[2] | 1 | /*
|
---|
| 2 | ---- Delphes ----
|
---|
| 3 | A Fast Simulator for general purpose LHC detector
|
---|
| 4 | S. Ovyn ~~~~ severine.ovyn@uclouvain.be
|
---|
| 5 |
|
---|
| 6 | Center for Particle Physics and Phenomenology (CP3)
|
---|
| 7 | Universite Catholique de Louvain (UCL)
|
---|
| 8 | Louvain-la-Neuve, Belgium
|
---|
| 9 | */
|
---|
| 10 |
|
---|
| 11 | /// \file SmearUtil.cc
|
---|
| 12 | /// \brief RESOLution class, and some generic definitions
|
---|
| 13 |
|
---|
| 14 |
|
---|
| 15 | #include "interface/SmearUtil.h"
|
---|
| 16 | #include "TRandom.h"
|
---|
| 17 |
|
---|
| 18 | #include <iostream>
|
---|
| 19 | #include <sstream>
|
---|
| 20 | #include <fstream>
|
---|
| 21 | using namespace std;
|
---|
| 22 |
|
---|
| 23 | //------------------------------------------------------------------------------
|
---|
| 24 |
|
---|
| 25 | RESOLution::RESOLution() {
|
---|
| 26 |
|
---|
| 27 | MAX_TRACKER = 2.5; // tracker coverage
|
---|
| 28 | MAX_CALO_CEN = 3.0; // central calorimeter coverage
|
---|
| 29 | MAX_CALO_FWD = 5.0; // forward calorimeter pseudorapidity coverage
|
---|
| 30 | MAX_MU = 2.4; // muon chambers pseudorapidity coverage
|
---|
| 31 | MIN_CALO_VFWD= 5.2; // very forward calorimeter (if any), like CASTOR
|
---|
| 32 | MAX_CALO_VFWD= 6.6; // very forward calorimeter (if any), like CASTOR
|
---|
| 33 | MIN_ZDC = 8.3; // zero-degree calorimeter, coverage
|
---|
| 34 |
|
---|
| 35 | ZDC_S = 140.; // ZDC distance to IP
|
---|
| 36 | RP220_S = 220; // distance of the RP to the IP, in meters
|
---|
| 37 | RP220_X = 0.002;// distance of the RP to the beam, in meters
|
---|
| 38 | FP420_S = 420; // distance of the RP to the IP, in meters
|
---|
| 39 | FP420_X = 0.004;// distance of the RP to the beam, in meters
|
---|
| 40 |
|
---|
| 41 |
|
---|
| 42 | ELG_Scen = 0.028; // S term for central ECAL
|
---|
| 43 | ELG_Ncen = 0.124 ; // N term for central ECAL
|
---|
| 44 | ELG_Ccen = 0.0026 ; // C term for central ECAL
|
---|
| 45 | ELG_Cfwd = 0.107 ; // S term for forward ECAL
|
---|
| 46 | ELG_Sfwd = 2.084 ; // C term for forward ECAL
|
---|
| 47 | ELG_Nfwd = 0.0 ; // N term for central ECAL
|
---|
| 48 |
|
---|
| 49 | HAD_Secal = 0.05 ; // S term for central ECAL // electromagnetic calorimeter
|
---|
| 50 | HAD_Necal = 0.25 ; // N term for central ECAL
|
---|
| 51 | HAD_Cecal = 0.0055 ; // C term for central ECAL
|
---|
| 52 | HAD_Shcal = 0.91 ; // S term for central HCAL // hadronic calorimeter
|
---|
| 53 | HAD_Nhcal = 0. ; // N term for central HCAL
|
---|
| 54 | HAD_Chcal = 0.038 ; // C term for central HCAL
|
---|
| 55 | HAD_Shf = 2.7 ; // S term for central HF // forward calorimeter
|
---|
| 56 | HAD_Nhf = 0. ; // N term for central HF
|
---|
| 57 | HAD_Chf = 0.13 ; // C term for central HF
|
---|
| 58 |
|
---|
| 59 | MU_SmearPt = 0.01 ;
|
---|
| 60 |
|
---|
| 61 | TAU_CONE_ENERGY = 0.15 ; // Delta R = radius of the cone // for "electromagnetic collimation"
|
---|
| 62 | TAU_EM_COLLIMATION = 0.95;
|
---|
| 63 | TAU_CONE_TRACKS= 0.4 ; //Delta R for tracker isolation for tau's
|
---|
| 64 | PT_TRACK_TAU = 2.0 ; // GeV // 6 GeV ????
