[2] | 1 | /*
|
---|
| 2 | ---- Delphes ----
|
---|
| 3 | A Fast Simulator for general purpose LHC detector
|
---|
| 4 | S. Ovyn ~~~~ severine.ovyn@uclouvain.be
|
---|
| 5 |
|
---|
| 6 | Center for Particle Physics and Phenomenology (CP3)
|
---|
| 7 | Universite Catholique de Louvain (UCL)
|
---|
| 8 | Louvain-la-Neuve, Belgium
|
---|
| 9 | */
|
---|
| 10 |
|
---|
| 11 | /// \file SmearUtil.cc
|
---|
| 12 | /// \brief RESOLution class, and some generic definitions
|
---|
| 13 |
|
---|
| 14 |
|
---|
[219] | 15 | #include "SmearUtil.h"
|
---|
[2] | 16 | #include "TRandom.h"
|
---|
| 17 |
|
---|
| 18 | #include <iostream>
|
---|
[219] | 19 | #include <fstream>
|
---|
[2] | 20 | #include <sstream>
|
---|
[44] | 21 | #include <iomanip>
|
---|
[219] | 22 | using namespace std;
|
---|
[44] | 23 |
|
---|
| 24 |
|
---|
[219] | 25 | ParticleUtil::ParticleUtil(const TLorentzVector &genMomentum, int pid) {
|
---|
| 26 | _pid=pid;
|
---|
| 27 | _e = genMomentum.E();
|
---|
| 28 | _px = genMomentum.Px();
|
---|
| 29 | _py = genMomentum.Py();
|
---|
| 30 | _pz = genMomentum.Pz();
|
---|
| 31 | _pt = genMomentum.Pt();
|
---|
[44] | 32 |
|
---|
[219] | 33 | //_e, _px, _py, _pz, _pt;
|
---|
| 34 | //float _eta, _etaCalo, _phi, _phiCalo;
|
---|
| 35 | //int _pid;
|
---|
| 36 | }
|
---|
[2] | 37 |
|
---|
| 38 | //------------------------------------------------------------------------------
|
---|
| 39 |
|
---|
| 40 | RESOLution::RESOLution() {
|
---|
| 41 |
|
---|
[94] | 42 | // Detector characteristics
|
---|
| 43 | CEN_max_tracker = 2.5; // Maximum tracker coverage
|
---|
| 44 | CEN_max_calo_cen = 3.0; // central calorimeter coverage
|
---|
| 45 | CEN_max_calo_fwd = 5.0; // forward calorimeter pseudorapidity coverage
|
---|
| 46 | CEN_max_mu = 2.4; // muon chambers pseudorapidity coverage
|
---|
| 47 |
|
---|
| 48 | // Energy resolution for electron/photon
|
---|
| 49 | // \sigma/E = C + N/E + S/\sqrt{E}
|
---|
| 50 | ELG_Scen = 0.05; // S term for central ECAL
|
---|
| 51 | ELG_Ncen = 0.25; // N term for central ECAL
|
---|
| 52 | ELG_Ccen = 0.005; // C term for central ECAL
|
---|
| 53 | ELG_Cfwd = 0.107; // S term for forward ECAL
|
---|
| 54 | ELG_Sfwd = 2.084; // C term for forward ECAL
|
---|
| 55 | ELG_Nfwd = 0.0; // N term for central ECAL
|
---|
[2] | 56 |
|
---|
[94] | 57 | // Energy resolution for hadrons in ecal/hcal/hf
|
---|
| 58 | // \sigma/E = C + N/E + S/\sqrt{E}
|
---|
| 59 | HAD_Shcal = 1.5; // S term for central HCAL // hadronic calorimeter
|
---|
| 60 | HAD_Nhcal = 0.; // N term for central HCAL
|
---|
| 61 | HAD_Chcal = 0.05; // C term for central HCAL
|
---|
| 62 | HAD_Shf = 2.7; // S term for HF // forward calorimeter
|
---|
| 63 | HAD_Nhf = 0.; // N term for HF
|
---|
| 64 | HAD_Chf = 0.13; // C term for HF
|
---|
[2] | 65 |
|
---|
[94] | 66 | // Muon smearing
|
---|
| 67 | MU_SmearPt = 0.01;
|
---|
[2] | 68 |
|
---|
[94] | 69 | // Tracking efficiencies
|
---|
| 70 | TRACK_ptmin = 0.9; // minimal pt needed to reach the calorimeter in GeV
|
---|
| 71 | TRACK_eff = 100; // efficiency associated to the tracking
|
---|
[2] | 72 |
|
---|
[94] | 73 | // Calorimetric towers
|
---|
| 74 | TOWER_number = 40;
|
---|
| 75 | const float tower_eta_edges[41] = {
|
---|
| 76 | 0., 0.087, 0.174, 0.261, 0.348, 0.435, 0.522, 0.609, 0.696, 0.783, 0.870, 0.957, 1.044, 1.131, 1.218, 1.305, 1.392, 1.479, 1.566,
|
---|
| 77 | 1.653, 1.740, 1.830, 1.930, 2.043, 2.172, 2.322, 2.500, 2.650, 2.868, 2.950, 3.125, 3.300, 3.475, 3.650, 3.825, 4.000, 4.175,
|
---|
| 78 | 4.350, 4.525, 4.700, 5.000}; // temporary object
|
---|
| 79 | TOWER_eta_edges = new float[TOWER_number+1];
|
---|
| 80 | for(unsigned int i=0; i<TOWER_number +1; i++) TOWER_eta_edges[i] = tower_eta_edges[i];
|
---|
| 81 |
|
---|
| 82 | const float tower_dphi[40] = {
|
---|
| 83 | 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 10,
|
---|
| 84 | 10,10,10,10,10, 10,10,10,10,10, 10,10,10,10,10, 10,10,10,20, 20 }; // temporary object
|
---|
| 85 | TOWER_dphi = new float[TOWER_number];
|
---|
| 86 | for(unsigned int i=0; i<TOWER_number; i++) TOWER_dphi[i] = tower_dphi[i];
|
---|
[2] | 87 |
|
---|
| 88 |
|
---|
[94] | 89 | // Thresholds for reconstructed objetcs
|
---|
| 90 | PTCUT_elec = 10.0;
|
---|
| 91 | PTCUT_muon = 10.0;
|
---|
| 92 | PTCUT_jet = 20.0;
|
---|
| 93 | PTCUT_gamma = 10.0;
|
---|
| 94 | PTCUT_taujet = 10.0;
|
---|
[33] | 95 |
|
---|
[94] | 96 | // General jet variable
|
---|
| 97 | JET_coneradius = 0.7; // generic jet radius ; not for tau's !!!
|
---|
| 98 | JET_jetalgo = 1; // 1 for Cone algorithm, 2 for MidPoint algorithm, 3 for SIScone algorithm, 4 for kt algorithm
|
---|
| 99 | JET_seed = 1.0; // minimum seed to start jet reconstruction
|
---|
[33] | 100 |
|
---|
[94] | 101 | // Tagging definition
|
---|
| 102 | BTAG_b = 40;
|
---|
| 103 | BTAG_mistag_c = 10;
|
---|
| 104 | BTAG_mistag_l = 1;
|
---|
[2] | 105 |
|
---|
[94] | 106 | // FLAGS
|
---|
| 107 | FLAG_bfield = 1; //1 to run the bfield propagation else 0
|
---|
| 108 | FLAG_vfd = 1; //1 to run the very forward detectors else 0
|
---|
| 109 | FLAG_trigger = 1; //1 to run the trigger selection else 0
|
---|
| 110 | FLAG_frog = 1; //1 to run the FROG event display
|
---|
[2] | 111 |
|
---|
[94] | 112 | // In case BField propagation allowed
|
---|
| 113 | TRACK_radius = 129; //radius of the BField coverage
|
---|
| 114 | TRACK_length = 300; //length of the BField coverage
|
---|
| 115 | TRACK_bfield_x = 0; //X composant of the BField
|
---|
| 116 | TRACK_bfield_y = 0; //Y composant of the BField
|
---|
| 117 | TRACK_bfield_z = 3.8; //Z composant of the BField
|
---|
[2] | 118 |
|
---|
[94] | 119 | // In case Very forward detectors allowed
|
---|
| 120 | VFD_min_calo_vfd = 5.2; // very forward calorimeter (if any) like CASTOR
|
---|
| 121 | VFD_max_calo_vfd = 6.6;
|
---|
| 122 | VFD_min_zdc = 8.3;
|
---|
| 123 | VFD_s_zdc = 140; // distance of the Zero Degree Calorimeter, from the Interaction poin, in [m]
|
---|
[2] | 124 |
|
---|
[94] | 125 | RP_220_s = 220; // distance of the RP to the IP, in meters
|
---|
| 126 | RP_220_x = 0.002; // distance of the RP to the beam, in meters
|
---|
| 127 | RP_420_s = 420; // distance of the RP to the IP, in meters
|
---|
| 128 | RP_420_x = 0.004; // distance of the RP to the beam, in meters
|
---|
[2] | 129 |
|
---|
[94] | 130 | // In case FROG event display allowed
|
---|
| 131 | NEvents_Frog = 10;
|
---|
[2] | 132 |
|
---|
[94] | 133 | //********************************************
|
---|
| 134 | //jet stuffs not defined in the input datacard
|
---|
| 135 | //********************************************
|
---|
| 136 |
|
---|
| 137 | JET_overlap = 0.75;
|
---|
| 138 | // MidPoint algorithm definition
|
---|
| 139 | JET_M_coneareafraction = 0.25;
|
---|
| 140 | JET_M_maxpairsize = 2;
|
---|
| 141 | JET_M_maxiterations = 100;
|
---|
| 142 | // Define Cone algorithm.
|
---|
| 143 | JET_C_adjacencycut = 2;
|
---|
| 144 | JET_C_maxiterations = 100;
|
---|
| 145 | JET_C_iratch = 1;
|
---|
| 146 | //Define SISCone algorithm.
