string.c_str(),"ELG_Cfwd")) {curstring >> varname >> value; ELG_Cfwd = value;}
|
---|
| 443 | else if(strstr(temp_string.c_str(),"ELG_Nfwd")) {curstring >> varname >> value; ELG_Nfwd = value;}
|
---|
| 444 | else if(strstr(temp_string.c_str(),"HAD_Shcal")) {curstring >> varname >> value; HAD_Shcal = value;}
|
---|
| 445 | else if(strstr(temp_string.c_str(),"HAD_Nhcal")) {curstring >> varname >> value; HAD_Nhcal = value;}
|
---|
| 446 | else if(strstr(temp_string.c_str(),"HAD_Chcal")) {curstring >> varname >> value; HAD_Chcal = value;}
|
---|
| 447 | else if(strstr(temp_string.c_str(),"HAD_Shf")) {curstring >> varname >> value; HAD_Shf = value;}
|
---|
| 448 | else if(strstr(temp_string.c_str(),"HAD_Nhf")) {curstring >> varname >> value; HAD_Nhf = value;}
|
---|
| 449 | else if(strstr(temp_string.c_str(),"HAD_Chf")) {curstring >> varname >> value; HAD_Chf = value;}
|
---|
| 450 | else if(strstr(temp_string.c_str(),"MU_SmearPt")) {curstring >> varname >> value; MU_SmearPt = value;}
|
---|
| 451 |
|
---|
| 452 | else if(strstr(temp_string.c_str(),"TRACK_radius")) {curstring >> varname >> ivalue;TRACK_radius = ivalue;}
|
---|
| 453 | else if(strstr(temp_string.c_str(),"TRACK_length")) {curstring >> varname >> ivalue;TRACK_length = ivalue;}
|
---|
| 454 | else if(strstr(temp_string.c_str(),"TRACK_bfield_x")) {curstring >> varname >> value; TRACK_bfield_x = value;}
|
---|
| 455 | else if(strstr(temp_string.c_str(),"TRACK_bfield_y")) {curstring >> varname >> value; TRACK_bfield_y = value;}
|
---|
| 456 | else if(strstr(temp_string.c_str(),"TRACK_bfield_z")) {curstring >> varname >> value; TRACK_bfield_z = value;}
|
---|
| 457 | else if(strstr(temp_string.c_str(),"FLAG_bfield")) {curstring >> varname >> ivalue; FLAG_bfield = ivalue;}
|
---|
| 458 | else if(strstr(temp_string.c_str(),"TRACK_ptmin")) {curstring >> varname >> value; TRACK_ptmin = value;}
|
---|
| 459 | else if(strstr(temp_string.c_str(),"TRACK_eff")) {curstring >> varname >> ivalue;TRACK_eff = ivalue;}
|
---|
[33] | 460 |
|
---|
[94] | 461 | else if(strstr(temp_string.c_str(),"TOWER_number")) {curstring >> varname >> ivalue;TOWER_number = ivalue;}
|
---|
| 462 | else if(strstr(temp_string.c_str(),"TOWER_eta_edges")){
|
---|
| 463 | curstring >> varname; for(unsigned int i=0; i<TOWER_number+1; i++) {curstring >> value; TOWER_eta_edges[i] = value;} }
|
---|
| 464 | else if(strstr(temp_string.c_str(),"TOWER_dphi")){
|
---|
| 465 | curstring >> varname; for(unsigned int i=0; i<TOWER_number; i++) {curstring >> value; TOWER_dphi[i] = value;} }
|
---|
[2] | 466 |
|
---|
[94] | 467 | else if(strstr(temp_string.c_str(),"PTCUT_elec")) {curstring >> varname >> value; PTCUT_elec = value;}
|
---|
| 468 | else if(strstr(temp_string.c_str(),"PTCUT_muon")) {curstring >> varname >> value; PTCUT_muon = value;}
|
---|
| 469 | else if(strstr(temp_string.c_str(),"PTCUT_jet")) {curstring >> varname >> value; PTCUT_jet = value;}
|
---|
| 470 | else if(strstr(temp_string.c_str(),"PTCUT_gamma")) {curstring >> varname >> value; PTCUT_gamma = value;}
|
---|
| 471 | else if(strstr(temp_string.c_str(),"PTCUT_taujet")) {curstring >> varname >> value; PTCUT_taujet = value;}
|
---|
[43] | 472 |
|
---|
[94] | 473 | else if(strstr(temp_string.c_str(),"JET_coneradius")) {curstring >> varname >> value; JET_coneradius = value;}
|
---|
| 474 | else if(strstr(temp_string.c_str(),"JET_jetalgo")) {curstring >> varname >> ivalue;JET_jetalgo = ivalue;}
|
---|
| 475 | else if(strstr(temp_string.c_str(),"JET_seed")) {curstring >> varname >> value; JET_seed = value;}
|
---|
| 476 |
|
---|
| 477 | else if(strstr(temp_string.c_str(),"BTAG_b")) {curstring >> varname >> ivalue;BTAG_b = ivalue;}
|
---|
| 478 | else if(strstr(temp_string.c_str(),"BTAG_mistag_c")) {curstring >> varname >> ivalue;BTAG_mistag_c = ivalue;}
|
---|
| 479 | else if(strstr(temp_string.c_str(),"BTAG_mistag_l")) {curstring >> varname >> ivalue;BTAG_mistag_l = ivalue;}
|
---|
[2] | 480 |
|
---|
[94] | 481 | else if(strstr(temp_string.c_str(),"FLAG_vfd")) {curstring >> varname >> ivalue; FLAG_vfd = ivalue;}
|
---|
| 482 | else if(strstr(temp_string.c_str(),"FLAG_trigger")) {curstring >> varname >> ivalue; FLAG_trigger = ivalue;}
|
---|
| 483 | else if(strstr(temp_string.c_str(),"FLAG_frog")) {curstring >> varname >> ivalue; FLAG_frog = ivalue;}
|
---|
| 484 | else if(strstr(temp_string.c_str(),"NEvents_Frog")) {curstring >> varname >> ivalue; NEvents_Frog = ivalue;}
|
---|
| 485 | }
|
---|
| 486 |
|
---|
| 487 | //jet stuffs not defined in the input datacard
|
---|
| 488 | JET_overlap = 0.75;
|
---|
| 489 | // MidPoint algorithm definition
|
---|
| 490 | JET_M_coneareafraction = 0.25;
|
---|
| 491 | JET_M_maxpairsize = 2;
|
---|
| 492 | JET_M_maxiterations = 100;
|
---|
| 493 | // Define Cone algorithm.
|
---|
| 494 | JET_C_adjacencycut = 2;
|
---|
| 495 | JET_C_maxiterations = 100;
|
---|
| 496 | JET_C_iratch = 1;
|
---|
| 497 | //Define SISCone algorithm.