|
---|
| 65 |
|
---|
| 66 |
|
---|
| 67 | PT_TRACKS_MIN = 0.9 ; // minimal pt needed to reach the calorimeter, in GeV
|
---|
| 68 | PT_QUARKS_MIN = 2.0 ; // minimal pt needed by quarks to reach the tracker, in GeV (??????)
|
---|
| 69 | TRACKING_EFF = 90;
|
---|
| 70 |
|
---|
| 71 |
|
---|
| 72 | TAGGING_B = 40;
|
---|
| 73 | MISTAGGING_C = 10;
|
---|
| 74 | MISTAGGING_L = 1;
|
---|
| 75 |
|
---|
| 76 |
|
---|
| 77 | CONERADIUS = 0.7; // generic jet radius ; not for tau's !!!
|
---|
[11] | 78 | JETALGO = 1; // 1 for Cone algorithm, 2 for MidPoint algorithm, 3 for SIScone algorithm, 4 for kt algorithm
|
---|
[2] | 79 | // Define Cone algorithm.
|
---|
| 80 | C_SEEDTHRESHOLD = 1.0;
|
---|
| 81 | C_ADJACENCYCUT = 2;
|
---|
| 82 | C_MAXITERATIONS = 100;
|
---|
| 83 | C_IRATCH = 1;
|
---|
| 84 | C_OVERLAPTHRESHOLD = 0.75;
|
---|
| 85 |
|
---|
| 86 | //Define MidPoint algorithm.
|
---|
| 87 | M_SEEDTHRESHOLD = 1.0;
|
---|
| 88 | M_CONEAREAFRACTION = 0.25;
|
---|
| 89 | M_MAXPAIRSIZE = 2;
|
---|
| 90 | M_MAXITERATIONS = 100;
|
---|
| 91 | M_OVERLAPTHRESHOLD = 0.75;
|
---|
| 92 |
|
---|
| 93 | }
|
---|
| 94 |
|
---|
| 95 | //------------------------------------------------------------------------------
|
---|
| 96 | void RESOLution::ReadDataCard(const string datacard) {
|
---|
| 97 |
|
---|
| 98 | string temp_string;
|
---|
| 99 | istringstream curstring;
|
---|
| 100 |
|
---|
| 101 | ifstream fichier_a_lire(datacard.c_str());
|
---|
| 102 | if(!fichier_a_lire.good()) {
|
---|
| 103 | cout << datacard << "Datadard " << datacard << " not found, use default values" << endl;
|
---|
| 104 | return;
|
---|
| 105 | }
|
---|
| 106 |
|
---|
| 107 | while (getline(fichier_a_lire,temp_string)) {
|
---|
| 108 | curstring.clear(); // needed when using several times istringstream::str(string)
|
---|
| 109 | curstring.str(temp_string);
|
---|
| 110 | string varname;
|
---|
| 111 | float value;
|
---|
| 112 |
|
---|
| 113 | if(strstr(temp_string.c_str(),"#")) { }
|
---|
| 114 | else if(strstr(temp_string.c_str(),"MAX_TRACKER")){curstring >> varname >> value; MAX_TRACKER = value;}
|
---|
| 115 | else if(strstr(temp_string.c_str(),"MAX_CALO_CEN")){curstring >> varname >> value; MAX_CALO_CEN = value;}
|
---|
| 116 | else if(strstr(temp_string.c_str(),"MAX_CALO_FWD")){curstring >> varname >> value; MAX_CALO_FWD = value;}
|
---|
| 117 | else if(strstr(temp_string.c_str(),"MAX_MU")){curstring >> varname >> value; MAX_MU = value;}
|
---|
| 118 | else if(strstr(temp_string.c_str(),"ELG_Scen")){curstring >> varname >> value; ELG_Scen = value;}
|
---|
| 119 | else if(strstr(temp_string.c_str(),"ELG_Ncen")){curstring >> varname >> value; ELG_Ncen = value;}
|
---|
| 120 | else if(strstr(temp_string.c_str(),"ELG_Ccen")){curstring >> varname >> value; ELG_Ccen = value;}
