1 | /***********************************************************************
|
---|
2 | ** **
|
---|
3 | ** /----------------------------------------------\ **
|
---|
4 | ** | Delphes, a framework for the fast simulation | **
|
---|
5 | ** | of a generic collider experiment | **
|
---|
6 | ** \----------------------------------------------/ **
|
---|
7 | ** **
|
---|
8 | ** **
|
---|
9 | ** This package uses: **
|
---|
10 | ** ------------------ **
|
---|
11 | ** FastJet algorithm: Phys. Lett. B641 (2006) [hep-ph/0512210] **
|
---|
12 | ** Hector: JINST 2:P09005 (2007) [physics.acc-ph:0707.1198v2] **
|
---|
13 | ** FROG: [hep-ex/0901.2718v1] **
|
---|
14 | ** **
|
---|
15 | ** ------------------------------------------------------------------ **
|
---|
16 | ** **
|
---|
17 | ** Main authors: **
|
---|
18 | ** ------------- **
|
---|
19 | ** **
|
---|
20 | ** Severine Ovyn Xavier Rouby **
|
---|
21 | ** severine.ovyn@uclouvain.be xavier.rouby@cern **
|
---|
22 | ** **
|
---|
23 | ** Center for Particle Physics and Phenomenology (CP3) **
|
---|
24 | ** Universite catholique de Louvain (UCL) **
|
---|
25 | ** Louvain-la-Neuve, Belgium **
|
---|
26 | ** **
|
---|
27 | ** Copyright (C) 2008-2009, **
|
---|
28 | ** All rights reserved. **
|
---|
29 | ** **
|
---|
30 | ***********************************************************************/
|
---|
31 |
|
---|
32 | #include "BFieldProp.h"
|
---|
33 | #include<cmath>
|
---|
34 | using namespace std;
|
---|
35 |
|
---|
36 |
|
---|
37 | //------------------------------------------------------------------------------
|
---|
38 | extern const float UNDEFINED;
|
---|
39 |
|
---|
40 | TrackPropagation::TrackPropagation(){
|
---|
41 | DET = new RESOLution();
|
---|
42 | init();
|
---|
43 | }
|
---|
44 |
|
---|
45 | TrackPropagation::TrackPropagation(const string& DetDatacard){
|
---|
46 | DET = new RESOLution();
|
---|
47 | DET->ReadDataCard(DetDatacard);
|
---|
48 | init();
|
---|
49 | }
|
---|
50 |
|
---|
51 | TrackPropagation::TrackPropagation(const RESOLution* DetDatacard){
|
---|
52 | DET= new RESOLution(*DetDatacard);
|
---|
53 | init();
|
---|
54 | }
|
---|
55 |
|
---|
56 | TrackPropagation::TrackPropagation(const TrackPropagation & tp){
|
---|
57 | MAXITERATION = tp.MAXITERATION;
|
---|
58 | DET = new RESOLution(*(tp.DET));
|
---|
59 | R_max = tp.R_max; z_max = tp.z_max;
|
---|
60 | B_x = tp.B_x; B_y = tp.B_y; B_z = tp.B_z;
|
---|
61 | q = tp.q; phi_0 = tp.phi_0;
|
---|
62 | gammam= tp.gammam; omega = tp.omega;
|
---|
63 | r = tp.r; rr = tp.rr;
|
---|
64 | x_c = tp.x_c; y_c = tp.y_c;
|
---|
65 | R_c = tp.R_c; Phi_c = tp.Phi_c;
|
---|
66 | t = tp.t; t_z = tp.t_z; t_T = tp.t_T;
|
---|
67 | x_t = tp.x_t; y_t = tp.y_t; z_t = tp.z_t;
|
---|
68 | R_t = tp.R_t; Phi_t = tp.Phi_t;
|
---|