|
---|
| 147 | JET_S_npass = 0;
|
---|
| 148 | JET_S_protojet_ptmin= 0.0;
|
---|
| 149 |
|
---|
| 150 | //For Tau-jet definition
|
---|
| 151 | TAU_energy_scone = 0.15; // radius R of the cone for tau definition, based on energy threshold
|
---|
| 152 | TAU_track_scone = 0.4; // radius R of the cone for tau definition, based on track number
|
---|
| 153 | TAU_track_pt = 2; // minimal pt [GeV] for tracks to be considered in tau definition
|
---|
| 154 | TAU_energy_frac = 0.95; // fraction of energy required in the central part of the cone, for tau jets
|
---|
| 155 |
|
---|
| 156 | PT_QUARKS_MIN = 2.0 ; // minimal pt needed by quarks to do b-tag
|
---|
| 157 |
|
---|
[2] | 158 | }
|
---|
| 159 |
|
---|
[219] | 160 |
|
---|
| 161 | RESOLution::RESOLution(const RESOLution & DET) {
|
---|
| 162 | // Detector characteristics
|
---|
| 163 | CEN_max_tracker = DET.CEN_max_tracker;
|
---|
| 164 | CEN_max_calo_cen = DET.CEN_max_calo_cen;
|
---|
| 165 | CEN_max_calo_fwd = DET.CEN_max_calo_fwd;
|
---|
| 166 | CEN_max_mu = DET.CEN_max_mu;
|
---|
| 167 |
|
---|
| 168 | // Energy resolution for electron/photon
|
---|
| 169 | ELG_Scen = DET.ELG_Scen;
|
---|
| 170 | ELG_Ncen = DET.ELG_Ncen;
|
---|
| 171 | ELG_Ccen = DET.ELG_Ccen;
|
---|
| 172 | ELG_Cfwd = DET.ELG_Cfwd;
|
---|
| 173 | ELG_Sfwd = DET.ELG_Sfwd;
|
---|
| 174 | ELG_Nfwd = DET.ELG_Nfwd;
|
---|
| 175 |
|
---|
| 176 | // Energy resolution for hadrons in ecal/hcal/hf
|
---|
| 177 | HAD_Shcal = DET.HAD_Shcal;
|
---|
| 178 | HAD_Nhcal = DET.HAD_Nhcal;
|
---|
| 179 | HAD_Chcal = DET.HAD_Chcal;
|
---|
| 180 | HAD_Shf = DET.HAD_Shf;
|
---|
| 181 | HAD_Nhf = DET.HAD_Nhf;
|
---|
| 182 | HAD_Chf = DET.HAD_Chf;
|
---|
| 183 |
|
---|
| 184 | // Muon smearing
|
---|
| 185 | MU_SmearPt = DET.MU_SmearPt;
|
---|
| 186 |
|
---|
| 187 | // Tracking efficiencies
|
---|
| 188 | TRACK_ptmin = DET.TRACK_ptmin;
|
---|
| 189 | TRACK_eff = DET.TRACK_eff;
|
---|
| 190 |
|
---|
| 191 | // Calorimetric towers
|
---|
| 192 | TOWER_number = DET.TOWER_number;
|
---|
| 193 | TOWER_eta_edges = new float[TOWER_number+1];
|
---|
| 194 | for(unsigned int i=0; i<TOWER_number +1; i++) TOWER_eta_edges[i] = DET.TOWER_eta_edges[i];
|
---|
| 195 |
|
---|
| 196 | TOWER_dphi = new float[TOWER_number];
|
---|
| 197 | for(unsigned int i=0; i<TOWER_number; i++) TOWER_dphi[i] = DET.TOWER_dphi[i];
|
---|
| 198 |
|
---|
| 199 | // Thresholds for reconstructed objetcs
|
---|
| 200 | PTCUT_elec = DET.PTCUT_elec;
|
---|
| 201 | PTCUT_muon = DET.PTCUT_muon;
|
---|
| 202 | PTCUT_jet = DET.PTCUT_jet;
|
---|
| 203 | PTCUT_gamma = DET.PTCUT_gamma;
|
---|
| 204 | PTCUT_taujet = DET.PTCUT_taujet;
|
---|
| 205 |
|
---|
| 206 | // General jet variable
|
---|
| 207 | JET_coneradius = DET.JET_coneradius;
|
---|
| 208 | JET_jetalgo = DET.JET_jetalgo;
|
---|
| 209 | JET_seed = DET.JET_seed;
|
---|
| 210 |
|
---|
| 211 | // Tagging definition
|
---|
| 212 | BTAG_b = DET.BTAG_b;
|
---|
| 213 | BTAG_mistag_c = DET.BTAG_mistag_c;
|
---|
| 214 | BTAG_mistag_l = DET.BTAG_mistag_l;
|
---|
| 215 |
|
---|
| 216 | // FLAGS
|
---|
| 217 | FLAG_bfield = DET.FLAG_bfield;
|
---|
| 218 | FLAG_vfd = DET.FLAG_vfd;
|
---|
| 219 | FLAG_trigger = DET.FLAG_trigger;
|
---|
| 220 | FLAG_frog = DET.FLAG_frog;
|
---|
| 221 |
|
---|
| 222 | // In case BField propagation allowed
|
---|
| 223 | TRACK_radius = DET.TRACK_radius;
|
---|
| 224 | TRACK_length = DET.TRACK_length;
|
---|
| 225 | TRACK_bfield_x = DET.TRACK_bfield_x;
|
---|
| 226 | TRACK_bfield_y = DET.TRACK_bfield_y;
|
---|
| 227 | TRACK_bfield_z = DET.TRACK_bfield_z;
|
---|
| 228 |
|
---|
| 229 | // In case Very forward detectors allowed
|
---|
| 230 | VFD_min_calo_vfd = DET.VFD_min_calo_vfd;
|
---|
| 231 | VFD_max_calo_vfd = DET.VFD_max_calo_vfd;
|
---|
| 232 | VFD_min_zdc = DET.VFD_min_zdc;
|
---|
| 233 | VFD_s_zdc = DET.VFD_s_zdc;
|
---|
| 234 |
|
---|
| 235 | RP_220_s = DET.RP_220_s;
|
---|
| 236 | RP_220_x = DET.RP_220_x;
|
---|
| 237 | RP_420_s = DET.RP_420_s;
|
---|
| 238 | RP_420_x = DET.RP_420_x;
|
---|
| 239 |
|
---|
| 240 | // In case FROG event display allowed
|
---|
| 241 | NEvents_Frog = DET.NEvents_Frog;
|
---|
| 242 |
|
---|
| 243 | JET_overlap = DET.JET_overlap;
|
---|
| 244 | // MidPoint algorithm definition
|
---|
| 245 | JET_M_coneareafraction = DET.JET_M_coneareafraction;
|
---|
| 246 | JET_M_maxpairsize = DET.JET_M_maxpairsize;
|
---|
| 247 | JET_M_maxiterations = DET.JET_M_maxiterations;
|
---|
| 248 | // Define Cone algorithm.
|
---|
| 249 | JET_C_adjacencycut = DET.JET_C_adjacencycut;
|
---|
| 250 | JET_C_maxiterations = DET.JET_C_maxiterations;
|
---|
| 251 | JET_C_iratch = DET.JET_C_iratch;
|
---|
| 252 | //Define SISCone algorithm.
|
---|
| 253 | JET_S_npass = DET.JET_S_npass;
|
---|
| 254 | JET_S_protojet_ptmin = DET.JET_S_protojet_ptmin;
|
---|
| 255 |
|
---|
| 256 | //For Tau-jet definition
|
---|
| 257 | TAU_energy_scone = DET.TAU_energy_scone;
|
---|
| 258 | TAU_track_scone = DET.TAU_track_scone;
|
---|
| 259 | TAU_track_pt = DET.TAU_track_pt;
|
---|
| 260 | TAU_energy_frac = DET.TAU_energy_frac;
|
---|
| 261 |
|
---|
| 262 | PT_QUARKS_MIN = DET.PT_QUARKS_MIN;
|
---|
| 263 | }
|
---|
| 264 |
|
---|
| 265 | RESOLution& RESOLution::operator=(const RESOLution& DET) {
|
---|
| 266 | if(this==&DET) return *this;
|
---|
| 267 | // Detector characteristics
|
---|
| 268 | CEN_max_tracker = DET.CEN_max_tracker;
|
---|
| 269 | CEN_max_calo_cen = DET.CEN_max_calo_cen;
|
---|
| 270 | CEN_max_calo_fwd = DET.CEN_max_calo_fwd;
|
---|
| 271 | CEN_max_mu = DET.CEN_max_mu;
|
---|
| 272 |
|
---|
| 273 | // Energy resolution for electron/photon
|
---|
| 274 | ELG_Scen = DET.ELG_Scen;
|
---|
| 275 | ELG_Ncen = DET.ELG_Ncen;
|
---|
| 276 | ELG_Ccen = DET.ELG_Ccen;
|
---|
| 277 | ELG_Cfwd = DET.ELG_Cfwd;
|
---|
| 278 | ELG_Sfwd = DET.ELG_Sfwd;
|
---|
| 279 | ELG_Nfwd = DET.ELG_Nfwd;
|
---|
| 280 |
|
---|
| 281 | // Energy resolution for hadrons in ecal/hcal/hf
|
---|
| 282 | HAD_Shcal = DET.HAD_Shcal;
|
---|
| 283 | HAD_Nhcal = DET.HAD_Nhcal;
|
---|
| 284 | HAD_Chcal = DET.HAD_Chcal;
|
---|
| 285 | HAD_Shf = DET.HAD_Shf;
|
---|
| 286 | HAD_Nhf = DET.HAD_Nhf;
|
---|
| 287 | HAD_Chf = DET.HAD_Chf;
|
---|
| 288 |
|
---|
| 289 | // Muon smearing
|
---|
| 290 | MU_SmearPt = DET.MU_SmearPt;
|
---|
| 291 |
|
---|
| 292 | // Tracking efficiencies
|
---|
| 293 | TRACK_ptmin = DET.TRACK_ptmin;
|
---|
| 294 | TRACK_eff = DET.TRACK_eff;
|
---|
| 295 |
|
---|
| 296 | // Calorimetric towers
|
---|
| 297 | TOWER_number = DET.TOWER_number;
|
---|
| 298 | TOWER_eta_edges = new float[TOWER_number+1];
|
---|
| 299 | for(unsigned int i=0; i<TOWER_number +1; i++) TOWER_eta_edges[i] = DET.TOWER_eta_edges[i];
|
---|
| 300 |
|
---|
| 301 | TOWER_dphi = new float[TOWER_number];
|
---|
| 302 | for(unsigned int i=0; i<TOWER_number; i++) TOWER_dphi[i] = DET.TOWER_dphi[i];
|
---|
| 303 |
|
---|
| 304 | // Thresholds for reconstructed objetcs
|
---|
| 305 | PTCUT_elec = DET.PTCUT_elec;
|
---|
| 306 | PTCUT_muon = DET.PTCUT_muon;
|
---|
| 307 | PTCUT_jet = DET.PTCUT_jet;
|
---|
| 308 | PTCUT_gamma = DET.PTCUT_gamma;
|
---|
| 309 | PTCUT_taujet = DET.PTCUT_taujet;
|
---|
| 310 |
|
---|
| 311 | // General jet variable
|
---|
| 312 | JET_coneradius = DET.JET_coneradius;
|
---|
| 313 | JET_jetalgo = DET.JET_jetalgo;
|
---|
| 314 | JET_seed = DET.JET_seed;
|
---|
| 315 |
|
---|
| 316 | // Tagging definition
|
---|
| 317 | BTAG_b = DET.BTAG_b;
|
---|
| 318 | BTAG_mistag_c = DET.BTAG_mistag_c;
|
---|