|
---|
| 121 | else if(strstr(temp_string.c_str(),"ELG_Sfwd")){curstring >> varname >> value; ELG_Sfwd = value;}
|
---|
| 122 | else if(strstr(temp_string.c_str(),"ELG_Cfwd")){curstring >> varname >> value; ELG_Cfwd = value;}
|
---|
| 123 | else if(strstr(temp_string.c_str(),"ELG_Nfwd")){curstring >> varname >> value; ELG_Nfwd = value;}
|
---|
| 124 | else if(strstr(temp_string.c_str(),"HAD_Secal")){curstring >> varname >> value; HAD_Secal = value;}
|
---|
| 125 | else if(strstr(temp_string.c_str(),"HAD_Necal")){curstring >> varname >> value; HAD_Necal = value;}
|
---|
| 126 | else if(strstr(temp_string.c_str(),"HAD_Cecal")){curstring >> varname >> value; HAD_Cecal = value;}
|
---|
| 127 | else if(strstr(temp_string.c_str(),"HAD_Shcal")){curstring >> varname >> value; HAD_Shcal = value;}
|
---|
| 128 | else if(strstr(temp_string.c_str(),"HAD_Nhcal")){curstring >> varname >> value; HAD_Nhcal = value;}
|
---|
| 129 | else if(strstr(temp_string.c_str(),"HAD_Chcal")){curstring >> varname >> value; HAD_Chcal = value;}
|
---|
| 130 | else if(strstr(temp_string.c_str(),"HAD_Shf")){curstring >> varname >> value; HAD_Shf = value;}
|
---|
| 131 | else if(strstr(temp_string.c_str(),"HAD_Nhf")){curstring >> varname >> value; HAD_Nhf = value;}
|
---|
| 132 | else if(strstr(temp_string.c_str(),"HAD_Chf")){curstring >> varname >> value; HAD_Chf = value;}
|
---|
| 133 | else if(strstr(temp_string.c_str(),"MU_SmearPt")){curstring >> varname >> value; MU_SmearPt = value;}
|
---|
| 134 | else if(strstr(temp_string.c_str(),"TAU_CONE_ENERGY")){curstring >> varname >> value; TAU_CONE_ENERGY = value;}
|
---|
| 135 | else if(strstr(temp_string.c_str(),"TAU_CONE_TRACKS")){curstring >> varname >> value; TAU_CONE_TRACKS = value;}
|
---|
| 136 | else if(strstr(temp_string.c_str(),"PT_TRACK_TAU")){curstring >> varname >> value; PT_TRACK_TAU = value;}
|
---|
| 137 | else if(strstr(temp_string.c_str(),"PT_TRACKS_MIN")){curstring >> varname >> value; PT_TRACKS_MIN = value;}
|
---|
| 138 | else if(strstr(temp_string.c_str(),"TAGGING_B")){curstring >> varname >> value; TAGGING_B = (int)value;}
|
---|
| 139 | else if(strstr(temp_string.c_str(),"MISTAGGING_C")){curstring >> varname >> value; MISTAGGING_C = (int)value;}
|
---|
| 140 | else if(strstr(temp_string.c_str(),"MISTAGGING_L")){curstring >> varname >> value; MISTAGGING_L = (int)value;}
|
---|
| 141 | else if(strstr(temp_string.c_str(),"CONERADIUS")){curstring >> varname >> value; CONERADIUS = value;}
|
---|
| 142 | else if(strstr(temp_string.c_str(),"JETALGO")){curstring >> varname >> value; JETALGO = (int)value;}
|
---|
| 143 | else if(strstr(temp_string.c_str(),"TRACKING_EFF")){curstring >> varname >> value; TRACKING_EFF = (int)value;}
|
---|
| 144 | }
|
---|
| 145 |
|
---|
| 146 | // Define Cone algorithm.