69 | Theta_t=tp.Theta_t; Eta_t = tp.Eta_t;
|
---|
70 | Px_t = tp.Px_t; Py_t = tp.Py_t; Pz_t = tp.Pz_t;
|
---|
71 | PT_t = tp.PT_t; p_t = tp.p_t; E_t = tp.E_t;
|
---|
72 | loop_overflow_counter = tp.loop_overflow_counter;
|
---|
73 | }
|
---|
74 |
|
---|
75 | TrackPropagation& TrackPropagation::operator=(const TrackPropagation & tp) {
|
---|
76 | if(this==&tp) return *this;
|
---|
77 | MAXITERATION = tp.MAXITERATION;
|
---|
78 | DET = new RESOLution(*(tp.DET));
|
---|
79 | R_max = tp.R_max; z_max = tp.z_max;
|
---|
80 | B_x = tp.B_x; B_y = tp.B_y; B_z = tp.B_z;
|
---|
81 | q = tp.q; phi_0 = tp.phi_0;
|
---|
82 | gammam= tp.gammam; omega = tp.omega;
|
---|
83 | r = tp.r; rr = tp.rr;
|
---|
84 | x_c = tp.x_c; y_c = tp.y_c;
|
---|
85 | R_c = tp.R_c; Phi_c = tp.Phi_c;
|
---|
86 | t = tp.t; t_z = tp.t_z; t_T = tp.t_T;
|
---|
87 | x_t = tp.x_t; y_t = tp.y_t; z_t = tp.z_t;
|
---|
88 | R_t = tp.R_t; Phi_t = tp.Phi_t;
|
---|
89 | Theta_t=tp.Theta_t; Eta_t = tp.Eta_t;
|
---|
90 | Px_t = tp.Px_t; Py_t = tp.Py_t; Pz_t = tp.Pz_t;
|
---|
91 | PT_t = tp.PT_t; p_t = tp.p_t; E_t = tp.E_t;
|
---|
92 | loop_overflow_counter = tp.loop_overflow_counter;
|
---|
93 | return *this;
|
---|
94 | }
|
---|
95 |
|
---|
96 | void TrackPropagation::init() {
|
---|
97 | MAXITERATION = 10000;
|
---|
98 | q= UNDEFINED; phi_0= UNDEFINED; gammam= UNDEFINED; omega=UNDEFINED; r=UNDEFINED;
|
---|
99 | x_c=UNDEFINED; y_c=UNDEFINED; R_c=UNDEFINED; Phi_c=UNDEFINED;
|
---|
100 | rr=UNDEFINED; t=UNDEFINED; t_z=UNDEFINED; t_T=UNDEFINED;
|
---|
101 | x_t=UNDEFINED; y_t=UNDEFINED; z_t=UNDEFINED;
|
---|
102 | R_t=UNDEFINED; Phi_t=UNDEFINED; Theta_t=UNDEFINED; Eta_t=UNDEFINED;
|
---|
103 | Px_t=UNDEFINED; Py_t=UNDEFINED; Pz_t=UNDEFINED; PT_t=UNDEFINED; p_t=UNDEFINED; E_t=UNDEFINED;
|
---|
104 |
|
---|
105 | // DET has been initialised in the constructors
|
---|
106 | // magnetic field parameters
|
---|
107 | R_max = DET->TRACK_radius;
|
---|
108 | z_max = DET->TRACK_length/2.;
|
---|
109 | B_x = DET->TRACK_bfield_x;
|
---|
110 | B_y = DET->TRACK_bfield_y;
|
---|
111 | B_z = DET->TRACK_bfield_z;
|
---|
112 |
|
---|
113 | loop_overflow_counter=0;
|
---|
114 | }
|
---|
115 |
|
---|
116 |
|
---|
117 |
|
---|
118 | void TrackPropagation::Propagation(const TRootGenParticle *Part,TLorentzVector &momentum) {
|
---|
119 |
|
---|
120 | q = Charge(Part->PID);
|
---|
121 | if(q==0) return;
|
---|
122 |
|
---|
123 | if(R_max ==0) { cout << "ERROR: magnetic field has no lateral extention\n"; return;}
|
---|
124 | if(z_max==0) { cout << "ERROR: magnetic field has no longitudinal extention\n"; return;}
|
---|
125 |
|
---|
126 | if (B_x== 0 && B_y== 0) { // faster if only B_z
|
---|
127 | if (B_z==0) return; // nothing to do
|
---|
128 |
|
---|
129 | // initial conditions:
|
---|