|
---|
| 498 | JET_S_npass = 0;
|
---|
| 499 | JET_S_protojet_ptmin= 0.0;
|
---|
| 500 |
|
---|
| 501 | //For Tau-jet definition
|
---|
| 502 | TAU_energy_scone = 0.15; // radius R of the cone for tau definition, based on energy threshold
|
---|
| 503 | TAU_track_scone = 0.4; // radius R of the cone for tau definition, based on track number
|
---|
| 504 | TAU_track_pt = 2; // minimal pt [GeV] for tracks to be considered in tau definition
|
---|
| 505 | TAU_energy_frac = 0.95; // fraction of energy required in the central part of the cone, for tau jets
|
---|
| 506 |
|
---|
[2] | 507 | }
|
---|
| 508 |
|
---|
[219] | 509 | void RESOLution::Logfile(const string& LogName) {
|
---|
[94] | 510 | //void RESOLution::Logfile(string outputfilename) {
|
---|
| 511 |
|
---|
[44] | 512 | ofstream f_out(LogName.c_str());
|
---|
| 513 |
|
---|
| 514 | f_out<<"#*********************************************************************"<<"\n";
|
---|
| 515 | f_out<<"# *"<<"\n";
|
---|
[51] | 516 | f_out<<"# ---- DELPHES release 1.0 ---- *"<<"\n";
|
---|
[44] | 517 | f_out<<"# *"<<"\n";
|
---|
| 518 | f_out<<"# A Fast Simulator for general purpose LHC detector *"<<"\n";
|
---|
| 519 | f_out<<"# Written by S. Ovyn and X. Rouby *"<<"\n";
|
---|
| 520 | f_out<<"# severine.ovyn@uclouvain.be *"<<"\n";
|
---|
| 521 | f_out<<"# *"<<"\n";
|
---|
| 522 | f_out<<"# http: *"<<"\n";
|
---|
| 523 | f_out<<"# *"<<"\n";
|
---|
| 524 | f_out<<"# Center for Particle Physics and Phenomenology (CP3) *"<<"\n";
|
---|
| 525 | f_out<<"# Universite Catholique de Louvain (UCL) *"<<"\n";
|
---|
| 526 | f_out<<"# Louvain-la-Neuve, Belgium *"<<"\n";
|
---|
| 527 | f_out<<"# *"<<"\n";
|
---|
| 528 | f_out<<"#....................................................................*"<<"\n";
|
---|
| 529 | f_out<<"# *"<<"\n";
|
---|
[46] | 530 | f_out<<"# This package uses: *"<<"\n";
|
---|
| 531 | f_out<<"# FastJet algorithm: Phys. Lett. B641 (2006) [hep-ph/0512210] *"<<"\n";
|
---|
| 532 | f_out<<"# Hector: JINST 2:P09005 (2007) [physics.acc-ph:0707.1198v2] *"<<"\n";
|
---|
| 533 | f_out<<"# ExRootAnalysis *"<<"\n";
|
---|
[44] | 534 | f_out<<"# *"<<"\n";
|
---|
| 535 | f_out<<"#....................................................................*"<<"\n";
|
---|
| 536 | f_out<<"# *"<<"\n";
|
---|
| 537 | f_out<<"# This file contains all the running parameters (detector and cuts) *"<<"\n";
|
---|
| 538 | f_out<<"# necessary to reproduce the detector simulation *"<<"\n";
|
---|
| 539 | f_out<<"# *"<<"\n";
|
---|
| 540 | f_out<<"#....................................................................*"<<"\n";
|
---|
| 541 | f_out<<"#>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>"<<"\n";
|
---|
| 542 | f_out<<"* *"<<"\n";
|
---|
| 543 | f_out<<"#******************************** *"<<"\n";
|
---|
| 544 | f_out<<"# Central detector caracteristics *"<<"\n";
|
---|
| 545 | f_out<<"#******************************** *"<<"\n";
|
---|
| 546 | f_out<<"* *"<<"\n";
|
---|
| 547 | f_out << left << setw(30) <<"* Maximum tracking system: "<<""
|
---|
[94] | 548 | << left << setw(10) <<CEN_max_tracker <<""<< right << setw(15)<<"*"<<"\n";
|
---|
[44] | 549 | f_out << left << setw(30) <<"* Maximum central calorimeter: "<<""
|
---|
[94] | 550 | << left << setw(10) <<CEN_max_calo_cen <<""<< right << setw(15)<<"*"<<"\n";
|
---|
[44] | 551 | f_out << left << setw(30) <<"* Maximum forward calorimeter: "<<""
|
---|
[94] | 552 | << left << setw(10) <<CEN_max_calo_fwd <<""<< right << setw(15)<<"*"<<"\n";
|
---|
[44] | 553 | f_out << left << setw(30) <<"* Muon chambers coverage: "<<""
|
---|
[94] | 554 | << left << setw(10) <<CEN_max_mu <<""<< right << setw(15)<<"*"<<"\n";
|
---|
[44] | 555 | f_out<<"* *"<<"\n";
|
---|
[94] | 556 | if(FLAG_vfd==1){
|
---|
| 557 | f_out<<"#********************************** *"<<"\n";
|
---|
| 558 | f_out<<"# Very forward detector switches on *"<<"\n";
|
---|
| 559 | f_out<<"#********************************** *"<<"\n";
|
---|
| 560 | f_out<<"* *"<<"\n";
|
---|
| 561 | f_out << left << setw(55) <<"* Minimum very forward calorimeter: "<<""
|
---|
| 562 | << left << setw(5) <<VFD_min_calo_vfd <<""<< right << setw(10)<<"*"<<"\n";
|
---|
| 563 | f_out << left << setw(55) <<"* Maximum very forward calorimeter: "<<""
|
---|
| 564 | << left << setw(5) <<VFD_max_calo_vfd <<""<< right << setw(10)<<"*"<<"\n";
|
---|
| 565 | f_out << left << setw(55) <<"* Minimum coverage zero_degree calorimeter "<<""
|
---|
| 566 | << left << setw(5) <<VFD_min_zdc <<""<< right << setw(10)<<"*"<<"\n";
|
---|
| 567 | f_out << left << setw(55) <<"* Distance of the ZDC to the IP, in meters: "<<""
|
---|
| 568 | << left << setw(5) <<VFD_s_zdc <<""<< right << setw(10)<<"*"<<"\n";
|
---|
| 569 | f_out << left << setw(55) <<"* Distance of the RP to the IP, in meters: "<<""
|
---|