|
---|
| 147 | C_SEEDTHRESHOLD = 1.0;
|
---|
| 148 | C_ADJACENCYCUT = 2;
|
---|
| 149 | C_MAXITERATIONS = 100;
|
---|
| 150 | C_IRATCH = 1;
|
---|
| 151 | C_OVERLAPTHRESHOLD = 0.75;
|
---|
| 152 |
|
---|
| 153 | //Define MidPoint algorithm.
|
---|
| 154 | M_SEEDTHRESHOLD = 1.0;
|
---|
| 155 | M_CONEAREAFRACTION = 0.25;
|
---|
| 156 | M_MAXPAIRSIZE = 2;
|
---|
| 157 | M_MAXITERATIONS = 100;
|
---|
| 158 | M_OVERLAPTHRESHOLD = 0.75;
|
---|
| 159 |
|
---|
| 160 | }
|
---|
| 161 |
|
---|
| 162 |
|
---|
| 163 | // **********Provides the smeared TLorentzVector for the electrons********
|
---|
| 164 | // Smears the electron energy, and changes the 4-momentum accordingly
|
---|
| 165 | // different smearing if the electron is central (eta < 2.5) or forward
|
---|
| 166 | void RESOLution::SmearElectron(TLorentzVector &electron) {
|
---|
| 167 | // the 'electron' variable will be changed by the function
|
---|
| 168 | float energy = electron.E(); // before smearing
|
---|
| 169 | float energyS = 0.0; // after smearing // \sigma/E = C + N/E + S/\sqrt{E}
|
---|
| 170 |
|
---|
| 171 | if(fabs(electron.Eta()) < MAX_TRACKER) { // if the electron is inside the tracker
|
---|
| 172 | energyS = gRandom->Gaus(energy, sqrt(
|
---|
| 173 | pow(ELG_Ncen,2) +
|
---|
| 174 | pow(ELG_Ccen*energy,2) +
|
---|
| 175 | pow(ELG_Scen*sqrt(energy),2) ) );
|
---|
| 176 | } else { // outside the tracker
|
---|
| 177 | energyS = gRandom->Gaus(energy, sqrt(
|
---|
| 178 | pow(ELG_Nfwd,2) +
|
---|
| 179 | pow(ELG_Cfwd*energy,2) +
|
---|
| 180 | pow(ELG_Sfwd*sqrt(energy),2) ) );
|
---|
| 181 | }
|
---|
| 182 | electron.SetPtEtaPhiE(energyS/cosh(electron.Eta()), electron.Eta(), electron.Phi(), energyS);
|
---|
| 183 |
|
---|
| 184 | if(electron.E() < 0)electron.SetPxPyPzE(0,0,0,0); // no negative values after smearing !