| 319 | BTAG_mistag_l = DET.BTAG_mistag_l;
|
---|
| 320 |
|
---|
| 321 | // FLAGS
|
---|
| 322 | FLAG_bfield = DET.FLAG_bfield;
|
---|
| 323 | FLAG_vfd = DET.FLAG_vfd;
|
---|
| 324 | FLAG_trigger = DET.FLAG_trigger;
|
---|
| 325 | FLAG_frog = DET.FLAG_frog;
|
---|
| 326 |
|
---|
| 327 | // In case BField propagation allowed
|
---|
| 328 | TRACK_radius = DET.TRACK_radius;
|
---|
| 329 | TRACK_length = DET.TRACK_length;
|
---|
| 330 | TRACK_bfield_x = DET.TRACK_bfield_x;
|
---|
| 331 | TRACK_bfield_y = DET.TRACK_bfield_y;
|
---|
| 332 | TRACK_bfield_z = DET.TRACK_bfield_z;
|
---|
| 333 |
|
---|
| 334 | // In case Very forward detectors allowed
|
---|
| 335 | VFD_min_calo_vfd = DET.VFD_min_calo_vfd;
|
---|
| 336 | VFD_max_calo_vfd = DET.VFD_max_calo_vfd;
|
---|
| 337 | VFD_min_zdc = DET.VFD_min_zdc;
|
---|
| 338 | VFD_s_zdc = DET.VFD_s_zdc;
|
---|
| 339 |
|
---|
| 340 | RP_220_s = DET.RP_220_s;
|
---|
| 341 | RP_220_x = DET.RP_220_x;
|
---|
| 342 | RP_420_s = DET.RP_420_s;
|
---|
| 343 | RP_420_x = DET.RP_420_x;
|
---|
| 344 |
|
---|
| 345 | // In case FROG event display allowed
|
---|
| 346 | NEvents_Frog = DET.NEvents_Frog;
|
---|
| 347 |
|
---|
| 348 | JET_overlap = DET.JET_overlap;
|
---|
| 349 | // MidPoint algorithm definition
|
---|
| 350 | JET_M_coneareafraction = DET.JET_M_coneareafraction;
|
---|
| 351 | JET_M_maxpairsize = DET.JET_M_maxpairsize;
|
---|
| 352 | JET_M_maxiterations = DET.JET_M_maxiterations;
|
---|
| 353 | // Define Cone algorithm.
|
---|
| 354 | JET_C_adjacencycut = DET.JET_C_adjacencycut;
|
---|
| 355 | JET_C_maxiterations = DET.JET_C_maxiterations;
|
---|
| 356 | JET_C_iratch = DET.JET_C_iratch;
|
---|
| 357 | //Define SISCone algorithm.
|
---|
| 358 | JET_S_npass = DET.JET_S_npass;
|
---|
| 359 | JET_S_protojet_ptmin = DET.JET_S_protojet_ptmin;
|
---|
| 360 |
|
---|
| 361 | //For Tau-jet definition
|
---|
| 362 | TAU_energy_scone = DET.TAU_energy_scone;
|
---|
| 363 | TAU_track_scone = DET.TAU_track_scone;
|
---|
| 364 | TAU_track_pt = DET.TAU_track_pt;
|
---|
| 365 | TAU_energy_frac = DET.TAU_energy_frac;
|
---|
| 366 |
|
---|
| 367 | PT_QUARKS_MIN = DET.PT_QUARKS_MIN;
|
---|
| 368 | return *this;
|
---|
| 369 | }
|
---|
| 370 |
|
---|
| 371 |
|
---|
| 372 |
|
---|
| 373 |
|
---|
[2] | 374 | //------------------------------------------------------------------------------
|
---|
| 375 | void RESOLution::ReadDataCard(const string datacard) {
|
---|
| 376 |
|
---|
| 377 | string temp_string;
|
---|
| 378 | istringstream curstring;
|
---|
| 379 |
|
---|
| 380 | ifstream fichier_a_lire(datacard.c_str());
|
---|
| 381 | if(!fichier_a_lire.good()) {
|
---|
[249] | 382 | cout <<"** WARNING: Datadard not found, use default values **" << endl;
|
---|
[94] | 383 | return;
|
---|
[2] | 384 | }
|
---|
[94] | 385 |
|
---|
[2] | 386 | while (getline(fichier_a_lire,temp_string)) {
|
---|
| 387 | curstring.clear(); // needed when using several times istringstream::str(string)
|
---|
| 388 | curstring.str(temp_string);
|
---|
| 389 | string varname;
|
---|
[71] | 390 | float value; int ivalue;
|
---|
[2] | 391 |
|
---|
| 392 | if(strstr(temp_string.c_str(),"#")) { }
|
---|
[94] | 393 | else if(strstr(temp_string.c_str(),"CEN_max_tracker")) {curstring >> varname >> value; CEN_max_tracker = value;}
|
---|
| 394 | else if(strstr(temp_string.c_str(),"CEN_max_calo_cen")) {curstring >> varname >> value; CEN_max_calo_cen = value;}
|
---|
| 395 | else if(strstr(temp_string.c_str(),"CEN_max_calo_fwd")) {curstring >> varname >> value; CEN_max_calo_fwd = value;}
|
---|
| 396 | else if(strstr(temp_string.c_str(),"CEN_max_mu")) {curstring >> varname >> value; CEN_max_mu = value;}
|
---|
| 397 |
|
---|
| 398 | else if(strstr(temp_string.c_str(),"VFD_min_calo_vfd")) {curstring >> varname >> value; VFD_min_calo_vfd = value;}
|
---|
| 399 | else if(strstr(temp_string.c_str(),"VFD_max_calo_vfd")) {curstring >> varname >> value; VFD_max_calo_vfd = value;}
|
---|
| 400 | else if(strstr(temp_string.c_str(),"VFD_min_zdc")) {curstring >> varname >> value; VFD_min_zdc = value;}
|
---|
| 401 | else if(strstr(temp_string.c_str(),"VFD_s_zdc")) {curstring >> varname >> value; VFD_s_zdc = value;}
|
---|
| 402 |
|
---|
| 403 | else if(strstr(temp_string.c_str(),"RP_220_s")) {curstring >> varname >> value; RP_220_s = value;}
|
---|
| 404 | else if(strstr(temp_string.c_str(),"RP_220_x")) {curstring >> varname >> value; RP_220_x = value;}
|
---|
| 405 | else if(strstr(temp_string.c_str(),"RP_420_s")) {curstring >> varname >> value; RP_420_s = value;}
|
---|
| 406 | else if(strstr(temp_string.c_str(),"RP_420_x")) {curstring >> varname >> value; RP_420_x = value;}
|
---|
| 407 |
|
---|
| 408 | else if(strstr(temp_string.c_str(),"ELG_Scen")) {curstring >> varname >> value; ELG_Scen = value;}
|
---|
| 409 | else if(strstr(temp_string.c_str(),"ELG_Ncen")) {curstring >> varname >> value; ELG_Ncen = value;}
|
---|
| 410 | else if(strstr(temp_string.c_str(),"ELG_Ccen")) {curstring >> varname >> value; ELG_Ccen = value;}
|
---|
| 411 | else if(strstr(temp_string.c_str(),"ELG_Sfwd")) {curstring >> varname >> value; ELG_Sfwd = value;}
|
---|
| 412 | else if(strstr(temp_string.c_str(),"ELG_Cfwd")) {curstring >> varname >> value; ELG_Cfwd = value;}
|
---|
| 413 | else if(strstr(temp_string.c_str(),"ELG_Nfwd")) {curstring >> varname >> value; ELG_Nfwd = value;}
|
---|
| 414 | else if(strstr(temp_string.c_str(),"HAD_Shcal")) {curstring >> varname >> value; HAD_Shcal = value;}
|
---|
| 415 | else if(strstr(temp_string.c_str(),"HAD_Nhcal")) {curstring >> varname >> value; HAD_Nhcal = value;}
|
---|
| 416 | else if(strstr(temp_string.c_str(),"HAD_Chcal")) {curstring >> varname >> value; HAD_Chcal = value;}
|
---|
| 417 | else if(strstr(temp_string.c_str(),"HAD_Shf")) {curstring >> varname >> value; HAD_Shf = value;}
|
---|
| 418 | else if(strstr(temp_string.c_str(),"HAD_Nhf")) {curstring >> varname >> value; HAD_Nhf = value;}
|
---|
| 419 | else if(strstr(temp_string.c_str(),"HAD_Chf")) {curstring >> varname >> value; HAD_Chf = value;}
|
---|
| 420 | else if(strstr(temp_string.c_str(),"MU_SmearPt")) {curstring >> varname >> value; MU_SmearPt = value;}
|
---|
| 421 |
|
---|
| 422 | else if(strstr(temp_string.c_str(),"TRACK_radius")) {curstring >> varname >> ivalue;TRACK_radius = ivalue;}
|
---|
| 423 | else if(strstr(temp_string.c_str(),"TRACK_length")) {curstring >> varname >> ivalue;TRACK_length = ivalue;}
|
---|
| 424 | else if(strstr(temp_string.c_str(),"TRACK_bfield_x")) {curstring >> varname >> value; TRACK_bfield_x = value;}
|
---|
| 425 | else if(strstr(temp_string.c_str(),"TRACK_bfield_y")) {curstring >> varname >> value; TRACK_bfield_y = value;}
|
---|
| 426 | else if(strstr(temp_string.c_str(),"TRACK_bfield_z")) {curstring >> varname >> value; TRACK_bfield_z = value;}
|
---|
| 427 | else if(strstr(temp_string.c_str(),"FLAG_bfield")) {curstring >> varname >> ivalue; FLAG_bfield = ivalue;}
|
---|
| 428 | else if(strstr(temp_string.c_str(),"TRACK_ptmin")) {curstring >> varname >> value; TRACK_ptmin = value;}
|
---|
| 429 | else if(strstr(temp_string.c_str(),"TRACK_eff")) {curstring >> varname >> ivalue;TRACK_eff = ivalue;}
|
---|
[33] | 430 |
|
---|
[94] | 431 | else if(strstr(temp_string.c_str(),"TOWER_number")) {curstring >> varname >> ivalue;TOWER_number = ivalue;}
|
---|
| 432 | else if(strstr(temp_string.c_str(),"TOWER_eta_edges")){
|
---|
| 433 | curstring >> varname; for(unsigned int i=0; i<TOWER_number+1; i++) {curstring >> value; TOWER_eta_edges[i] = value;} }