| 570 | << left << setw(5) <<RP_220_s <<""<< right << setw(10)<<"*"<<"\n";
|
---|
| 571 | f_out << left << setw(55) <<"* Distance of the RP to the beam, in meters: "<<""
|
---|
| 572 | << left << setw(5) <<RP_220_x <<""<< right << setw(10)<<"*"<<"\n";
|
---|
| 573 | f_out << left << setw(55) <<"* Distance of the RP to the IP, in meters: "<<""
|
---|
| 574 | << left << setw(5) <<RP_420_s <<""<< right << setw(10)<<"*"<<"\n";
|
---|
| 575 | f_out << left << setw(55) <<"* Distance of the RP to the beam, in meters: "<<""
|
---|
| 576 | << left << setw(5) <<RP_420_x <<""<< right << setw(10)<<"*"<<"\n";
|
---|
[252] | 577 | f_out << left << setw(35) <<"* Datacard for beam 1: "<<""
|
---|
| 578 | << left << setw(25) <<RP_beam1Card <<""<< right << setw(10)<<"*"<<"\n";
|
---|
| 579 | f_out << left << setw(35) <<"* Datacard for beam 2: "<<""
|
---|
| 580 | << left << setw(25) <<RP_beam2Card <<""<< right << setw(10)<<"*"<<"\n";
|
---|
[254] | 581 | f_out << left << setw(44) <<"* Beam separation, in meters: "<<""
|
---|
| 582 | << left << setw(6) << RP_offsetEl_x <<""<< right << setw(20)<<"! not in datacard *"<<"\n";
|
---|
[252] | 583 | f_out << left << setw(44) <<"* Distance from IP for Beam separation (m):"<<""
|
---|
| 584 | << left << setw(6) <<RP_offsetEl_s <<""<< right << setw(20)<<"! not in datacard *"<<"\n";
|
---|
[254] | 585 | f_out << left << setw(44) <<"* X offset of beam crossing in micrometers:"<<""
|
---|
| 586 | << left << setw(6) <<RP_cross_x <<""<< right << setw(20)<<"! not in datacard *"<<"\n";
|
---|
| 587 | f_out << left << setw(44) <<"* Y offset of beam crossing in micrometers:"<<""
|
---|
| 588 | << left << setw(6) <<RP_cross_y <<""<< right << setw(20)<<"! not in datacard *"<<"\n";
|
---|
| 589 | f_out << left << setw(44) <<"* Angle of beam crossing:"<<""
|
---|
| 590 | << left << setw(6) <<RP_cross_ang <<""<< right << setw(20)<<"! not in datacard *"<<"\n";
|
---|
[252] | 591 |
|
---|
[94] | 592 | f_out<<"* *"<<"\n";
|
---|
| 593 | }
|
---|
| 594 | else {
|
---|
| 595 | f_out<<"#*********************************** *"<<"\n";
|
---|
| 596 | f_out<<"# Very forward detector switches off *"<<"\n";
|
---|
| 597 | f_out<<"#*********************************** *"<<"\n";
|
---|
| 598 | f_out<<"* *"<<"\n";
|
---|
| 599 | }
|
---|
[44] | 600 | f_out<<"#************************************ *"<<"\n";
|
---|
| 601 | f_out<<"# Electromagnetic smearing parameters *"<<"\n";
|
---|
| 602 | f_out<<"#************************************ *"<<"\n";
|
---|
| 603 | f_out<<"* *"<<"\n";
|
---|
| 604 | //# \sigma/E = C + N/E + S/\sqrt{E}
|
---|
| 605 | f_out << left << setw(30) <<"* S term for central ECAL: "<<""
|
---|
| 606 | << left << setw(30) <<ELG_Scen <<""<< right << setw(10)<<"*"<<"\n";
|
---|
| 607 | f_out << left << setw(30) <<"* N term for central ECAL: "<<""
|
---|
| 608 | << left << setw(30) <<ELG_Ncen <<""<< right << setw(10)<<"*"<<"\n";
|
---|
| 609 | f_out << left << setw(30) <<"* C term for central ECAL: "<<""
|
---|
| 610 | << left << setw(30) <<ELG_Ccen <<""<< right << setw(10)<<"*"<<"\n";
|
---|
| 611 | f_out << left << setw(30) <<"* S term for forward ECAL: "<<""
|
---|
| 612 | << left << setw(30) <<ELG_Sfwd <<""<< right << setw(10)<<"*"<<"\n";
|
---|
| 613 | f_out << left << setw(30) <<"* N term for forward ECAL: "<<""
|
---|
| 614 | << left << setw(30) <<ELG_Nfwd <<""<< right << setw(10)<<"*"<<"\n";
|
---|
| 615 | f_out << left << setw(30) <<"* C term for forward ECAL: "<<""
|
---|
| 616 | << left << setw(30) <<ELG_Cfwd <<""<< right << setw(10)<<"*"<<"\n";
|
---|
| 617 | f_out<<"* *"<<"\n";
|
---|
| 618 | f_out<<"#***************************** *"<<"\n";
|
---|
| 619 | f_out<<"# Hadronic smearing parameters *"<<"\n";
|
---|
| 620 | f_out<<"#***************************** *"<<"\n";
|
---|
| 621 | f_out<<"* *"<<"\n";
|
---|
| 622 | f_out << left << setw(30) <<"* S term for central HCAL: "<<""
|
---|
| 623 | << left << setw(30) <<HAD_Shcal <<""<< right << setw(10)<<"*"<<"\n";
|
---|
| 624 | f_out << left << setw(30) <<"* N term for central HCAL: "<<""
|
---|
| 625 | << left << setw(30) <<HAD_Nhcal <<""<< right << setw(10)<<"*"<<"\n";
|
---|
| 626 | f_out << left << setw(30) <<"* C term for central HCAL: "<<""
|
---|
| 627 | << left << setw(30) <<HAD_Chcal <<""<< right << setw(10)<<"*"<<"\n";
|
---|
| 628 | f_out << left << setw(30) <<"* S term for forward HCAL: "<<""
|
---|
| 629 | << left << setw(30) <<HAD_Shf <<""<< right << setw(10)<<"*"<<"\n";
|
---|
| 630 | f_out << left << setw(30) <<"* N term for forward HCAL: "<<""
|
---|
| 631 | << left << setw(30) <<HAD_Nhf <<""<< right << setw(10)<<"*"<<"\n";
|
---|
| 632 | f_out << left << setw(30) <<"* C term for forward HCAL: "<<""
|
---|
| 633 | << left << setw(30) <<HAD_Chf <<""<< right << setw(10)<<"*"<<"\n";
|
---|
| 634 | f_out<<"* *"<<"\n";
|
---|