130 | // p_X0 = Part->Px, p_Y0 = Part->Py, p_Z0 = Part->Pz, p_T0 = Part->PT;
|
---|
131 | // X_0 = Part->X, Y_0 = Part->Y, Z_0 = Part->Z;
|
---|
132 |
|
---|
133 | // 1. initial transverse momentum p_{T0} : Part->PT
|
---|
134 | // initial transverse momentum direction \phi_0 = -atan(p_X0/p_Y0)
|
---|
135 | // relativistic gamma : gamma = E/mc² ; gammam = gamma \times m
|
---|
136 | // giration frequency \omega = q/(gamma m) B_z
|
---|
137 | // helix radius r = p_T0 / (omega gamma m)
|
---|
138 | phi_0 = -atan2(Part->Px,Part->Py);
|
---|
139 | gammam = Part->E; // here c==1
|
---|
140 | //cout << "gammam" << gammam << "\t gamma" << gammam/Part->M << endl;
|
---|
141 | omega = q * B_z /gammam;
|
---|
142 | r = Part->PT / (omega * gammam);
|
---|
143 |
|
---|
144 | // 2. Helix parameters : center coordinates in transverse plane
|
---|
145 | // x_c = x_0 - r*cos(phi_0) and y_c = y_0 - r*sin(phi_0)
|
---|
146 | // R_c = \sqrt{x_c² + y_c²} and \Phi_c = atan{y_c/x_c}
|
---|
147 | x_c = Part->X - r*cos(phi_0); /// TEST !!
|
---|
148 | y_c = Part->Y - r*sin(phi_0);
|
---|
149 | R_c = sqrt(pow(x_c,2.) + pow(y_c,2.) );
|
---|
150 | Phi_c = atan2(y_c,x_c);
|
---|
151 |
|
---|
152 | // 3. time evaluation t = min(t_T, t_z)
|
---|
153 | // t_T : time to exit from the sides
|
---|
154 | // t_T= [ Phi_c - phi_0 + atan( (R_max^2 - (R_c^2 + r^2))/(2rR_c) ) ]/omega
|
---|
155 | // t_z : time to exit from the front or the back
|
---|
156 | // t_z = gamma * m /p_z0 \times (-z_0 + z_max * sign(p_z0))
|
---|
157 | rr = sqrt( pow(R_c,2.) + pow(r,2.) ); // temp variable
|
---|
158 | t_T=0;
|
---|
159 | int sign_pz= (Part->Pz >0) ? 1 : -1;
|
---|
160 | t_z = gammam / Part->Pz * (-Part->Z + z_max*sign_pz ) ;
|
---|
161 | if ( fabs(R_c - r) > R_max || R_c + r < R_max ) t = t_z;
|
---|
162 | else {
|
---|
163 | t_T = (Phi_c - phi_0 + atan2( (R_max + rr)*(R_max - rr) , 2*r*R_c ) ) / omega;
|
---|
164 | t = min(t_T,t_z);
|
---|
165 | }
|
---|
166 |
|
---|
167 | // 4. position in terms of x(t), y(t), z(t)
|
---|
168 | // x(t) = x_c + r cos (omega t + phi_0)
|
---|
169 | // y(t) = y_c + r sin (omega t + phi_0)
|
---|
170 | // z(t) = z_0 + (p_Z0/gammam) t
|
---|
171 | x_t = x_c + r * cos(omega * t + phi_0);
|
---|
172 | y_t = y_c + r * sin(omega * t + phi_0);
|
---|
173 | z_t = Part->Z + Part->Pz / gammam * t;
|
---|
174 |
|
---|
175 | // 5. position in terms of Theta(t), Phi(t), R(t), Eta(t)
|
---|
176 | // R(t) = sqrt(x(t)² + y(t)²)
|
---|
177 | // Phi(t) = atan(y(t)/x(t))
|
---|
178 | // Theta(t) = atan(R(t)/z(t))
|
---|
179 | // Eta(t) = -ln tan (Theta(t)/2)
|
---|
180 | R_t = sqrt( pow(x_t,2.) + pow(y_t,2.) );
|
---|
181 | Phi_t = atan2( y_t, x_t);
|
---|
182 | if(R_t>0) {
|
---|
183 | Theta_t = acos( z_t / sqrt(z_t*z_t+ R_t*R_t));
|
---|