|
---|
| 434 | else if(strstr(temp_string.c_str(),"TOWER_dphi")){
|
---|
| 435 | curstring >> varname; for(unsigned int i=0; i<TOWER_number; i++) {curstring >> value; TOWER_dphi[i] = value;} }
|
---|
[2] | 436 |
|
---|
[94] | 437 | else if(strstr(temp_string.c_str(),"PTCUT_elec")) {curstring >> varname >> value; PTCUT_elec = value;}
|
---|
| 438 | else if(strstr(temp_string.c_str(),"PTCUT_muon")) {curstring >> varname >> value; PTCUT_muon = value;}
|
---|
| 439 | else if(strstr(temp_string.c_str(),"PTCUT_jet")) {curstring >> varname >> value; PTCUT_jet = value;}
|
---|
| 440 | else if(strstr(temp_string.c_str(),"PTCUT_gamma")) {curstring >> varname >> value; PTCUT_gamma = value;}
|
---|
| 441 | else if(strstr(temp_string.c_str(),"PTCUT_taujet")) {curstring >> varname >> value; PTCUT_taujet = value;}
|
---|
[43] | 442 |
|
---|
[94] | 443 | else if(strstr(temp_string.c_str(),"JET_coneradius")) {curstring >> varname >> value; JET_coneradius = value;}
|
---|
| 444 | else if(strstr(temp_string.c_str(),"JET_jetalgo")) {curstring >> varname >> ivalue;JET_jetalgo = ivalue;}
|
---|
| 445 | else if(strstr(temp_string.c_str(),"JET_seed")) {curstring >> varname >> value; JET_seed = value;}
|
---|
| 446 |
|
---|
| 447 | else if(strstr(temp_string.c_str(),"BTAG_b")) {curstring >> varname >> ivalue;BTAG_b = ivalue;}
|
---|
| 448 | else if(strstr(temp_string.c_str(),"BTAG_mistag_c")) {curstring >> varname >> ivalue;BTAG_mistag_c = ivalue;}
|
---|
| 449 | else if(strstr(temp_string.c_str(),"BTAG_mistag_l")) {curstring >> varname >> ivalue;BTAG_mistag_l = ivalue;}
|
---|
[2] | 450 |
|
---|
[94] | 451 | else if(strstr(temp_string.c_str(),"FLAG_vfd")) {curstring >> varname >> ivalue; FLAG_vfd = ivalue;}
|
---|
| 452 | else if(strstr(temp_string.c_str(),"FLAG_trigger")) {curstring >> varname >> ivalue; FLAG_trigger = ivalue;}
|
---|
| 453 | else if(strstr(temp_string.c_str(),"FLAG_frog")) {curstring >> varname >> ivalue; FLAG_frog = ivalue;}
|
---|
| 454 | else if(strstr(temp_string.c_str(),"NEvents_Frog")) {curstring >> varname >> ivalue; NEvents_Frog = ivalue;}
|
---|
| 455 | }
|
---|
| 456 |
|
---|
| 457 | //jet stuffs not defined in the input datacard
|
---|
| 458 | JET_overlap = 0.75;
|
---|
| 459 | // MidPoint algorithm definition
|
---|
| 460 | JET_M_coneareafraction = 0.25;
|
---|
| 461 | JET_M_maxpairsize = 2;
|
---|
| 462 | JET_M_maxiterations = 100;
|
---|
| 463 | // Define Cone algorithm.
|
---|
| 464 | JET_C_adjacencycut = 2;
|
---|
| 465 | JET_C_maxiterations = 100;
|
---|
| 466 | JET_C_iratch = 1;
|
---|
| 467 | //Define SISCone algorithm.
|
---|
| 468 | JET_S_npass = 0;
|
---|
| 469 | JET_S_protojet_ptmin= 0.0;
|
---|
| 470 |
|
---|
| 471 | //For Tau-jet definition
|
---|
| 472 | TAU_energy_scone = 0.15; // radius R of the cone for tau definition, based on energy threshold
|
---|
| 473 | TAU_track_scone = 0.4; // radius R of the cone for tau definition, based on track number
|
---|
| 474 | TAU_track_pt = 2; // minimal pt [GeV] for tracks to be considered in tau definition
|
---|
| 475 | TAU_energy_frac = 0.95; // fraction of energy required in the central part of the cone, for tau jets
|
---|
| 476 |
|
---|
[2] | 477 | }
|
---|
| 478 |
|
---|
[219] | 479 | void RESOLution::Logfile(const string& LogName) {
|
---|
[94] | 480 | //void RESOLution::Logfile(string outputfilename) {
|
---|
| 481 |
|
---|
[44] | 482 | ofstream f_out(LogName.c_str());
|
---|
| 483 |
|
---|
| 484 | f_out<<"#*********************************************************************"<<"\n";
|
---|
| 485 | f_out<<"# *"<<"\n";
|
---|
[51] | 486 | f_out<<"# ---- DELPHES release 1.0 ---- *"<<"\n";
|
---|
[44] | 487 | f_out<<"# *"<<"\n";
|
---|
| 488 | f_out<<"# A Fast Simulator for general purpose LHC detector *"<<"\n";
|
---|
| 489 | f_out<<"# Written by S. Ovyn and X. Rouby *"<<"\n";
|
---|
| 490 | f_out<<"# severine.ovyn@uclouvain.be *"<<"\n";
|
---|
| 491 | f_out<<"# *"<<"\n";
|
---|
| 492 | f_out<<"# http: *"<<"\n";
|
---|
| 493 | f_out<<"# *"<<"\n";
|
---|
| 494 | f_out<<"# Center for Particle Physics and Phenomenology (CP3) *"<<"\n";
|
---|
| 495 | f_out<<"# Universite Catholique de Louvain (UCL) *"<<"\n";
|
---|
| 496 | f_out<<"# Louvain-la-Neuve, Belgium *"<<"\n";
|
---|
| 497 | f_out<<"# *"<<"\n";
|
---|
| 498 | f_out<<"#....................................................................*"<<"\n";
|
---|
| 499 | f_out<<"# *"<<"\n";
|
---|
[46] | 500 | f_out<<"# This package uses: *"<<"\n";
|
---|
| 501 | f_out<<"# FastJet algorithm: Phys. Lett. B641 (2006) [hep-ph/0512210] *"<<"\n";
|
---|
| 502 | f_out<<"# Hector: JINST 2:P09005 (2007) [physics.acc-ph:0707.1198v2] *"<<"\n";
|
---|
| 503 | f_out<<"# ExRootAnalysis *"<<"\n";
|
---|
[44] | 504 | f_out<<"# *"<<"\n";
|
---|
| 505 | f_out<<"#....................................................................*"<<"\n";
|
---|
| 506 | f_out<<"# *"<<"\n";
|
---|
| 507 | f_out<<"# This file contains all the running parameters (detector and cuts) *"<<"\n";
|
---|
| 508 | f_out<<"# necessary to reproduce the detector simulation *"<<"\n";
|
---|
| 509 | f_out<<"# *"<<"\n";
|
---|
| 510 | f_out<<"#....................................................................*"<<"\n";
|
---|
| 511 | f_out<<"#>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>"<<"\n";
|
---|
| 512 | f_out<<"* *"<<"\n";
|
---|
| 513 | f_out<<"#******************************** *"<<"\n";
|
---|
| 514 | f_out<<"# Central detector caracteristics *"<<"\n";
|
---|
| 515 | f_out<<"#******************************** *"<<"\n";
|
---|
| 516 | f_out<<"* *"<<"\n";
|
---|
| 517 | f_out << left << setw(30) <<"* Maximum tracking system: "<<""
|
---|
[94] | 518 | << left << setw(10) <<CEN_max_tracker <<""<< right << setw(15)<<"*"<<"\n";
|
---|
[44] | 519 | f_out << left << setw(30) <<"* Maximum central calorimeter: "<<""
|
---|
[94] | 520 | << left << setw(10) <<CEN_max_calo_cen <<""<< right << setw(15)<<"*"<<"\n";
|
---|
[44] | 521 | f_out << left << setw(30) <<"* Maximum forward calorimeter: "<<""
|
---|
[94] | 522 | << left << setw(10) <<CEN_max_calo_fwd <<""<< right << setw(15)<<"*"<<"\n";
|
---|
[44] | 523 | f_out << left << setw(30) <<"* Muon chambers coverage: "<<""
|
---|
[94] | 524 | << left << setw(10) <<CEN_max_mu <<""<< right << setw(15)<<"*"<<"\n";
|
---|
[44] | 525 | f_out<<"* *"<<"\n";
|
---|
[94] | 526 | if(FLAG_vfd==1){
|
---|
| 527 | f_out<<"#********************************** *"<<"\n";
|
---|
| 528 | f_out<<"# Very forward detector switches on *"<<"\n";
|
---|
| 529 | f_out<<"#********************************** *"<<"\n";
|
---|
| 530 | f_out<<"* *"<<"\n";
|
---|
| 531 | f_out << left << setw(55) <<"* Minimum very forward calorimeter: "<<""
|
---|
| 532 | << left << setw(5) <<VFD_min_calo_vfd <<""<< right << setw(10)<<"*"<<"\n";
|
---|
| 533 | f_out << left << setw(55) <<"* Maximum very forward calorimeter: "<<""
|
---|
| 534 | << left << setw(5) <<VFD_max_calo_vfd <<""<< right << setw(10)<<"*"<<"\n";
|
---|
| 535 | f_out << left << setw(55) <<"* Minimum coverage zero_degree calorimeter "<<""
|
---|
| 536 | << left << setw(5) <<VFD_min_zdc <<""<< right << setw(10)<<"*"<<"\n";
|
---|
| 537 | f_out << left << setw(55) <<"* Distance of the ZDC to the IP, in meters: "<<""
|
---|
| 538 | << left << setw(5) <<VFD_s_zdc <<""<< right << setw(10)<<"*"<<"\n";
|
---|
| 539 | f_out << left << setw(55) <<"* Distance of the RP to the IP, in meters: "<<""
|
---|