| 635 | f_out<<"#************************* *"<<"\n";
|
---|
| 636 | f_out<<"# Muon smearing parameters *"<<"\n";
|
---|
| 637 | f_out<<"#************************* *"<<"\n";
|
---|
| 638 | f_out<<"* *"<<"\n";
|
---|
[94] | 639 | f_out << left << setw(55) <<"* PT resolution for muons : "<<""
|
---|
| 640 | << left << setw(5) <<MU_SmearPt <<""<< right << setw(10)<<"*"<<"\n";
|
---|
[44] | 641 | f_out<<"* *"<<"\n";
|
---|
[94] | 642 | if(FLAG_bfield==1){
|
---|
| 643 | f_out<<"#*************************** *"<<"\n";
|
---|
| 644 | f_out<<"# Magnetic field switches on *"<<"\n";
|
---|
| 645 | f_out<<"#*************************** *"<<"\n";
|
---|
| 646 | f_out<<"* *"<<"\n";
|
---|
| 647 | f_out << left << setw(55) <<"* Radius of the BField coverage: "<<""
|
---|
| 648 | << left << setw(5) <<TRACK_radius <<""<< right << setw(10)<<"*"<<"\n";
|
---|
| 649 | f_out << left << setw(55) <<"* Length of the BField coverage: "<<""
|
---|
| 650 | << left << setw(5) <<TRACK_length <<""<< right << setw(10)<<"*"<<"\n";
|
---|
| 651 | f_out << left << setw(55) <<"* BField X component: "<<""
|
---|
| 652 | << left << setw(5) <<TRACK_bfield_x <<""<< right << setw(10)<<"*"<<"\n";
|
---|
| 653 | f_out << left << setw(55) <<"* BField Y component: "<<""
|
---|
| 654 | << left << setw(5) <<TRACK_bfield_y <<""<< right << setw(10)<<"*"<<"\n";
|
---|
| 655 | f_out << left << setw(55) <<"* BField Z component: "<<""
|
---|
| 656 | << left << setw(5) <<TRACK_bfield_z <<""<< right << setw(10)<<"*"<<"\n";
|
---|
| 657 | f_out << left << setw(55) <<"* Minimal pT needed to reach the calorimeter [GeV]: "<<""
|
---|
| 658 | << left << setw(10) <<TRACK_ptmin <<""<< right << setw(5)<<"*"<<"\n";
|
---|
| 659 | f_out << left << setw(55) <<"* Efficiency associated to the tracking: "<<""
|
---|
| 660 | << left << setw(10) <<TRACK_eff <<""<< right << setw(5)<<"*"<<"\n";
|
---|
| 661 | f_out<<"* *"<<"\n";
|
---|
| 662 | }
|
---|
| 663 | else {
|
---|
| 664 | f_out<<"#**************************** *"<<"\n";
|
---|
| 665 | f_out<<"# Magnetic field switches off *"<<"\n";
|
---|
| 666 | f_out<<"#**************************** *"<<"\n";
|
---|
| 667 | f_out << left << setw(55) <<"* Minimal pT needed to reach the calorimeter [GeV]: "<<""
|
---|
| 668 | << left << setw(10) <<TRACK_ptmin <<""<< right << setw(5)<<"*"<<"\n";
|
---|
| 669 | f_out << left << setw(55) <<"* Efficiency associated to the tracking: "<<""
|
---|
| 670 | << left << setw(10) <<TRACK_eff <<""<< right << setw(5)<<"*"<<"\n";
|
---|
| 671 | f_out<<"* *"<<"\n";
|
---|
| 672 | }
|
---|
| 673 | f_out<<"#******************** *"<<"\n";
|
---|
| 674 | f_out<<"# Calorimetric Towers *"<<"\n";
|
---|
| 675 | f_out<<"#******************** *"<<"\n";
|
---|
| 676 | f_out << left << setw(55) <<"* Number of calorimetric towers in eta, for eta>0: "<<""
|
---|
| 677 | << left << setw(5) << TOWER_number <<""<< right << setw(10)<<"*"<<"\n";
|
---|
| 678 | f_out << left << setw(55) <<"* Tower edges in eta, for eta>0: "<<"" << right << setw(15)<<"*"<<"\n";
|
---|
| 679 | f_out << "* ";
|
---|
| 680 | for (unsigned int i=0; i<TOWER_number+1; i++) {
|
---|
| 681 | f_out << left << setw(7) << TOWER_eta_edges[i];
|
---|
| 682 | if(!( (i+1) %9 )) f_out << right << setw(3) << "*" << "\n" << "* ";
|
---|
| 683 | }
|
---|
| 684 | for (unsigned int i=(TOWER_number+1)%9; i<9; i++) f_out << left << setw(7) << "";
|
---|
| 685 | f_out << right << setw(3)<<"*"<<"\n";
|
---|
| 686 | f_out << left << setw(55) <<"* Tower sizes in phi, for eta>0 [degree]:"<<"" << right << setw(15)<<"*"<<"\n";
|
---|
| 687 | f_out << "* ";
|
---|
| 688 | for (unsigned int i=0; i<TOWER_number; i++) {
|
---|
| 689 | f_out << left << setw(7) << TOWER_dphi[i];
|
---|
| 690 | if(!( (i+1) %9 )) f_out << right << setw(3) << "*" << "\n" << "* ";
|
---|
| 691 | }
|
---|
| 692 | for (unsigned int i=(TOWER_number)%9; i<9; i++) f_out << left << setw(7) << "";
|
---|
| 693 | f_out << right << setw(3)<<"*"<<"\n";
|
---|
[44] | 694 | f_out<<"* *"<<"\n";
|
---|
| 695 | f_out<<"#******************* *"<<"\n";
|
---|
| 696 | f_out<<"# Minimum pT's [GeV] *"<<"\n";
|
---|
| 697 | f_out<<"#******************* *"<<"\n";
|
---|
| 698 | f_out<<"* *"<<"\n";
|
---|
| 699 | f_out << left << setw(40) <<"* Minimum pT for electrons: "<<""
|
---|
[94] | 700 | << left << setw(20) <<PTCUT_elec <<""<< right << setw(10)<<"*"<<"\n";
|
---|
[44] | 701 | f_out << left << setw(40) <<"* Minimum pT for muons: "<<""
|
---|
[94] | 702 | << left << setw(20) <<PTCUT_muon <<""<< right << setw(10)<<"*"<<"\n";
|
---|
[44] | 703 | f_out << left << setw(40) <<"* Minimum pT for jets: "<<""
|
---|
[94] | 704 | << left << setw(20) <<PTCUT_jet <<""<< right << setw(10)<<"*"<<"\n";
|
---|
[44] | 705 | f_out << left << setw(40) <<"* Minimum pT for Tau-jets: "<<""
|
---|
[94] | 706 | << left << setw(20) <<PTCUT_taujet <<""<< right << setw(10)<<"*"<<"\n";