184 | Eta_t = - log(tan(Theta_t/2.));
|
---|
185 | } else{
|
---|
186 | Theta_t=0; Eta_t = 9999;
|
---|
187 | }
|
---|
188 |
|
---|
189 | Px_t = - Part->PT * sin(omega*t + phi_0);
|
---|
190 | Py_t = Part->PT * cos(omega*t + phi_0);
|
---|
191 | Pz_t = Part->Pz;
|
---|
192 | PT_t = sqrt(Px_t*Px_t + Py_t*Py_t);
|
---|
193 | p_t = sqrt(PT_t*PT_t + Pz_t*Pz_t);
|
---|
194 | E_t=sqrt(Part->M*Part->M +p_t);
|
---|
195 | //if(p_t != fabs(Pz_t) ) Eta_t = log( (p_t+Pz_t)/(p_t-Pz_t) )/2.;
|
---|
196 | //if(p_t>0) Theta_t = acos(Pz_t/p_t);
|
---|
197 | momentum.SetPxPyPzE(Px_t,Py_t,Pz_t,E_t);
|
---|
198 |
|
---|
199 | // test zone ---
|
---|
200 | /*
|
---|
201 | cout << cos(atan(R_t/z_t)) << "\t" << cos(Theta_t) << "\t" << cos(momentum.Theta()) << "\t" << Pz_t/temp_p << endl;
|
---|
202 | double Eta_t1 = log( (E+Pz_t)/(E-Pz_t) )/2.;
|
---|
203 | double Eta_t2 = log( (temp_p+Pz_t)/(temp_p-Pz_t) )/2.;
|
---|
204 | if(0 && fabs(Eta_t -Eta_t2)>1e-310) {
|
---|
205 | cout << "ERROR-BUG: Eta_t != Eta_t2\n";
|
---|
206 | cout << "Eta_t= " << Eta_t << "\t Eta_t1= " << Eta_t1 << "\t Eta_t2= " << Eta_t2 << endl;
|
---|
207 | }
|
---|
208 |
|
---|
209 | double R_t2 = sqrt( pow(R_c,2.) + pow(r,2.) + 2*r*R_c*cos(phi_0 + omega*t - Phi_c) ); // cross-check
|
---|
210 | if(fabs(R_t - R_t2) > 1e-7)
|
---|
211 | cout << "ERROR-BUG: R_t != R_t2: R_t=" << R_t << " R_t2=" << R_t2 << " R_t - R_t2 =" << R_t - R_t2 << endl;
|
---|
212 | if( fabs(E - gammam) > 1e-3 ) {
|
---|
213 | cout << "ERROR-BUG: energy is not conserved in src/BFieldProp.cc\n";
|
---|
214 | cout << "E - momentum.E() = " << fabs(E - momentum.E()) << " gammam - E " << fabs(gammam -E) << endl; }
|
---|
215 | if( fabs(PT_t - Part->PT) > 1e-10 ) {
|
---|
216 | cout << "ERROR-BUG: PT is not conversed in src/BFieldProp.cc. ";
|
---|
217 | cout << "(at " << 100*(PT_t - Part->PT) << "%)\n";
|
---|
218 | }
|
---|
219 | if(momentum.Pz() != Pz_t)
|
---|
220 | cout << "ERROR-BUG: Pz is not conserved in src/BFieldProp.cc\n";
|
---|
221 |
|
---|
222 | double temp_p0=sqrt(Part->PT*Part->PT + Part->Pz*Part->Pz);
|
---|
223 | if(fabs( (temp_p-temp_p0)*(temp_p+temp_p0) )>1e-10 ) {
|
---|
224 | cout << "ERROR-BUG: momentum |vec{p}| is not conserved in src/BFieldProp.cc\n";
|
---|
225 | cout << temp_p << "\t" << temp_p0 << endl;
|
---|
226 | }
|
---|
227 |
|
---|
228 | // if x_c == y_c ==0 (set it by hand!), easy cross-check
|
---|
229 | //cout << "tan(phi_p)= " << momentum.Py()/momentum.Px() << "\t -1/tan(phi_x)= " << -x_t/y_t << endl;
|
---|
230 | */
|
---|
231 |
|
---|
232 | } else { // if B_x or B_y are non zero: longer computation
|
---|
233 |
|
---|
234 | float Xvertex1 = Part->X;
|
---|
235 | float Yvertex1 = Part->Y;
|
---|
236 | float Zvertex1 = Part->Z;
|
---|
237 |
|
---|
238 | //out of tracking coverage?