| 540 | << left << setw(5) <<RP_220_s <<""<< right << setw(10)<<"*"<<"\n";
|
---|
| 541 | f_out << left << setw(55) <<"* Distance of the RP to the beam, in meters: "<<""
|
---|
| 542 | << left << setw(5) <<RP_220_x <<""<< right << setw(10)<<"*"<<"\n";
|
---|
| 543 | f_out << left << setw(55) <<"* Distance of the RP to the IP, in meters: "<<""
|
---|
| 544 | << left << setw(5) <<RP_420_s <<""<< right << setw(10)<<"*"<<"\n";
|
---|
| 545 | f_out << left << setw(55) <<"* Distance of the RP to the beam, in meters: "<<""
|
---|
| 546 | << left << setw(5) <<RP_420_x <<""<< right << setw(10)<<"*"<<"\n";
|
---|
| 547 | f_out<<"* *"<<"\n";
|
---|
| 548 | }
|
---|
| 549 | else {
|
---|
| 550 | f_out<<"#*********************************** *"<<"\n";
|
---|
| 551 | f_out<<"# Very forward detector switches off *"<<"\n";
|
---|
| 552 | f_out<<"#*********************************** *"<<"\n";
|
---|
| 553 | f_out<<"* *"<<"\n";
|
---|
| 554 | }
|
---|
[44] | 555 | f_out<<"#************************************ *"<<"\n";
|
---|
| 556 | f_out<<"# Electromagnetic smearing parameters *"<<"\n";
|
---|
| 557 | f_out<<"#************************************ *"<<"\n";
|
---|
| 558 | f_out<<"* *"<<"\n";
|
---|
| 559 | //# \sigma/E = C + N/E + S/\sqrt{E}
|
---|
| 560 | f_out << left << setw(30) <<"* S term for central ECAL: "<<""
|
---|
| 561 | << left << setw(30) <<ELG_Scen <<""<< right << setw(10)<<"*"<<"\n";
|
---|
| 562 | f_out << left << setw(30) <<"* N term for central ECAL: "<<""
|
---|
| 563 | << left << setw(30) <<ELG_Ncen <<""<< right << setw(10)<<"*"<<"\n";
|
---|
| 564 | f_out << left << setw(30) <<"* C term for central ECAL: "<<""
|
---|
| 565 | << left << setw(30) <<ELG_Ccen <<""<< right << setw(10)<<"*"<<"\n";
|
---|
| 566 | f_out << left << setw(30) <<"* S term for forward ECAL: "<<""
|
---|
| 567 | << left << setw(30) <<ELG_Sfwd <<""<< right << setw(10)<<"*"<<"\n";
|
---|
| 568 | f_out << left << setw(30) <<"* N term for forward ECAL: "<<""
|
---|
| 569 | << left << setw(30) <<ELG_Nfwd <<""<< right << setw(10)<<"*"<<"\n";
|
---|
| 570 | f_out << left << setw(30) <<"* C term for forward ECAL: "<<""
|
---|
| 571 | << left << setw(30) <<ELG_Cfwd <<""<< right << setw(10)<<"*"<<"\n";
|
---|
| 572 | f_out<<"* *"<<"\n";
|
---|
| 573 | f_out<<"#***************************** *"<<"\n";
|
---|
| 574 | f_out<<"# Hadronic smearing parameters *"<<"\n";
|
---|
| 575 | f_out<<"#***************************** *"<<"\n";
|
---|
| 576 | f_out<<"* *"<<"\n";
|
---|
| 577 | f_out << left << setw(30) <<"* S term for central HCAL: "<<""
|
---|
| 578 | << left << setw(30) <<HAD_Shcal <<""<< right << setw(10)<<"*"<<"\n";
|
---|
| 579 | f_out << left << setw(30) <<"* N term for central HCAL: "<<""
|
---|
| 580 | << left << setw(30) <<HAD_Nhcal <<""<< right << setw(10)<<"*"<<"\n";
|
---|
| 581 | f_out << left << setw(30) <<"* C term for central HCAL: "<<""
|
---|
| 582 | << left << setw(30) <<HAD_Chcal <<""<< right << setw(10)<<"*"<<"\n";
|
---|
| 583 | f_out << left << setw(30) <<"* S term for forward HCAL: "<<""
|
---|
| 584 | << left << setw(30) <<HAD_Shf <<""<< right << setw(10)<<"*"<<"\n";
|
---|
| 585 | f_out << left << setw(30) <<"* N term for forward HCAL: "<<""
|
---|
| 586 | << left << setw(30) <<HAD_Nhf <<""<< right << setw(10)<<"*"<<"\n";
|
---|
| 587 | f_out << left << setw(30) <<"* C term for forward HCAL: "<<""
|
---|
| 588 | << left << setw(30) <<HAD_Chf <<""<< right << setw(10)<<"*"<<"\n";
|
---|
| 589 | f_out<<"* *"<<"\n";
|
---|
| 590 | f_out<<"#************************* *"<<"\n";
|
---|
| 591 | f_out<<"# Muon smearing parameters *"<<"\n";
|
---|
| 592 | f_out<<"#************************* *"<<"\n";
|
---|
| 593 | f_out<<"* *"<<"\n";
|
---|
[94] | 594 | f_out << left << setw(55) <<"* PT resolution for muons : "<<""
|
---|
| 595 | << left << setw(5) <<MU_SmearPt <<""<< right << setw(10)<<"*"<<"\n";
|
---|
[44] | 596 | f_out<<"* *"<<"\n";
|
---|
[94] | 597 | if(FLAG_bfield==1){
|
---|
| 598 | f_out<<"#*************************** *"<<"\n";
|
---|
| 599 | f_out<<"# Magnetic field switches on *"<<"\n";
|
---|
| 600 | f_out<<"#*************************** *"<<"\n";
|
---|
| 601 | f_out<<"* *"<<"\n";
|
---|
| 602 | f_out << left << setw(55) <<"* Radius of the BField coverage: "<<""
|
---|
| 603 | << left << setw(5) <<TRACK_radius <<""<< right << setw(10)<<"*"<<"\n";
|
---|
| 604 | f_out << left << setw(55) <<"* Length of the BField coverage: "<<""
|
---|
| 605 | << left << setw(5) <<TRACK_length <<""<< right << setw(10)<<"*"<<"\n";
|
---|
| 606 | f_out << left << setw(55) <<"* BField X component: "<<""
|
---|
| 607 | << left << setw(5) <<TRACK_bfield_x <<""<< right << setw(10)<<"*"<<"\n";
|
---|
| 608 | f_out << left << setw(55) <<"* BField Y component: "<<""
|
---|
| 609 | << left << setw(5) <<TRACK_bfield_y <<""<< right << setw(10)<<"*"<<"\n";
|
---|
| 610 | f_out << left << setw(55) <<"* BField Z component: "<<""
|
---|
| 611 | << left << setw(5) <<TRACK_bfield_z <<""<< right << setw(10)<<"*"<<"\n";
|
---|
| 612 | f_out << left << setw(55) <<"* Minimal pT needed to reach the calorimeter [GeV]: "<<""
|
---|
| 613 | << left << setw(10) <<TRACK_ptmin <<""<< right << setw(5)<<"*"<<"\n";
|
---|
| 614 | f_out << left << setw(55) <<"* Efficiency associated to the tracking: "<<""
|
---|
| 615 | << left << setw(10) <<TRACK_eff <<""<< right << setw(5)<<"*"<<"\n";
|
---|
| 616 | f_out<<"* *"<<"\n";
|
---|
| 617 | }
|
---|
| 618 | else {
|
---|
| 619 | f_out<<"#**************************** *"<<"\n";
|
---|
| 620 | f_out<<"# Magnetic field switches off *"<<"\n";
|
---|
| 621 | f_out<<"#**************************** *"<<"\n";
|
---|
| 622 | f_out << left << setw(55) <<"* Minimal pT needed to reach the calorimeter [GeV]: "<<""
|
---|
| 623 | << left << setw(10) <<TRACK_ptmin <<""<< right << setw(5)<<"*"<<"\n";
|
---|
| 624 | f_out << left << setw(55) <<"* Efficiency associated to the tracking: "<<""
|
---|
| 625 | << left << setw(10) <<TRACK_eff <<""<< right << setw(5)<<"*"<<"\n";
|
---|
| 626 | f_out<<"* *"<<"\n";
|
---|
| 627 | }
|
---|
| 628 | f_out<<"#******************** *"<<"\n";
|
---|
| 629 | f_out<<"# Calorimetric Towers *"<<"\n";
|
---|
| 630 | f_out<<"#******************** *"<<"\n";
|
---|
| 631 | f_out << left << setw(55) <<"* Number of calorimetric towers in eta, for eta>0: "<<""
|
---|
| 632 | << left << setw(5) << TOWER_number <<""<< right << setw(10)<<"*"<<"\n";
|
---|
| 633 | f_out << left << setw(55) <<"* Tower edges in eta, for eta>0: "<<"" << right << setw(15)<<"*"<<"\n";
|
---|
| 634 | f_out << "* ";
|
---|
| 635 | for (unsigned int i=0; i<TOWER_number+1; i++) {
|
---|
| 636 | f_out << left << setw(7) << TOWER_eta_edges[i];
|
---|
| 637 | if(!( (i+1) %9 )) f_out << right << setw(3) << "*" << "\n" << "* ";
|
---|
| 638 | }
|
---|
| 639 | for (unsigned int i=(TOWER_number+1)%9; i<9; i++) f_out << left << setw(7) << "";
|
---|
| 640 | f_out << right << setw(3)<<"*"<<"\n";
|
---|
| 641 | f_out << left << setw(55) <<"* Tower sizes in phi, for eta>0 [degree]:"<<"" << right << setw(15)<<"*"<<"\n";
|
---|
| 642 | f_out << "* ";
|
---|
| 643 | for (unsigned int i=0; i<TOWER_number; i++) {
|
---|
| 644 | f_out << left << setw(7) << TOWER_dphi[i];
|
---|
| 645 | if(!( (i+1) %9 )) f_out << right << setw(3) << "*" << "\n" << "* ";
|
---|
| 646 | }
|
---|
| 647 | for (unsigned int i=(TOWER_number)%9; i<9; i++) f_out << left << setw(7) << "";
|
---|
| 648 | f_out << right << setw(3)<<"*"<<"\n";
|
---|
[44] | 649 | f_out<<"* *"<<"\n";
|
---|