|
---|
[74] | 707 | f_out << left << setw(40) <<"* Minimum pT for photons: "<<""
|
---|
[94] | 708 | << left << setw(20) <<PTCUT_gamma <<""<< right << setw(10)<<"*"<<"\n";
|
---|
[44] | 709 | f_out<<"* *"<<"\n";
|
---|
| 710 | f_out<<"#*************** *"<<"\n";
|
---|
| 711 | f_out<<"# Jet definition *"<<"\n";
|
---|
| 712 | f_out<<"#*************** *"<<"\n";
|
---|
| 713 | f_out<<"* *"<<"\n";
|
---|
[49] | 714 | f_out<<"* Six algorithms are currently available: *"<<"\n";
|
---|
| 715 | f_out<<"* - 1) CDF cone algorithm, *"<<"\n";
|
---|
| 716 | f_out<<"* - 2) CDF MidPoint algorithm, *"<<"\n";
|
---|
| 717 | f_out<<"* - 3) SIScone algorithm, *"<<"\n";
|
---|
| 718 | f_out<<"* - 4) kt algorithm, *"<<"\n";
|
---|
| 719 | f_out<<"* - 5) Cambrigde/Aachen algorithm, *"<<"\n";
|
---|
| 720 | f_out<<"* - 6) Anti-kt algorithm. *"<<"\n";
|
---|
| 721 | f_out<<"* *"<<"\n";
|
---|
| 722 | f_out<<"* You have chosen *"<<"\n";
|
---|
[94] | 723 | switch(JET_jetalgo) {
|
---|
[44] | 724 | default:
|
---|
| 725 | case 1: {
|
---|
[94] | 726 | f_out<<"* CDF JetClu jet algorithm with parameters: *"<<"\n";
|
---|
| 727 | f_out << left << setw(40) <<"* - Seed threshold: "<<""
|
---|
| 728 | << left << setw(10) <<JET_seed <<""<< right << setw(20)<<"! not in datacard *"<<"\n";
|
---|
| 729 | f_out << left << setw(40) <<"* - Cone radius: "<<""
|
---|
| 730 | << left << setw(10) <<JET_coneradius <<""<< right << setw(20)<<"*"<<"\n";
|
---|
| 731 | f_out << left << setw(40) <<"* - Adjacency cut: "<<""
|
---|
| 732 | << left << setw(10) <<JET_C_adjacencycut <<""<< right << setw(20)<<"! not in datacard *"<<"\n";
|
---|
| 733 | f_out << left << setw(40) <<"* - Max iterations: "<<""
|
---|
| 734 | << left << setw(10) <<JET_C_maxiterations <<""<< right << setw(20)<<"! not in datacard *"<<"\n";
|
---|
| 735 | f_out << left << setw(40) <<"* - Iratch: "<<""
|
---|
| 736 | << left << setw(10) <<JET_C_iratch <<""<< right << setw(20)<<"! not in datacard *"<<"\n";
|
---|
| 737 | f_out << left << setw(40) <<"* - Overlap threshold: "<<""
|
---|
| 738 | << left << setw(10) <<JET_overlap <<""<< right << setw(20)<<"! not in datacard *"<<"\n";
|
---|
[44] | 739 | }
|
---|
| 740 | break;
|
---|
| 741 | case 2: {
|
---|
[94] | 742 | f_out<<"* CDF midpoint jet algorithm with parameters: *"<<"\n";
|
---|
| 743 | f_out << left << setw(40) <<"* - Seed threshold: "<<""
|
---|
| 744 | << left << setw(20) <<JET_seed <<""<< right << setw(10)<<"! not in datacard *"<<"\n";
|
---|
| 745 | f_out << left << setw(40) <<"* - Cone radius: "<<""
|
---|
| 746 | << left << setw(20) <<JET_coneradius <<""<< right << setw(10)<<"*"<<"\n";
|
---|
| 747 | f_out << left << setw(40) <<"* - Cone area fraction:"<<""
|
---|
| 748 | << left << setw(20) <<JET_M_coneareafraction <<""<< right << setw(10)<<"! not in datacard *"<<"\n";
|
---|
| 749 | f_out << left << setw(40) <<"* - Maximum pair size: "<<""
|
---|
| 750 | << left << setw(20) <<JET_M_maxpairsize <<""<< right << setw(10)<<"! not in datacard *"<<"\n";
|
---|
| 751 | f_out << left << setw(40) <<"* - Max iterations: "<<""
|
---|
| 752 | << left << setw(20) <<JET_M_maxiterations <<""<< right << setw(10)<<"! not in datacard *"<<"\n";
|
---|
| 753 | f_out << left << setw(40) <<"* - Overlap threshold: "<<""
|
---|
| 754 | << left << setw(20) <<JET_overlap <<""<< right << setw(10)<<"! not in datacard *"<<"\n";
|
---|
[44] | 755 | }
|
---|
| 756 | break;
|
---|
| 757 | case 3: {
|
---|
[94] | 758 | f_out <<"* SISCone jet algorithm with parameters: *"<<"\n";
|
---|
| 759 | f_out << left << setw(40) <<"* - Cone radius: "<<""
|
---|
| 760 | << left << setw(20) <<JET_coneradius <<""<< right << setw(10)<<"*"<<"\n";
|
---|
| 761 | f_out << left << setw(40) <<"* - Overlap threshold: "<<""
|
---|
| 762 | << left << setw(20) <<JET_overlap <<""<< right << setw(10)<<"! not in datacard *"<<"\n";
|
---|
| 763 | f_out << left << setw(40) <<"* - Number pass max: "<<""
|
---|
| 764 | << left << setw(20) <<JET_S_npass <<""<< right << setw(10)<<"! not in datacard *"<<"\n";
|
---|
| 765 | f_out << left << setw(40) <<"* - Minimum pT for protojet: "<<""
|
---|
| 766 | << left << setw(20) <<JET_S_protojet_ptmin <<""<< right << setw(10)<<"! not in datacard *"<<"\n";
|
---|
[44] | 767 | }
|
---|
| 768 | break;
|
---|
| 769 | case 4: {
|
---|
[94] | 770 | f_out <<"* KT jet algorithm with parameters: *"<<"\n";
|
---|
| 771 | f_out << left << setw(40) <<"* - Cone radius: "<<""
|
---|
| 772 | << left << setw(20) <<JET_coneradius <<""<< right << setw(10)<<"*"<<"\n";
|
---|
[44] | 773 | }
|
---|
| 774 | break;
|
---|
[49] | 775 | case 5: {
|
---|
[94] | 776 | f_out <<"* Cambridge/Aachen jet algorithm with parameters: *"<<"\n";
|
---|
| 777 | f_out << left << setw(40) <<"* - Cone radius: "<<""
|
---|