|
---|
239 | if(sqrt(Xvertex1*Xvertex1+Yvertex1*Yvertex1) > R_max){return;}
|
---|
240 | if(fabs(Zvertex1) > z_max){return;}
|
---|
241 |
|
---|
242 | double px = Part->Px / 0.003;
|
---|
243 | double py = Part->Py / 0.003;
|
---|
244 | double pz = Part->Pz / 0.003;
|
---|
245 | double pt = Part->PT / 0.003; // sqrt(px*px+py*py);
|
---|
246 | double p = sqrt(pz*pz + pt*pt); //sqrt(px*px+py*py+pz*pz);
|
---|
247 |
|
---|
248 | double M = Part->M;
|
---|
249 | double vx = px/M;
|
---|
250 | double vy = py/M;
|
---|
251 | double vz = pz/M;
|
---|
252 | double qm = q/M;
|
---|
253 |
|
---|
254 | double ax = qm*(B_z*vy - B_y*vz);
|
---|
255 | double ay = qm*(B_x*vz - B_z*vx);
|
---|
256 | double az = qm*(B_y*vx - B_x*vy);
|
---|
257 | double dt = 1/p;
|
---|
258 | if(pt<266 && vz < 0.0012) dt = fabs(0.001/vz); // ?????
|
---|
259 |
|
---|
260 | double xold=Xvertex1; double x=xold;
|
---|
261 | double yold=Yvertex1; double y=yold;
|
---|
262 | double zold=Zvertex1; double z=zold;
|
---|
263 |
|
---|
264 | double VTold = pt/M; //=sqrt(vx*vx+vy*vy);
|
---|
265 |
|
---|
266 | unsigned int k = 0;
|
---|
267 | double VTratio=0;
|
---|
268 | double R_max2 = R_max*R_max;
|
---|
269 | double r2=0; // will be x*x+y*y
|
---|
270 |
|
---|
271 | while(k < MAXITERATION){
|
---|
272 | k++;
|
---|
273 |
|
---|
274 | vx += ax*dt;
|
---|
275 | vy += ay*dt;
|
---|
276 | vz += az*dt;
|
---|
277 |
|
---|
278 | VTratio = VTold/sqrt(vx*vx+vy*vy);
|
---|
279 | vx *= VTratio;
|
---|
280 | vy *= VTratio;
|
---|
281 |
|
---|
282 | ax = qm*(B_z*vy - B_y*vz);
|
---|
283 | ay = qm*(B_x*vz - B_z*vx);
|
---|
284 | az = qm*(B_y*vx - B_x*vy);
|
---|
285 |
|
---|
286 | x += vx*dt;
|
---|
287 | y += vy*dt;
|
---|
288 | z += vz*dt;
|
---|
289 | r2 = x*x + y*y;
|
---|
290 |
|
---|
291 | if( r2 > R_max2 ){
|
---|
292 | x /= r2/R_max2;
|
---|
293 | y /= r2/R_max2;
|
---|
294 | break;
|
---|
295 | }
|
---|
296 | if( fabs(z)>z_max)break;
|
---|
297 |
|
---|
298 | xold = x;
|
---|
299 | yold = y;
|
---|
300 | zold = z;
|
---|
301 | } // while loop
|
---|
302 |
|
---|
303 | if(k == MAXITERATION) loop_overflow_counter++;
|
---|
304 | //cout << "too short loop in " << loop_overflow_counter << " cases" << endl;