| 650 | f_out<<"#******************* *"<<"\n";
|
---|
| 651 | f_out<<"# Minimum pT's [GeV] *"<<"\n";
|
---|
| 652 | f_out<<"#******************* *"<<"\n";
|
---|
| 653 | f_out<<"* *"<<"\n";
|
---|
| 654 | f_out << left << setw(40) <<"* Minimum pT for electrons: "<<""
|
---|
[94] | 655 | << left << setw(20) <<PTCUT_elec <<""<< right << setw(10)<<"*"<<"\n";
|
---|
[44] | 656 | f_out << left << setw(40) <<"* Minimum pT for muons: "<<""
|
---|
[94] | 657 | << left << setw(20) <<PTCUT_muon <<""<< right << setw(10)<<"*"<<"\n";
|
---|
[44] | 658 | f_out << left << setw(40) <<"* Minimum pT for jets: "<<""
|
---|
[94] | 659 | << left << setw(20) <<PTCUT_jet <<""<< right << setw(10)<<"*"<<"\n";
|
---|
[44] | 660 | f_out << left << setw(40) <<"* Minimum pT for Tau-jets: "<<""
|
---|
[94] | 661 | << left << setw(20) <<PTCUT_taujet <<""<< right << setw(10)<<"*"<<"\n";
|
---|
[74] | 662 | f_out << left << setw(40) <<"* Minimum pT for photons: "<<""
|
---|
[94] | 663 | << left << setw(20) <<PTCUT_gamma <<""<< right << setw(10)<<"*"<<"\n";
|
---|
[44] | 664 | f_out<<"* *"<<"\n";
|
---|
| 665 | f_out<<"#*************** *"<<"\n";
|
---|
| 666 | f_out<<"# Jet definition *"<<"\n";
|
---|
| 667 | f_out<<"#*************** *"<<"\n";
|
---|
| 668 | f_out<<"* *"<<"\n";
|
---|
[49] | 669 | f_out<<"* Six algorithms are currently available: *"<<"\n";
|
---|
| 670 | f_out<<"* - 1) CDF cone algorithm, *"<<"\n";
|
---|
| 671 | f_out<<"* - 2) CDF MidPoint algorithm, *"<<"\n";
|
---|
| 672 | f_out<<"* - 3) SIScone algorithm, *"<<"\n";
|
---|
| 673 | f_out<<"* - 4) kt algorithm, *"<<"\n";
|
---|
| 674 | f_out<<"* - 5) Cambrigde/Aachen algorithm, *"<<"\n";
|
---|
| 675 | f_out<<"* - 6) Anti-kt algorithm. *"<<"\n";
|
---|
| 676 | f_out<<"* *"<<"\n";
|
---|
| 677 | f_out<<"* You have chosen *"<<"\n";
|
---|
[94] | 678 | switch(JET_jetalgo) {
|
---|
[44] | 679 | default:
|
---|
| 680 | case 1: {
|
---|
[94] | 681 | f_out<<"* CDF JetClu jet algorithm with parameters: *"<<"\n";
|
---|
| 682 | f_out << left << setw(40) <<"* - Seed threshold: "<<""
|
---|
| 683 | << left << setw(10) <<JET_seed <<""<< right << setw(20)<<"! not in datacard *"<<"\n";
|
---|
| 684 | f_out << left << setw(40) <<"* - Cone radius: "<<""
|
---|
| 685 | << left << setw(10) <<JET_coneradius <<""<< right << setw(20)<<"*"<<"\n";
|
---|
| 686 | f_out << left << setw(40) <<"* - Adjacency cut: "<<""
|
---|
| 687 | << left << setw(10) <<JET_C_adjacencycut <<""<< right << setw(20)<<"! not in datacard *"<<"\n";
|
---|
| 688 | f_out << left << setw(40) <<"* - Max iterations: "<<""
|
---|
| 689 | << left << setw(10) <<JET_C_maxiterations <<""<< right << setw(20)<<"! not in datacard *"<<"\n";
|
---|
| 690 | f_out << left << setw(40) <<"* - Iratch: "<<""
|
---|
| 691 | << left << setw(10) <<JET_C_iratch <<""<< right << setw(20)<<"! not in datacard *"<<"\n";
|
---|
| 692 | f_out << left << setw(40) <<"* - Overlap threshold: "<<""
|
---|
| 693 | << left << setw(10) <<JET_overlap <<""<< right << setw(20)<<"! not in datacard *"<<"\n";
|
---|
[44] | 694 | }
|
---|
| 695 | break;
|
---|
| 696 | case 2: {
|
---|
[94] | 697 | f_out<<"* CDF midpoint jet algorithm with parameters: *"<<"\n";
|
---|
| 698 | f_out << left << setw(40) <<"* - Seed threshold: "<<""
|
---|
| 699 | << left << setw(20) <<JET_seed <<""<< right << setw(10)<<"! not in datacard *"<<"\n";
|
---|
| 700 | f_out << left << setw(40) <<"* - Cone radius: "<<""
|
---|
| 701 | << left << setw(20) <<JET_coneradius <<""<< right << setw(10)<<"*"<<"\n";
|
---|
| 702 | f_out << left << setw(40) <<"* - Cone area fraction:"<<""
|
---|
| 703 | << left << setw(20) <<JET_M_coneareafraction <<""<< right << setw(10)<<"! not in datacard *"<<"\n";
|
---|
| 704 | f_out << left << setw(40) <<"* - Maximum pair size: "<<""
|
---|
| 705 | << left << setw(20) <<JET_M_maxpairsize <<""<< right << setw(10)<<"! not in datacard *"<<"\n";
|
---|
| 706 | f_out << left << setw(40) <<"* - Max iterations: "<<""
|
---|
| 707 | << left << setw(20) <<JET_M_maxiterations <<""<< right << setw(10)<<"! not in datacard *"<<"\n";
|
---|
| 708 | f_out << left << setw(40) <<"* - Overlap threshold: "<<""
|
---|
| 709 | << left << setw(20) <<JET_overlap <<""<< right << setw(10)<<"! not in datacard *"<<"\n";
|
---|
[44] | 710 | }
|
---|
| 711 | break;
|
---|
| 712 | case 3: {
|
---|
[94] | 713 | f_out <<"* SISCone jet algorithm with parameters: *"<<"\n";
|
---|
| 714 | f_out << left << setw(40) <<"* - Cone radius: "<<""
|
---|
| 715 | << left << setw(20) <<JET_coneradius <<""<< right << setw(10)<<"*"<<"\n";
|
---|
| 716 | f_out << left << setw(40) <<"* - Overlap threshold: "<<""
|
---|
| 717 | << left << setw(20) <<JET_overlap <<""<< right << setw(10)<<"! not in datacard *"<<"\n";
|
---|
| 718 | f_out << left << setw(40) <<"* - Number pass max: "<<""
|
---|
| 719 | << left << setw(20) <<JET_S_npass <<""<< right << setw(10)<<"! not in datacard *"<<"\n";
|
---|
| 720 | f_out << left << setw(40) <<"* - Minimum pT for protojet: "<<""
|
---|
| 721 | << left << setw(20) <<JET_S_protojet_ptmin <<""<< right << setw(10)<<"! not in datacard *"<<"\n";
|
---|
[44] | 722 | }
|
---|
| 723 | break;
|
---|
| 724 | case 4: {
|
---|
[94] | 725 | f_out <<"* KT jet algorithm with parameters: *"<<"\n";
|
---|
| 726 | f_out << left << setw(40) <<"* - Cone radius: "<<""
|
---|
| 727 | << left << setw(20) <<JET_coneradius <<""<< right << setw(10)<<"*"<<"\n";
|
---|
[44] | 728 | }
|
---|
| 729 | break;
|
---|
[49] | 730 | case 5: {
|
---|
[94] | 731 | f_out <<"* Cambridge/Aachen jet algorithm with parameters: *"<<"\n";
|
---|
| 732 | f_out << left << setw(40) <<"* - Cone radius: "<<""
|
---|
| 733 | << left << setw(20) <<JET_coneradius <<""<< right << setw(10)<<"*"<<"\n";
|
---|
[44] | 734 | }
|
---|
[49] | 735 | break;
|
---|
| 736 | case 6: {
|
---|
[94] | 737 | f_out <<"* Anti-kt jet algorithm with parameters: *"<<"\n";
|
---|
| 738 | f_out << left << setw(40) <<"* - Cone radius: "<<""
|
---|
| 739 | << left << setw(20) <<JET_coneradius <<""<< right << setw(10)<<"*"<<"\n";
|
---|
[49] | 740 | }
|
---|
| 741 | break;
|
---|
| 742 | }
|
---|
[44] | 743 | f_out<<"* *"<<"\n";
|
---|
[94] | 744 | f_out<<"#****************************** *"<<"\n";
|
---|
| 745 | f_out<<"# Tau-jet definition parameters *"<<"\n";
|
---|
| 746 | f_out<<"#****************************** *"<<"\n";
|
---|
| 747 | f_out<<"* *"<<"\n";
|
---|
| 748 | f_out << left << setw(45) <<"* Cone radius for calorimeter tagging: "<<""
|
---|
| 749 | << left << setw(5) <<TAU_energy_scone <<""<< right << setw(20)<<"*"<<"\n";
|
---|
| 750 | f_out << left << setw(45) <<"* Fraction of energy in the small cone: "<<""
|
---|
| 751 | << left << setw(5) <<TAU_energy_frac*100 <<""<< right << setw(20)<<"! not in datacard *"<<"\n";
|
---|
| 752 | f_out << left << setw(45) <<"* Cone radius for tracking tagging: "<<""
|
---|
| 753 | << left << setw(5) <<TAU_track_scone <<""<< right << setw(20)<<"*"<<"\n";
|
---|
| 754 | f_out << left << setw(45) <<"* Minimum track pT [GeV]: "<<""
|
---|
| 755 | << left << setw(5) <<TAU_track_pt <<""<< right << setw(20)<<"*"<<"\n";
|
---|
| 756 | f_out<<"* *"<<"\n";
|
---|
| 757 | f_out<<"#*************************** *"<<"\n";
|
---|
| 758 | f_out<<"# B-tagging efficiencies [%] *"<<"\n";
|
---|
| 759 | f_out<<"#*************************** *"<<"\n";
|
---|
| 760 | f_out<<"* *"<<"\n";
|
---|
| 761 | f_out << left << setw(50) <<"* Efficiency to tag a \"b\" as a b-jet: "<<""
|
---|
| 762 | << left << setw(10) <<BTAG_b <<""<< right << setw(10)<<"*"<<"\n";