| 778 | << left << setw(20) <<JET_coneradius <<""<< right << setw(10)<<"*"<<"\n";
|
---|
[44] | 779 | }
|
---|
[49] | 780 | break;
|
---|
| 781 | case 6: {
|
---|
[94] | 782 | f_out <<"* Anti-kt jet algorithm with parameters: *"<<"\n";
|
---|
| 783 | f_out << left << setw(40) <<"* - Cone radius: "<<""
|
---|
| 784 | << left << setw(20) <<JET_coneradius <<""<< right << setw(10)<<"*"<<"\n";
|
---|
[49] | 785 | }
|
---|
| 786 | break;
|
---|
| 787 | }
|
---|
[44] | 788 | f_out<<"* *"<<"\n";
|
---|
[94] | 789 | f_out<<"#****************************** *"<<"\n";
|
---|
| 790 | f_out<<"# Tau-jet definition parameters *"<<"\n";
|
---|
| 791 | f_out<<"#****************************** *"<<"\n";
|
---|
| 792 | f_out<<"* *"<<"\n";
|
---|
| 793 | f_out << left << setw(45) <<"* Cone radius for calorimeter tagging: "<<""
|
---|
| 794 | << left << setw(5) <<TAU_energy_scone <<""<< right << setw(20)<<"*"<<"\n";
|
---|
| 795 | f_out << left << setw(45) <<"* Fraction of energy in the small cone: "<<""
|
---|
| 796 | << left << setw(5) <<TAU_energy_frac*100 <<""<< right << setw(20)<<"! not in datacard *"<<"\n";
|
---|
| 797 | f_out << left << setw(45) <<"* Cone radius for tracking tagging: "<<""
|
---|
| 798 | << left << setw(5) <<TAU_track_scone <<""<< right << setw(20)<<"*"<<"\n";
|
---|
| 799 | f_out << left << setw(45) <<"* Minimum track pT [GeV]: "<<""
|
---|
| 800 | << left << setw(5) <<TAU_track_pt <<""<< right << setw(20)<<"*"<<"\n";
|
---|
| 801 | f_out<<"* *"<<"\n";
|
---|
| 802 | f_out<<"#*************************** *"<<"\n";
|
---|
| 803 | f_out<<"# B-tagging efficiencies [%] *"<<"\n";
|
---|
| 804 | f_out<<"#*************************** *"<<"\n";
|
---|
| 805 | f_out<<"* *"<<"\n";
|
---|
| 806 | f_out << left << setw(50) <<"* Efficiency to tag a \"b\" as a b-jet: "<<""
|
---|
| 807 | << left << setw(10) <<BTAG_b <<""<< right << setw(10)<<"*"<<"\n";
|
---|
| 808 | f_out << left << setw(50) <<"* Efficiency to mistag a c-jet as a b-jet: "<<""
|
---|
| 809 | << left << setw(10) <<BTAG_mistag_c <<""<< right << setw(10)<<"*"<<"\n";
|
---|
| 810 | f_out << left << setw(50) <<"* Efficiency to mistag a light jet as a b-jet: "<<""
|
---|
| 811 | << left << setw(10) <<BTAG_mistag_l <<""<< right << setw(10)<<"*"<<"\n";
|
---|
| 812 | f_out<<"* *"<<"\n";
|
---|
| 813 | f_out<<"* *"<<"\n";
|
---|
[44] | 814 | f_out<<"#....................................................................*"<<"\n";
|
---|
| 815 | f_out<<"#>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>"<<"\n";
|
---|
[94] | 816 |
|
---|
[44] | 817 | }
|
---|
| 818 |
|
---|
[2] | 819 | // **********Provides the smeared TLorentzVector for the electrons********
|
---|
| 820 | // Smears the electron energy, and changes the 4-momentum accordingly
|
---|
| 821 | // different smearing if the electron is central (eta < 2.5) or forward
|
---|
| 822 | void RESOLution::SmearElectron(TLorentzVector &electron) {
|
---|
| 823 | // the 'electron' variable will be changed by the function
|
---|
| 824 | float energy = electron.E(); // before smearing
|
---|
| 825 | float energyS = 0.0; // after smearing // \sigma/E = C + N/E + S/\sqrt{E}
|
---|
[71] | 826 |
|
---|
[94] | 827 | if(fabs(electron.Eta()) < CEN_max_tracker) { // if the electron is inside the tracker
|
---|
[2] | 828 | energyS = gRandom->Gaus(energy, sqrt(
|
---|
| 829 | pow(ELG_Ncen,2) +
|
---|
| 830 | pow(ELG_Ccen*energy,2) +
|
---|
[22] | 831 | pow(ELG_Scen*sqrt(energy),2) ));
|
---|
[55] | 832 | }
|
---|
[94] | 833 | if(fabs(electron.Eta()) > CEN_max_tracker && fabs(electron.Eta()) < CEN_max_calo_fwd){
|
---|
[2] | 834 | energyS = gRandom->Gaus(energy, sqrt(
|
---|
| 835 | pow(ELG_Nfwd,2) +
|
---|
| 836 | pow(ELG_Cfwd*energy,2) +
|
---|
| 837 | pow(ELG_Sfwd*sqrt(energy),2) ) );
|
---|
| 838 | }
|
---|
| 839 | electron.SetPtEtaPhiE(energyS/cosh(electron.Eta()), electron.Eta(), electron.Phi(), energyS);
|
---|
| 840 | if(electron.E() < 0)electron.SetPxPyPzE(0,0,0,0); // no negative values after smearing !
|
---|
| 841 | }
|
---|
| 842 |
|
---|
| 843 |
|
---|
| 844 | // **********Provides the smeared TLorentzVector for the muons********
|
---|
| 845 | // Smears the muon pT and changes the 4-momentum accordingly
|
---|
| 846 | void RESOLution::SmearMu(TLorentzVector &muon) {
|
---|
| 847 | // the 'muon' variable will be changed by the function
|
---|
| 848 | float pt = muon.Pt(); // before smearing
|
---|
[61] | 849 | float ptS=pt;
|
---|
| 850 |
|
---|
[94] | 851 | if(fabs(muon.Eta()) < CEN_max_mu )
|
---|
[61] | 852 | {
|
---|
| 853 | ptS = gRandom->Gaus(pt, MU_SmearPt*pt ); // after smearing // \sigma/E = C + N/E + S/\sqrt{E}
|
---|
| 854 | }
|
---|
| 855 | muon.SetPtEtaPhiE(ptS, muon.Eta(), muon.Phi(), ptS*cosh(muon.Eta()));
|
---|
[2] | 856 |
|
---|
| 857 | if(muon.E() < 0)muon.SetPxPyPzE(0,0,0,0); // no negative values after smearing !