|
---|
305 |
|
---|
306 | if(x!=0 && y!=0 && z!=0) {
|
---|
307 | float Theta = atan2(sqrt(r2),z);
|
---|
308 | double eta = -log(tan(Theta/2.));
|
---|
309 | double phi = atan2(y,x);
|
---|
310 | momentum.SetPtEtaPhiE(Part->PT,eta,phi,Part->E);
|
---|
311 | }
|
---|
312 |
|
---|
313 | } // if b_x or b_y non zero
|
---|
314 | }
|
---|
315 |
|
---|
316 |
|
---|
317 |
|
---|
318 | void TrackPropagation::bfield(TRootGenParticle *Part) {
|
---|
319 |
|
---|
320 | // initialisation, valid for z_max==0, R_max==0 and q==0
|
---|
321 | Part->EtaCalo = Part->Eta;
|
---|
322 | Part->PhiCalo = Part->Phi;//-atan2(Part->Px,Part->Py);
|
---|
323 |
|
---|
324 | if (!DET->FLAG_bfield ) return;
|
---|
325 |
|
---|
326 | q = Charge(Part->PID);
|
---|
327 | if(q==0) return;
|
---|
328 | if(R_max ==0) { cout << "ERROR: magnetic field has no lateral extention\n"; return;}
|
---|
329 | if(z_max==0) { cout << "ERROR: magnetic field has no longitudinal extention\n"; return;}
|
---|
330 |
|
---|
331 | if (B_x== 0 && B_y== 0) { // faster if only B_z
|
---|
332 | if (B_z==0) return; // nothing to do
|
---|
333 |
|
---|
334 | // initial conditions:
|
---|
335 | // p_X0 = Part->Px, p_Y0 = Part->Py, p_Z0 = Part->Pz, p_T0 = Part->PT;
|
---|
336 | // X_0 = Part->X, Y_0 = Part->Y, Z_0 = Part->Z;
|
---|
337 |
|
---|
338 | // 1. initial transverse momentum p_{T0} : Part->PT
|
---|
339 | // initial transverse momentum direction \phi_0 = -atan(p_X0/p_Y0)
|
---|
340 | // relativistic gamma : gamma = E/mc² ; gammam = gamma \times m
|
---|
341 | // giration frequency \omega = q/(gamma m) B_z
|
---|
342 | // helix radius r = p_T0 / (omega gamma m)
|
---|
343 | phi_0 = -atan2(Part->Px,Part->Py);
|
---|
344 | gammam = Part->E; // here c==1
|
---|
345 | //cout << "gammam" << gammam << "\t gamma" << gammam/Part->M << endl;
|
---|
346 | omega = q * B_z /gammam;
|
---|
347 | r = Part->PT / (omega * gammam);
|
---|
348 |
|
---|
349 | // 2. Helix parameters : center coordinates in transverse plane
|
---|
350 | // x_c = x_0 - r*cos(phi_0) and y_c = y_0 - r*sin(phi_0)
|
---|
351 | // R_c = \sqrt{x_c² + y_c²} and \Phi_c = atan{y_c/x_c}
|
---|
352 | x_c = Part->X - r*cos(phi_0); /// TEST !!