|
---|
| 763 | f_out << left << setw(50) <<"* Efficiency to mistag a c-jet as a b-jet: "<<""
|
---|
| 764 | << left << setw(10) <<BTAG_mistag_c <<""<< right << setw(10)<<"*"<<"\n";
|
---|
| 765 | f_out << left << setw(50) <<"* Efficiency to mistag a light jet as a b-jet: "<<""
|
---|
| 766 | << left << setw(10) <<BTAG_mistag_l <<""<< right << setw(10)<<"*"<<"\n";
|
---|
| 767 | f_out<<"* *"<<"\n";
|
---|
| 768 | f_out<<"* *"<<"\n";
|
---|
[44] | 769 | f_out<<"#....................................................................*"<<"\n";
|
---|
| 770 | f_out<<"#>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>"<<"\n";
|
---|
[94] | 771 |
|
---|
[44] | 772 | }
|
---|
| 773 |
|
---|
[2] | 774 | // **********Provides the smeared TLorentzVector for the electrons********
|
---|
| 775 | // Smears the electron energy, and changes the 4-momentum accordingly
|
---|
| 776 | // different smearing if the electron is central (eta < 2.5) or forward
|
---|
| 777 | void RESOLution::SmearElectron(TLorentzVector &electron) {
|
---|
| 778 | // the 'electron' variable will be changed by the function
|
---|
| 779 | float energy = electron.E(); // before smearing
|
---|
| 780 | float energyS = 0.0; // after smearing // \sigma/E = C + N/E + S/\sqrt{E}
|
---|
[71] | 781 |
|
---|
[94] | 782 | if(fabs(electron.Eta()) < CEN_max_tracker) { // if the electron is inside the tracker
|
---|
[2] | 783 | energyS = gRandom->Gaus(energy, sqrt(
|
---|
| 784 | pow(ELG_Ncen,2) +
|
---|
| 785 | pow(ELG_Ccen*energy,2) +
|
---|
[22] | 786 | pow(ELG_Scen*sqrt(energy),2) ));
|
---|
[55] | 787 | }
|
---|
[94] | 788 | if(fabs(electron.Eta()) > CEN_max_tracker && fabs(electron.Eta()) < CEN_max_calo_fwd){
|
---|
[2] | 789 | energyS = gRandom->Gaus(energy, sqrt(
|
---|
| 790 | pow(ELG_Nfwd,2) +
|
---|
| 791 | pow(ELG_Cfwd*energy,2) +
|
---|
| 792 | pow(ELG_Sfwd*sqrt(energy),2) ) );
|
---|
| 793 | }
|
---|
| 794 | electron.SetPtEtaPhiE(energyS/cosh(electron.Eta()), electron.Eta(), electron.Phi(), energyS);
|
---|
| 795 | if(electron.E() < 0)electron.SetPxPyPzE(0,0,0,0); // no negative values after smearing !
|
---|
| 796 | }
|
---|
| 797 |
|
---|
| 798 |
|
---|
| 799 | // **********Provides the smeared TLorentzVector for the muons********
|
---|
| 800 | // Smears the muon pT and changes the 4-momentum accordingly
|
---|
| 801 | void RESOLution::SmearMu(TLorentzVector &muon) {
|
---|
| 802 | // the 'muon' variable will be changed by the function
|
---|
| 803 | float pt = muon.Pt(); // before smearing
|
---|
[61] | 804 | float ptS=pt;
|
---|
| 805 |
|
---|
[94] | 806 | if(fabs(muon.Eta()) < CEN_max_mu )
|
---|
[61] | 807 | {
|
---|
| 808 | ptS = gRandom->Gaus(pt, MU_SmearPt*pt ); // after smearing // \sigma/E = C + N/E + S/\sqrt{E}
|
---|
| 809 | }
|
---|
| 810 | muon.SetPtEtaPhiE(ptS, muon.Eta(), muon.Phi(), ptS*cosh(muon.Eta()));
|
---|
[2] | 811 |
|
---|
| 812 | if(muon.E() < 0)muon.SetPxPyPzE(0,0,0,0); // no negative values after smearing !
|
---|
| 813 | }
|
---|
| 814 |
|
---|
| 815 |
|
---|
| 816 | // **********Provides the smeared TLorentzVector for the hadrons********
|
---|
| 817 | // Smears the hadron 4-momentum
|
---|
| 818 | void RESOLution::SmearHadron(TLorentzVector &hadron, const float frac)
|
---|
| 819 | // the 'hadron' variable will be changed by the function
|
---|
| 820 | // the 'frac' variable describes the long-living particles. Should be 0.7 for K0S and Lambda, 1. otherwise
|
---|
| 821 | {
|
---|
| 822 | float energy = hadron.E(); // before smearing
|
---|
| 823 | float energyS = 0.0; // after smearing // \sigma/E = C + N/E + S/\sqrt{E}
|
---|
| 824 | float energy_ecal = (1.0 - frac)*energy; // electromagnetic calorimeter
|
---|
| 825 | float energy_hcal = frac*energy; // hadronic calorimeter
|
---|
| 826 | // frac takes into account the decay of long-living particles, that decay in the calorimeters
|
---|
| 827 | // some of the particles decay mostly in the ecal, some mostly in the hcal
|
---|
| 828 |
|
---|
[31] | 829 | float energyS1,energyS2;
|
---|
[94] | 830 | if(fabs(hadron.Eta()) < CEN_max_calo_cen) {
|
---|
[10] | 831 | energyS1 = gRandom->Gaus(energy_hcal, sqrt(
|
---|
[2] | 832 | pow(HAD_Nhcal,2) +
|
---|
| 833 | pow(HAD_Chcal*energy_hcal,2) +
|
---|
[9] | 834 | pow(HAD_Shcal*sqrt(energy_hcal),2) )) ;
|
---|
[10] | 835 |
|
---|
[9] | 836 |
|
---|
[10] | 837 | energyS2 = gRandom->Gaus(energy_ecal, sqrt(
|
---|
[32] | 838 | pow(ELG_Ncen,2) +
|
---|
| 839 | pow(ELG_Ccen*energy_ecal,2) +
|
---|
| 840 | pow(ELG_Scen*sqrt(energy_ecal),2) ) );
|
---|
[9] | 841 |
|
---|
[10] | 842 | energyS = ((energyS1>0)?energyS1:0) + ((energyS2>0)?energyS2:0);
|
---|
[55] | 843 | }
|
---|
[219] | 844 | if(fabs(hadron.Eta()) > CEN_max_calo_cen && fabs(hadron.Eta()) < CEN_max_calo_fwd){
|
---|
[22] | 845 | energyS = gRandom->Gaus(energy, sqrt(
|
---|
[2] | 846 | pow(HAD_Nhf,2) +
|
---|
| 847 | pow(HAD_Chf*energy,2) +
|
---|
[22] | 848 | pow(HAD_Shf*sqrt(energy),2) ));
|
---|
[55] | 849 | }
|
---|
| 850 |
|
---|
[10] | 851 |
|
---|
| 852 |
|
---|
[2] | 853 | hadron.SetPtEtaPhiE(energyS/cosh(hadron.Eta()),hadron.Eta(), hadron.Phi(), energyS);
|
---|
| 854 |
|
---|
| 855 | if(hadron.E() < 0)hadron.SetPxPyPzE(0,0,0,0);
|
---|
| 856 | }
|
---|
| 857 |
|
---|
[74] | 858 | //******************************************************************************************
|
---|
| 859 |
|
---|
| 860 | void RESOLution::SortedVector(vector<ParticleUtil> &vect)
|
---|
| 861 | {
|
---|
| 862 | int i,j = 0;
|
---|
| 863 | TLorentzVector tmp;
|
---|
| 864 | bool en_desordre = true;
|
---|
| 865 | int entries=vect.size();
|
---|
| 866 | for(i = 0 ; (i < entries) && en_desordre; i++)
|
---|
| 867 | {
|
---|
| 868 | en_desordre = false;
|
---|
| 869 | for(j = 1 ; j < entries - i ; j++)
|
---|
| 870 | {
|
---|
| 871 | if ( vect[j].Pt() > vect[j-1].Pt() )
|
---|
| 872 | {
|
---|
| 873 | ParticleUtil tmp = vect[j-1];
|
---|
| 874 | vect[j-1] = vect[j];
|
---|
| 875 | vect[j] = tmp;
|
---|
| 876 | en_desordre = true;
|
---|
| 877 | }
|
---|
| 878 | }
|
---|
| 879 | }
|
---|
| 880 | }
|
---|
| 881 |
|
---|
[2] | 882 | // **********Provides the energy in the cone of radius TAU_CONE_ENERGY for the tau identification********
|
---|
| 883 | // to be taken into account, a calo tower should
|
---|
| 884 | // 1) have a transverse energy \f$ E_T = \sqrt{E_X^2 + E_Y^2} \f$ above a given threshold
|
---|
| 885 | // 2) be inside a cone with a radius R and the axis defined by (eta,phi)
|
---|
| 886 | double RESOLution::EnergySmallCone(const vector<PhysicsTower> &towers, const float eta, const float phi) {
|
---|
| 887 | double Energie=0;
|
---|
| 888 | for(unsigned int i=0; i < towers.size(); i++) {
|
---|
[94] | 889 | if(towers[i].fourVector.pt() < JET_seed) continue;
|
---|
| 890 | if((DeltaR(phi,eta,towers[i].fourVector.phi(),towers[i].fourVector.eta()) < TAU_energy_scone)) {
|
---|
[2] | 891 | Energie += towers[i].fourVector.E;
|
---|
| 892 | }
|
---|
| 893 | }
|
---|
| 894 | return Energie;
|
---|
| 895 | }
|
---|
| 896 |
|
---|
| 897 |
|
---|
| 898 | // **********Provides the number of tracks in the cone of radius TAU_CONE_TRACKS for the tau identification********
|
---|
| 899 | // to be taken into account, a track should
|
---|
| 900 | // 1) avec a transverse momentum \$f p_T \$ above a given threshold
|
---|
| 901 | // 2) be inside a cone with a radius R and the axis defined by (eta,phi)
|
---|
| 902 | // IMPORTANT REMARK !!!!!