|
---|
| 185 | }
|
---|
| 186 |
|
---|
| 187 |
|
---|
| 188 | // **********Provides the smeared TLorentzVector for the muons********
|
---|
| 189 | // Smears the muon pT and changes the 4-momentum accordingly
|
---|
| 190 | void RESOLution::SmearMu(TLorentzVector &muon) {
|
---|
| 191 | // the 'muon' variable will be changed by the function
|
---|
| 192 | float pt = muon.Pt(); // before smearing
|
---|
| 193 | float ptS = gRandom->Gaus(pt, MU_SmearPt*pt ); // after smearing // \sigma/E = C + N/E + S/\sqrt{E}
|
---|
| 194 |
|
---|
| 195 | muon.SetPtEtaPhiE(ptS, muon.Eta(), muon.Phi(), ptS*cosh(muon.Eta()));
|
---|
| 196 |
|
---|
| 197 | if(muon.E() < 0)muon.SetPxPyPzE(0,0,0,0); // no negative values after smearing !
|
---|
| 198 | }
|
---|
| 199 |
|
---|
| 200 |
|
---|
| 201 | // **********Provides the smeared TLorentzVector for the hadrons********
|
---|
| 202 | // Smears the hadron 4-momentum
|
---|
| 203 | void RESOLution::SmearHadron(TLorentzVector &hadron, const float frac)
|
---|
| 204 | // the 'hadron' variable will be changed by the function
|
---|
| 205 | // the 'frac' variable describes the long-living particles. Should be 0.7 for K0S and Lambda, 1. otherwise
|
---|
| 206 | {
|
---|
| 207 | float energy = hadron.E(); // before smearing
|
---|
| 208 | float energyS = 0.0; // after smearing // \sigma/E = C + N/E + S/\sqrt{E}
|
---|
| 209 | float energy_ecal = (1.0 - frac)*energy; // electromagnetic calorimeter
|
---|
| 210 | float energy_hcal = frac*energy; // hadronic calorimeter
|
---|
| 211 | // frac takes into account the decay of long-living particles, that decay in the calorimeters
|
---|
| 212 | // some of the particles decay mostly in the ecal, some mostly in the hcal
|
---|
| 213 |
|
---|
[10] | 214 | float energyS1,energyS2;
|
---|
[2] | 215 | if(fabs(hadron.Eta()) < MAX_CALO_CEN) {
|
---|
[10] | 216 | energyS1 = gRandom->Gaus(energy_hcal, sqrt(
|
---|
[2] | 217 | pow(HAD_Nhcal,2) +
|
---|
| 218 | pow(HAD_Chcal*energy_hcal,2) +
|
---|
[9] | 219 | pow(HAD_Shcal*sqrt(energy_hcal),2) )) ;
|
---|
[10] | 220 |
|
---|
[9] | 221 |
|
---|
[10] | 222 | energyS2 = gRandom->Gaus(energy_ecal, sqrt(
|
---|
[2] | 223 | pow(HAD_Necal,2) +
|
---|
| 224 | pow(HAD_Cecal*energy_ecal,2) +
|
---|
[10] | 225 | pow(HAD_Secal*sqrt(energy_ecal),2) ) );
|
---|
[9] | 226 |
|
---|
[10] | 227 | energyS = ((energyS1>0)?energyS1:0) + ((energyS2>0)?energyS2:0);
|
---|
[2] | 228 | } else {
|
---|
| 229 | energyS = gRandom->Gaus(energy,
|
---|
| 230 | pow(HAD_Nhf,2) +
|
---|
| 231 | pow(HAD_Chf*energy,2) +
|
---|
| 232 | pow(HAD_Shf*sqrt(energy),2) );
|
---|
| 233 | }
|
---|