|
---|
353 | y_c = Part->Y - r*sin(phi_0);
|
---|
354 | R_c = sqrt(pow(x_c,2.) + pow(y_c,2.) );
|
---|
355 | Phi_c = atan2(y_c,x_c);
|
---|
356 |
|
---|
357 | // 3. time evaluation t = min(t_T, t_z)
|
---|
358 | // t_T : time to exit from the sides
|
---|
359 | // t_T= [ Phi_c - phi_0 + atan( (R_max^2 - (R_c^2 + r^2))/(2rR_c) ) ]/omega
|
---|
360 | // t_z : time to exit from the front or the back
|
---|
361 | // t_z = gamma * m /p_z0 \times (-z_0 + z_max * sign(p_z0))
|
---|
362 | rr = sqrt( pow(R_c,2.) + pow(r,2.) ); // temp variable
|
---|
363 | t_T=0;
|
---|
364 | int sign_pz= (Part->Pz >0) ? 1 : -1;
|
---|
365 | t_z = gammam / Part->Pz * (-Part->Z + z_max*sign_pz ) ;
|
---|
366 | if ( fabs(R_c - r) > R_max || R_c + r < R_max ) t = t_z;
|
---|
367 | else {
|
---|
368 | t_T = (Phi_c - phi_0 + atan2( (R_max + rr)*(R_max - rr) , 2*r*R_c ) ) / omega;
|
---|
369 | t = min(t_T,t_z);
|
---|
370 | }
|
---|
371 |
|
---|
372 | // 4. position in terms of x(t), y(t), z(t)
|
---|
373 | // x(t) = x_c + r cos (omega t + phi_0)
|
---|
374 | // y(t) = y_c + r sin (omega t + phi_0)
|
---|
375 | // z(t) = z_0 + (p_Z0/gammam) t
|
---|
376 | x_t = x_c + r * cos(omega * t + phi_0);
|
---|
377 | y_t = y_c + r * sin(omega * t + phi_0);
|
---|
378 | z_t = Part->Z + Part->Pz / gammam * t;
|
---|
379 |
|
---|
380 | // 5. position in terms of Theta(t), Phi(t), R(t), Eta(t)
|
---|
381 | // R(t) = sqrt(x(t)² + y(t)²)
|
---|
382 | // Phi(t) = atan(y(t)/x(t))
|
---|
383 | // Theta(t) = atan(R(t)/z(t))
|
---|
384 | // Eta(t) = -ln tan (Theta(t)/2)
|
---|
385 | R_t = sqrt( pow(x_t,2.) + pow(y_t,2.) );
|
---|
386 | Phi_t = atan2( y_t, x_t);
|
---|
387 | if(R_t>0) {
|
---|
388 | Theta_t = acos( z_t / sqrt(z_t*z_t+ R_t*R_t));
|
---|
389 | Eta_t = - log(tan(Theta_t/2.));
|
---|
390 | } else{
|
---|
391 | Theta_t=0; Eta_t = UNDEFINED;
|
---|
392 | }
|
---|
393 | /* Not needed here. but these formulae are correct -------
|
---|
394 | Px_t = - Part->PT * sin(omega*t + phi_0);
|
---|
395 | Py_t = Part->PT * cos(omega*t + phi_0);
|
---|
396 | Pz_t = Part->Pz;
|
---|
397 | PT_t = sqrt(Px_t*Px_t + Py_t*Py_t);
|
---|
398 | p_t = sqrt(PT_t*PT_t + Pz_t*Pz_t);
|
---|
399 | E_t=sqrt(Part->M*Part->M +p_t);
|
---|
400 | //if(p_t != fabs(Pz_t) ) Eta_t = log( (p_t+Pz_t)/(p_t-Pz_t) )/2.;
|
---|
401 | //if(p_t>0) Theta_t = acos(Pz_t/p_t);
|
---|
402 | momentum.SetPxPyPzE(Px_t,Py_t,Pz_t,E_t);
|
---|
403 | */
|
---|
404 | Part->EtaCalo = Eta_t;
|
---|
405 | Part->PhiCalo = Phi_t;
|
---|
406 | return;
|
---|
407 | // test zone ---
|
---|
408 | /*
|
---|
409 | cout << cos(atan(R_t/z_t)) << "\t" << cos(Theta_t) << "\t" << cos(momentum.Theta()) << "\t" << Pz_t/temp_p << endl;
|
---|
410 | double Eta_t1 = log( (E+Pz_t)/(E-Pz_t) )/2.;
|
---|
411 | double Eta_t2 = log( (temp_p+Pz_t)/(temp_p-Pz_t) )/2.;