|
---|
| 858 | }
|
---|
| 859 |
|
---|
| 860 |
|
---|
| 861 | // **********Provides the smeared TLorentzVector for the hadrons********
|
---|
| 862 | // Smears the hadron 4-momentum
|
---|
| 863 | void RESOLution::SmearHadron(TLorentzVector &hadron, const float frac)
|
---|
| 864 | // the 'hadron' variable will be changed by the function
|
---|
| 865 | // the 'frac' variable describes the long-living particles. Should be 0.7 for K0S and Lambda, 1. otherwise
|
---|
| 866 | {
|
---|
| 867 | float energy = hadron.E(); // before smearing
|
---|
| 868 | float energyS = 0.0; // after smearing // \sigma/E = C + N/E + S/\sqrt{E}
|
---|
| 869 | float energy_ecal = (1.0 - frac)*energy; // electromagnetic calorimeter
|
---|
| 870 | float energy_hcal = frac*energy; // hadronic calorimeter
|
---|
| 871 | // frac takes into account the decay of long-living particles, that decay in the calorimeters
|
---|
| 872 | // some of the particles decay mostly in the ecal, some mostly in the hcal
|
---|
| 873 |
|
---|
[31] | 874 | float energyS1,energyS2;
|
---|
[94] | 875 | if(fabs(hadron.Eta()) < CEN_max_calo_cen) {
|
---|
[10] | 876 | energyS1 = gRandom->Gaus(energy_hcal, sqrt(
|
---|
[2] | 877 | pow(HAD_Nhcal,2) +
|
---|
| 878 | pow(HAD_Chcal*energy_hcal,2) +
|
---|
[9] | 879 | pow(HAD_Shcal*sqrt(energy_hcal),2) )) ;
|
---|
[10] | 880 |
|
---|
[9] | 881 |
|
---|
[10] | 882 | energyS2 = gRandom->Gaus(energy_ecal, sqrt(
|
---|
[32] | 883 | pow(ELG_Ncen,2) +
|
---|
| 884 | pow(ELG_Ccen*energy_ecal,2) +
|
---|
| 885 | pow(ELG_Scen*sqrt(energy_ecal),2) ) );
|
---|
[9] | 886 |
|
---|
[10] | 887 | energyS = ((energyS1>0)?energyS1:0) + ((energyS2>0)?energyS2:0);
|
---|
[55] | 888 | }
|
---|
[219] | 889 | if(fabs(hadron.Eta()) > CEN_max_calo_cen && fabs(hadron.Eta()) < CEN_max_calo_fwd){
|
---|
[22] | 890 | energyS = gRandom->Gaus(energy, sqrt(
|
---|
[2] | 891 | pow(HAD_Nhf,2) +
|
---|
| 892 | pow(HAD_Chf*energy,2) +
|
---|
[22] | 893 | pow(HAD_Shf*sqrt(energy),2) ));
|
---|
[55] | 894 | }
|
---|
| 895 |
|
---|
[10] | 896 |
|
---|
| 897 |
|
---|
[2] | 898 | hadron.SetPtEtaPhiE(energyS/cosh(hadron.Eta()),hadron.Eta(), hadron.Phi(), energyS);
|
---|
| 899 |
|
---|
| 900 | if(hadron.E() < 0)hadron.SetPxPyPzE(0,0,0,0);
|
---|
| 901 | }
|
---|
| 902 |
|
---|
[74] | 903 | //******************************************************************************************
|
---|
| 904 |
|
---|
| 905 | void RESOLution::SortedVector(vector<ParticleUtil> &vect)
|
---|
| 906 | {
|
---|
| 907 | int i,j = 0;
|
---|
| 908 | TLorentzVector tmp;
|
---|
| 909 | bool en_desordre = true;
|
---|
| 910 | int entries=vect.size();
|
---|
| 911 | for(i = 0 ; (i < entries) && en_desordre; i++)
|
---|
| 912 | {
|
---|
| 913 | en_desordre = false;
|
---|
| 914 | for(j = 1 ; j < entries - i ; j++)
|
---|
| 915 | {
|
---|
| 916 | if ( vect[j].Pt() > vect[j-1].Pt() )
|
---|
| 917 | {
|
---|
| 918 | ParticleUtil tmp = vect[j-1];
|
---|
| 919 | vect[j-1] = vect[j];
|
---|
| 920 | vect[j] = tmp;
|
---|
| 921 | en_desordre = true;
|
---|
| 922 | }
|
---|
| 923 | }
|
---|
| 924 | }
|
---|
| 925 | }
|
---|
| 926 |
|
---|
[2] | 927 | // **********Provides the energy in the cone of radius TAU_CONE_ENERGY for the tau identification********
|
---|
| 928 | // to be taken into account, a calo tower should
|
---|
| 929 | // 1) have a transverse energy \f$ E_T = \sqrt{E_X^2 + E_Y^2} \f$ above a given threshold
|
---|
| 930 | // 2) be inside a cone with a radius R and the axis defined by (eta,phi)
|
---|
| 931 | double RESOLution::EnergySmallCone(const vector<PhysicsTower> &towers, const float eta, const float phi) {
|
---|
| 932 | double Energie=0;
|
---|
| 933 | for(unsigned int i=0; i < towers.size(); i++) {
|
---|
[94] | 934 | if(towers[i].fourVector.pt() < JET_seed) continue;
|
---|
| 935 | if((DeltaR(phi,eta,towers[i].fourVector.phi(),towers[i].fourVector.eta()) < TAU_energy_scone)) {
|
---|
[2] | 936 | Energie += towers[i].fourVector.E;
|
---|
| 937 | }
|
---|
| 938 | }
|
---|
| 939 | return Energie;
|
---|
| 940 | }
|
---|
| 941 |
|
---|
| 942 |
|
---|
| 943 | // **********Provides the number of tracks in the cone of radius TAU_CONE_TRACKS for the tau identification********
|
---|
| 944 | // to be taken into account, a track should
|
---|
| 945 | // 1) avec a transverse momentum \$f p_T \$ above a given threshold
|
---|
| 946 | // 2) be inside a cone with a radius R and the axis defined by (eta,phi)
|
---|
| 947 | // IMPORTANT REMARK !!!!!
|
---|
| 948 | // previously, the argument 'phi' was before the argument 'eta'
|
---|
| 949 | // this has been changed for consistency with the other functions
|
---|
| 950 | // double check your running code that uses NumTracks !
|
---|
| 951 | unsigned int RESOLution::NumTracks(const vector<TLorentzVector> &tracks, const float pt_track, const float eta, const float phi) {
|
---|
| 952 | unsigned int numtrack=0;
|
---|
| 953 | for(unsigned int i=0; i < tracks.size(); i++) {
|
---|
| 954 | if((tracks[i].Pt() < pt_track )||
|
---|
[94] | 955 | (DeltaR(phi,eta,tracks[i].Phi(),tracks[i].Eta()) > TAU_track_scone)
|
---|
[2] | 956 | )continue;
|
---|
| 957 | numtrack++;
|
---|
| 958 | }
|
---|
| 959 | return numtrack;
|
---|
| 960 | }
|
---|
| 961 |
|
---|
| 962 |
|
---|
| 963 | //*** Returns the PID of the particle with the highest energy, in a cone with a radius CONERADIUS and an axis (eta,phi) *********
|
---|
| 964 | //used by Btaggedjet
|
---|
| 965 | ///// Attention : bug removed => CONERADIUS/2 -> CONERADIUS !!