[10] | 234 |
|
---|
| 235 |
|
---|
[2] | 236 | hadron.SetPtEtaPhiE(energyS/cosh(hadron.Eta()),hadron.Eta(), hadron.Phi(), energyS);
|
---|
| 237 |
|
---|
| 238 | if(hadron.E() < 0)hadron.SetPxPyPzE(0,0,0,0);
|
---|
| 239 | }
|
---|
| 240 |
|
---|
| 241 | // **********Provides the energy in the cone of radius TAU_CONE_ENERGY for the tau identification********
|
---|
| 242 | // to be taken into account, a calo tower should
|
---|
| 243 | // 1) have a transverse energy \f$ E_T = \sqrt{E_X^2 + E_Y^2} \f$ above a given threshold
|
---|
| 244 | // 2) be inside a cone with a radius R and the axis defined by (eta,phi)
|
---|
| 245 | double RESOLution::EnergySmallCone(const vector<PhysicsTower> &towers, const float eta, const float phi) {
|
---|
| 246 | double Energie=0;
|
---|
| 247 | for(unsigned int i=0; i < towers.size(); i++) {
|
---|
| 248 | if(towers[i].fourVector.pt() < M_SEEDTHRESHOLD) continue;
|
---|
| 249 | if((DeltaR(phi,eta,towers[i].fourVector.phi(),towers[i].fourVector.eta()) < TAU_CONE_ENERGY)) {
|
---|
| 250 | Energie += towers[i].fourVector.E;
|
---|
| 251 | }
|
---|
| 252 | }
|
---|
| 253 | return Energie;
|
---|
| 254 | }
|
---|
| 255 |
|
---|
| 256 |
|
---|
| 257 | // **********Provides the number of tracks in the cone of radius TAU_CONE_TRACKS for the tau identification********
|
---|
| 258 | // to be taken into account, a track should
|
---|
| 259 | // 1) avec a transverse momentum \$f p_T \$ above a given threshold
|
---|
| 260 | // 2) be inside a cone with a radius R and the axis defined by (eta,phi)
|
---|
| 261 | // IMPORTANT REMARK !!!!!
|
---|
| 262 | // previously, the argument 'phi' was before the argument 'eta'
|
---|
| 263 | // this has been changed for consistency with the other functions
|
---|
| 264 | // double check your running code that uses NumTracks !
|
---|
| 265 | unsigned int RESOLution::NumTracks(const vector<TLorentzVector> &tracks, const float pt_track, const float eta, const float phi) {
|
---|
| 266 | unsigned int numtrack=0;
|
---|
| 267 | for(unsigned int i=0; i < tracks.size(); i++) {
|
---|
| 268 | if((tracks[i].Pt() < pt_track )||
|
---|
| 269 | (DeltaR(phi,eta,tracks[i].Phi(),tracks[i].Eta()) > TAU_CONE_TRACKS)
|
---|
| 270 | )continue;
|
---|
| 271 | numtrack++;
|
---|
| 272 | }
|
---|
| 273 | return numtrack;
|
---|
| 274 | }
|
---|
| 275 |
|
---|
| 276 |
|
---|
| 277 | //*** Returns the PID of the particle with the highest energy, in a cone with a radius CONERADIUS and an axis (eta,phi) *********
|
---|
| 278 | //used by Btaggedjet
|
---|
| 279 | ///// Attention : bug removed => CONERADIUS/2 -> CONERADIUS !!