|
---|
| 903 | // previously, the argument 'phi' was before the argument 'eta'
|
---|
| 904 | // this has been changed for consistency with the other functions
|
---|
| 905 | // double check your running code that uses NumTracks !
|
---|
| 906 | unsigned int RESOLution::NumTracks(const vector<TLorentzVector> &tracks, const float pt_track, const float eta, const float phi) {
|
---|
| 907 | unsigned int numtrack=0;
|
---|
| 908 | for(unsigned int i=0; i < tracks.size(); i++) {
|
---|
| 909 | if((tracks[i].Pt() < pt_track )||
|
---|
[94] | 910 | (DeltaR(phi,eta,tracks[i].Phi(),tracks[i].Eta()) > TAU_track_scone)
|
---|
[2] | 911 | )continue;
|
---|
| 912 | numtrack++;
|
---|
| 913 | }
|
---|
| 914 | return numtrack;
|
---|
| 915 | }
|
---|
| 916 |
|
---|
| 917 |
|
---|
| 918 | //*** Returns the PID of the particle with the highest energy, in a cone with a radius CONERADIUS and an axis (eta,phi) *********
|
---|
| 919 | //used by Btaggedjet
|
---|
| 920 | ///// Attention : bug removed => CONERADIUS/2 -> CONERADIUS !!
|
---|
| 921 | int RESOLution::Bjets(const TSimpleArray<TRootGenParticle> &subarray, const float eta, const float phi) {
|
---|
| 922 | float emax=0;
|
---|
| 923 | int Ppid=0;
|
---|
| 924 | if(subarray.GetEntries()>0) {
|
---|
| 925 | for(int i=0; i < subarray.GetEntries();i++) { // should have pt>PT_JETMIN and a small cone radius (r<CONE_JET)
|
---|
| 926 | float genDeltaR = DeltaR(subarray[i]->Phi,subarray[i]->Eta,phi,eta);
|
---|
[94] | 927 | if(genDeltaR < JET_coneradius && subarray[i]->E > emax) {
|
---|
[2] | 928 | emax=subarray[i]->E;
|
---|
| 929 | Ppid=abs(subarray[i]->PID);
|
---|
| 930 | }
|
---|
| 931 | }
|
---|
| 932 | }
|
---|
| 933 | return Ppid;
|
---|
| 934 | }
|
---|
| 935 |
|
---|
| 936 |
|
---|
| 937 | //******************** Simulates the b-tagging efficiency for real bjet, or the misendentification for other jets****************
|
---|
| 938 | bool RESOLution::Btaggedjet(const TLorentzVector &JET, const TSimpleArray<TRootGenParticle> &subarray) {
|
---|
[94] | 939 | if( rand()%100 < (BTAG_b+1) && Bjets(subarray,JET.Eta(),JET.Phi())==pB ) return true; // b-tag of b-jets is 40%
|
---|
| 940 | else if( rand()%100 < (BTAG_mistag_c+1) && Bjets(subarray,JET.Eta(),JET.Phi())==pC ) return true; // b-tag of c-jets is 10%
|
---|
| 941 | else if( rand()%100 < (BTAG_mistag_l+1) && Bjets(subarray,JET.Eta(),JET.Phi())!=0) return true; // b-tag of light jets is 1%
|
---|
[2] | 942 | return false;
|
---|
| 943 | }
|
---|
| 944 |
|
---|
[31] | 945 | //***********************Isolation criteria***********************
|
---|
| 946 | //****************************************************************
|
---|
[219] | 947 | bool RESOLution::Isolation(const float phi, const float eta,const vector<TLorentzVector> &tracks, const float pt_second_track)
|
---|
[31] | 948 | {
|
---|
| 949 | bool isolated = false;
|
---|
[219] | 950 | float deltar=5000.; // Initial value; should be high; no further repercussion
|
---|
[31] | 951 | // loop on all final charged particles, with p_t >2, close enough from the electron
|
---|
| 952 | for(unsigned int i=0; i < tracks.size(); i++)
|
---|
| 953 | {
|
---|
[219] | 954 | if(tracks[i].Pt() < pt_second_track)continue;
|
---|
| 955 | float genDeltaR = DeltaR(phi,eta,tracks[i].Phi(),tracks[i].Eta());
|
---|
[31] | 956 | if(
|
---|
| 957 | (genDeltaR > deltar) ||
|
---|
| 958 | (genDeltaR==0)
|
---|
| 959 | ) continue ;
|
---|
| 960 | deltar=genDeltaR;
|
---|
| 961 | }
|
---|
[219] | 962 | if(deltar > 0.5) isolated = true;
|
---|
[31] | 963 | return isolated;
|
---|
| 964 | }
|
---|
| 965 |
|
---|
| 966 |
|
---|
[71] | 967 | //********** returns a segmented value for eta and phi, for calo towers *****
|
---|
| 968 | void RESOLution::BinEtaPhi(const float phi, const float eta, float& iPhi, float& iEta){
|
---|
| 969 | iEta = -100;
|
---|
| 970 | int index=-100;
|
---|
[94] | 971 | for (unsigned int i=1; i< TOWER_number+1; i++) {
|
---|
| 972 | if(fabs(eta)>TOWER_eta_edges[i-1] && fabs(eta)<TOWER_eta_edges[i]) {
|
---|
| 973 | iEta = (eta>0) ? TOWER_eta_edges[i-1] : -TOWER_eta_edges[i];
|
---|
[71] | 974 | index = i-1;
|
---|
| 975 | //cout << setw(15) << left << eta << "\t" << iEta << endl;
|
---|
| 976 | break;
|
---|
| 977 | }
|
---|
| 978 | }
|
---|
| 979 | if(index==-100) return;
|
---|
| 980 | iPhi = -100;
|
---|
[244] | 981 | float dphi = TOWER_dphi[index]*pi/180.;
|
---|
[94] | 982 | for (unsigned int i=1; i < 360/TOWER_dphi[index]; i++ ) {
|
---|
[244] | 983 | float low = -pi+(i-1)*dphi;
|
---|
[71] | 984 | float high= low+dphi;
|
---|
| 985 | if(phi > low && phi < high ){
|
---|
| 986 | iPhi = low;
|
---|
| 987 | break;
|
---|
| 988 | }
|
---|
| 989 | }
|
---|
[244] | 990 | if (phi > pi-dphi) iPhi = pi-dphi;
|
---|
[71] | 991 | }
|
---|
| 992 |
|
---|
[2] | 993 | //**************************** Returns the delta Phi ****************************
|
---|
| 994 | float DeltaPhi(const float phi1, const float phi2) {
|
---|
[244] | 995 | float deltaphi=phi1-phi2; // in here, -pi < phi < pi
|
---|
| 996 | if(fabs(deltaphi) > pi) {
|
---|
| 997 | deltaphi=2.*pi -fabs(deltaphi);// put deltaphi between 0 and pi
|
---|
[219] | 998 | }
|
---|
[2] | 999 | else deltaphi=fabs(deltaphi);
|
---|
| 1000 |
|
---|
| 1001 | return deltaphi;
|
---|
| 1002 | }
|
---|
| 1003 |
|
---|
| 1004 | //**************************** Returns the delta R****************************
|
---|
| 1005 | float DeltaR(const float phi1, const float eta1, const float phi2, const float eta2) {
|
---|
| 1006 | return sqrt(pow(DeltaPhi(phi1,phi2),2) + pow(eta1-eta2,2));
|
---|
| 1007 | }
|
---|
| 1008 |
|
---|
| 1009 | int sign(const int myint) {
|
---|
| 1010 | if (myint >0) return 1;
|
---|
| 1011 | else if (myint <0) return -1;
|
---|
| 1012 | else return 0;
|
---|
| 1013 | }
|
---|
| 1014 |
|
---|
| 1015 | int sign(const float myfloat) {
|
---|
| 1016 | if (myfloat >0) return 1;
|
---|
| 1017 | else if (myfloat <0) return -1;
|
---|
| 1018 | else return 0;
|
---|
| 1019 | }
|
---|
| 1020 |
|
---|
[177] | 1021 | int Charge(const int pid)
|
---|
[55] | 1022 | {
|
---|
| 1023 | int charge;
|
---|
| 1024 | if(
|
---|
| 1025 | (pid == pGAMMA) ||
|
---|
| 1026 | (pid == pPI0) ||
|
---|
| 1027 | (pid == pK0L) ||
|
---|
| 1028 | (pid == pN) ||
|
---|
| 1029 | (pid == pSIGMA0) ||
|
---|
| 1030 | (pid == pDELTA0) ||
|
---|
| 1031 | (pid == pK0S) // not charged particles : invisible by tracker
|
---|
| 1032 | )
|
---|
| 1033 | charge = 0;
|
---|
| 1034 | else charge = (sign(pid));
|
---|
| 1035 | return charge;
|
---|
| 1036 |
|
---|
[2] | 1037 | }
|
---|