|
---|
| 966 | int RESOLution::Bjets(const TSimpleArray<TRootGenParticle> &subarray, const float eta, const float phi) {
|
---|
| 967 | float emax=0;
|
---|
| 968 | int Ppid=0;
|
---|
| 969 | if(subarray.GetEntries()>0) {
|
---|
| 970 | for(int i=0; i < subarray.GetEntries();i++) { // should have pt>PT_JETMIN and a small cone radius (r<CONE_JET)
|
---|
| 971 | float genDeltaR = DeltaR(subarray[i]->Phi,subarray[i]->Eta,phi,eta);
|
---|
[94] | 972 | if(genDeltaR < JET_coneradius && subarray[i]->E > emax) {
|
---|
[2] | 973 | emax=subarray[i]->E;
|
---|
| 974 | Ppid=abs(subarray[i]->PID);
|
---|
| 975 | }
|
---|
| 976 | }
|
---|
| 977 | }
|
---|
| 978 | return Ppid;
|
---|
| 979 | }
|
---|
| 980 |
|
---|
| 981 |
|
---|
| 982 | //******************** Simulates the b-tagging efficiency for real bjet, or the misendentification for other jets****************
|
---|
| 983 | bool RESOLution::Btaggedjet(const TLorentzVector &JET, const TSimpleArray<TRootGenParticle> &subarray) {
|
---|
[94] | 984 | if( rand()%100 < (BTAG_b+1) && Bjets(subarray,JET.Eta(),JET.Phi())==pB ) return true; // b-tag of b-jets is 40%
|
---|
| 985 | else if( rand()%100 < (BTAG_mistag_c+1) && Bjets(subarray,JET.Eta(),JET.Phi())==pC ) return true; // b-tag of c-jets is 10%
|
---|
| 986 | else if( rand()%100 < (BTAG_mistag_l+1) && Bjets(subarray,JET.Eta(),JET.Phi())!=0) return true; // b-tag of light jets is 1%
|
---|
[2] | 987 | return false;
|
---|
| 988 | }
|
---|
| 989 |
|
---|
[31] | 990 | //***********************Isolation criteria***********************
|
---|
| 991 | //****************************************************************
|
---|
[219] | 992 | bool RESOLution::Isolation(const float phi, const float eta,const vector<TLorentzVector> &tracks, const float pt_second_track)
|
---|
[31] | 993 | {
|
---|
| 994 | bool isolated = false;
|
---|
[219] | 995 | float deltar=5000.; // Initial value; should be high; no further repercussion
|
---|
[31] | 996 | // loop on all final charged particles, with p_t >2, close enough from the electron
|
---|
| 997 | for(unsigned int i=0; i < tracks.size(); i++)
|
---|
| 998 | {
|
---|
[219] | 999 | if(tracks[i].Pt() < pt_second_track)continue;
|
---|
| 1000 | float genDeltaR = DeltaR(phi,eta,tracks[i].Phi(),tracks[i].Eta());
|
---|
[31] | 1001 | if(
|
---|
| 1002 | (genDeltaR > deltar) ||
|
---|
| 1003 | (genDeltaR==0)
|
---|
| 1004 | ) continue ;
|
---|
| 1005 | deltar=genDeltaR;
|
---|
| 1006 | }
|
---|
[219] | 1007 | if(deltar > 0.5) isolated = true;
|
---|
[31] | 1008 | return isolated;
|
---|
| 1009 | }
|
---|
| 1010 |
|
---|
| 1011 |
|
---|
[71] | 1012 | //********** returns a segmented value for eta and phi, for calo towers *****
|
---|
| 1013 | void RESOLution::BinEtaPhi(const float phi, const float eta, float& iPhi, float& iEta){
|
---|
| 1014 | iEta = -100;
|
---|
| 1015 | int index=-100;
|
---|
[94] | 1016 | for (unsigned int i=1; i< TOWER_number+1; i++) {
|
---|
| 1017 | if(fabs(eta)>TOWER_eta_edges[i-1] && fabs(eta)<TOWER_eta_edges[i]) {
|
---|
| 1018 | iEta = (eta>0) ? TOWER_eta_edges[i-1] : -TOWER_eta_edges[i];
|
---|
[71] | 1019 | index = i-1;
|
---|
| 1020 | //cout << setw(15) << left << eta << "\t" << iEta << endl;
|
---|
| 1021 | break;
|
---|
| 1022 | }
|
---|
| 1023 | }
|
---|
| 1024 | if(index==-100) return;
|
---|
| 1025 | iPhi = -100;
|
---|
[244] | 1026 | float dphi = TOWER_dphi[index]*pi/180.;
|
---|
[94] | 1027 | for (unsigned int i=1; i < 360/TOWER_dphi[index]; i++ ) {
|
---|
[244] | 1028 | float low = -pi+(i-1)*dphi;
|
---|
[71] | 1029 | float high= low+dphi;
|
---|
| 1030 | if(phi > low && phi < high ){
|
---|
| 1031 | iPhi = low;
|
---|
| 1032 | break;
|
---|
| 1033 | }
|
---|
| 1034 | }
|
---|
[244] | 1035 | if (phi > pi-dphi) iPhi = pi-dphi;
|
---|
[71] | 1036 | }
|
---|
| 1037 |
|
---|
[2] | 1038 | //**************************** Returns the delta Phi ****************************
|
---|
| 1039 | float DeltaPhi(const float phi1, const float phi2) {
|
---|
[244] | 1040 | float deltaphi=phi1-phi2; // in here, -pi < phi < pi
|
---|
| 1041 | if(fabs(deltaphi) > pi) {
|
---|
| 1042 | deltaphi=2.*pi -fabs(deltaphi);// put deltaphi between 0 and pi
|
---|
[219] | 1043 | }
|
---|
[2] | 1044 | else deltaphi=fabs(deltaphi);
|
---|
| 1045 |
|
---|
| 1046 | return deltaphi;
|
---|
| 1047 | }
|
---|
| 1048 |
|
---|
| 1049 | //**************************** Returns the delta R****************************
|
---|
| 1050 | float DeltaR(const float phi1, const float eta1, const float phi2, const float eta2) {
|
---|
| 1051 | return sqrt(pow(DeltaPhi(phi1,phi2),2) + pow(eta1-eta2,2));
|
---|
| 1052 | }
|
---|
| 1053 |
|
---|
| 1054 | int sign(const int myint) {
|
---|
| 1055 | if (myint >0) return 1;
|
---|
| 1056 | else if (myint <0) return -1;
|
---|
| 1057 | else return 0;
|
---|
| 1058 | }
|
---|
| 1059 |
|
---|
| 1060 | int sign(const float myfloat) {
|
---|
| 1061 | if (myfloat >0) return 1;
|
---|
| 1062 | else if (myfloat <0) return -1;
|
---|
| 1063 | else return 0;
|
---|
| 1064 | }
|
---|
| 1065 |
|
---|
[177] | 1066 | int Charge(const int pid)
|
---|
[55] | 1067 | {
|
---|
| 1068 | int charge;
|
---|
| 1069 | if(
|
---|
| 1070 | (pid == pGAMMA) ||
|
---|
| 1071 | (pid == pPI0) ||
|
---|
| 1072 | (pid == pK0L) ||
|
---|
| 1073 | (pid == pN) ||
|
---|
| 1074 | (pid == pSIGMA0) ||
|
---|
| 1075 | (pid == pDELTA0) ||
|
---|
| 1076 | (pid == pK0S) // not charged particles : invisible by tracker
|
---|
| 1077 | )
|
---|
| 1078 | charge = 0;
|
---|
| 1079 | else charge = (sign(pid));
|
---|
| 1080 | return charge;
|
---|
| 1081 |
|
---|
[2] | 1082 | }
|
---|