|
---|
| 280 | int RESOLution::Bjets(const TSimpleArray<TRootGenParticle> &subarray, const float eta, const float phi) {
|
---|
| 281 | float emax=0;
|
---|
| 282 | int Ppid=0;
|
---|
| 283 | if(subarray.GetEntries()>0) {
|
---|
| 284 | for(int i=0; i < subarray.GetEntries();i++) { // should have pt>PT_JETMIN and a small cone radius (r<CONE_JET)
|
---|
| 285 | float genDeltaR = DeltaR(subarray[i]->Phi,subarray[i]->Eta,phi,eta);
|
---|
| 286 | if(genDeltaR < CONERADIUS && subarray[i]->E > emax) {
|
---|
| 287 | emax=subarray[i]->E;
|
---|
| 288 | Ppid=abs(subarray[i]->PID);
|
---|
| 289 | }
|
---|
| 290 | }
|
---|
| 291 | }
|
---|
| 292 | return Ppid;
|
---|
| 293 | }
|
---|
| 294 |
|
---|
| 295 |
|
---|
| 296 | //******************** Simulates the b-tagging efficiency for real bjet, or the misendentification for other jets****************
|
---|
| 297 | bool RESOLution::Btaggedjet(const TLorentzVector &JET, const TSimpleArray<TRootGenParticle> &subarray) {
|
---|
| 298 | if( rand()%100 < (TAGGING_B+1) && Bjets(subarray,JET.Eta(),JET.Phi())==pB ) return true; // b-tag of b-jets is 40%
|
---|
| 299 | else if( rand()%100 < (MISTAGGING_C+1) && Bjets(subarray,JET.Eta(),JET.Phi())==pC ) return true; // b-tag of c-jets is 10%
|
---|
| 300 | else if( rand()%100 < (MISTAGGING_L+1) && Bjets(subarray,JET.Eta(),JET.Phi())!=0) return true; // b-tag of light jets is 1%
|
---|
| 301 | return false;
|
---|
| 302 | }
|
---|
| 303 |
|
---|
| 304 | //**************************** Returns the delta Phi ****************************
|
---|
| 305 | float DeltaPhi(const float phi1, const float phi2) {
|
---|
| 306 | float deltaphi=phi1-phi2; // in here, -PI < phi < PI
|
---|
| 307 | if(fabs(deltaphi) > PI) deltaphi=2.*PI-fabs(deltaphi);// put deltaphi between 0 and PI
|
---|
| 308 | else deltaphi=fabs(deltaphi);
|
---|
| 309 |
|
---|
| 310 | return deltaphi;
|
---|
| 311 | }
|
---|
| 312 |
|
---|
| 313 | //**************************** Returns the delta R****************************
|
---|
| 314 | float DeltaR(const float phi1, const float eta1, const float phi2, const float eta2) {
|
---|
| 315 | return sqrt(pow(DeltaPhi(phi1,phi2),2) + pow(eta1-eta2,2));
|
---|
| 316 | }
|
---|
| 317 |
|
---|
| 318 | int sign(const int myint) {
|
---|
| 319 | if (myint >0) return 1;
|
---|
| 320 | else if (myint <0) return -1;
|
---|
| 321 | else return 0;
|
---|
| 322 | }
|
---|
| 323 |
|
---|
| 324 | int sign(const float myfloat) {
|
---|
| 325 | if (myfloat >0) return 1;
|
---|
| 326 | else if (myfloat <0) return -1;
|
---|
| 327 | else return 0;
|
---|
| 328 | }
|
---|
| 329 |
|
---|
| 330 |
|
---|
| 331 | float Charge(const long int pid) {
|
---|
| 332 | // source: RPP chap 34 Monte Carlo Particle Numbering Scheme
|
---|
| 333 | /* switch (abs(pid)) {
|
---|
| 334 | case 1: case 3: case 5: case 7: return (float) sign(pid)*(-1/3); break; // d, s, b, b'
|
---|
| 335 | case 2: case 4: case 6: case 8: return (float) sign(pid)*2/3; break; // u, c, t, t'
|
---|
| 336 |
|
---|
| 337 | case 11: case 13: case 15: return (float) sign(pid)*(-1); break; // e, mu, tau
|
---|
| 338 | case 12: case 14: case 16: return (float) 0; break; // nu_e, nu_mu, nu_tau
|
---|
| 339 |
|
---|
| 340 | case 9: case 21: case 22: case 23: case 25:
|
---|
| 341 | case 32: case 33: case 35: case 36: return (float) 0; break; // neutral gauge/higgs bosons
|
---|
| 342 | case 24: case 34: case 37: return (float) sign(pid); break; // charged gauge/higgs bosons
|
---|
| 343 | }
|
---|
| 344 | */
|
---|
| 345 | return 0;
|
---|
| 346 | }
|
---|