|
---|
412 | if(0 && fabs(Eta_t -Eta_t2)>1e-310) {
|
---|
413 | cout << "ERROR-BUG: Eta_t != Eta_t2\n";
|
---|
414 | cout << "Eta_t= " << Eta_t << "\t Eta_t1= " << Eta_t1 << "\t Eta_t2= " << Eta_t2 << endl;
|
---|
415 | }
|
---|
416 |
|
---|
417 | double R_t2 = sqrt( pow(R_c,2.) + pow(r,2.) + 2*r*R_c*cos(phi_0 + omega*t - Phi_c) ); // cross-check
|
---|
418 | if(fabs(R_t - R_t2) > 1e-7)
|
---|
419 | cout << "ERROR-BUG: R_t != R_t2: R_t=" << R_t << " R_t2=" << R_t2 << " R_t - R_t2 =" << R_t - R_t2 << endl;
|
---|
420 | if( fabs(E - gammam) > 1e-3 ) {
|
---|
421 | cout << "ERROR-BUG: energy is not conserved in src/BFieldProp.cc\n";
|
---|
422 | cout << "E - momentum.E() = " << fabs(E - momentum.E()) << " gammam - E " << fabs(gammam -E) << endl; }
|
---|
423 | if( fabs(PT_t - Part->PT) > 1e-10 ) {
|
---|
424 | cout << "ERROR-BUG: PT is not conversed in src/BFieldProp.cc. ";
|
---|
425 | cout << "(at " << 100*(PT_t - Part->PT) << "%)\n";
|
---|
426 | }
|
---|
427 | if(momentum.Pz() != Pz_t)
|
---|
428 | cout << "ERROR-BUG: Pz is not conserved in src/BFieldProp.cc\n";
|
---|
429 |
|
---|
430 | double temp_p0=sqrt(Part->PT*Part->PT + Part->Pz*Part->Pz);
|
---|
431 | if(fabs( (temp_p-temp_p0)*(temp_p+temp_p0) )>1e-10 ) {
|
---|
432 | cout << "ERROR-BUG: momentum |vec{p}| is not conserved in src/BFieldProp.cc\n";
|
---|
433 | cout << temp_p << "\t" << temp_p0 << endl;
|
---|
434 | }
|
---|
435 |
|
---|
436 | // if x_c == y_c ==0 (set it by hand!), easy cross-check
|
---|
437 | //cout << "tan(phi_p)= " << momentum.Py()/momentum.Px() << "\t -1/tan(phi_x)= " << -x_t/y_t << endl;
|
---|
438 | */
|
---|
439 |
|
---|
440 | } else { // if B_x or B_y are non zero: longer computation
|
---|
441 | //cout << "bfield de loic\n";
|
---|
442 | float Xvertex1 = Part->X;
|
---|
443 | float Yvertex1 = Part->Y;
|
---|
444 | float Zvertex1 = Part->Z;
|
---|
445 |
|
---|
446 | //out of tracking coverage?
|
---|
447 | if(sqrt(Xvertex1*Xvertex1+Yvertex1*Yvertex1) > R_max){return;}
|
---|
448 | if(fabs(Zvertex1) > z_max){return;}
|
---|
449 |
|
---|
450 | double px = Part->Px / 0.003;
|
---|
451 | double py = Part->Py / 0.003;
|
---|
452 | double pz = Part->Pz / 0.003;
|
---|
453 | double pt = Part->PT / 0.003; // sqrt(px*px+py*py);
|
---|
454 | double p = sqrt(pz*pz + pt*pt); //sqrt(px*px+py*py+pz*pz);
|
---|
455 |
|
---|
456 | double M = Part->M;
|
---|
457 | double vx = px/M;
|
---|
458 | double vy = py/M;
|
---|
459 | double vz = pz/M;
|
---|
460 | double qm = q/M;
|
---|
461 |
|
---|
462 | double ax = qm*(B_z*vy - B_y*vz);
|
---|
463 | double ay = qm*(B_x*vz - B_z*vx);
|
---|
464 | double az = qm*(B_y*vx - B_x*vy);
|
---|
465 | double dt = 1/p;
|
---|
466 | if(pt<266 && vz < 0.0012) dt = fabs(0.001/vz); // ?????
|
---|
467 |
|
---|
468 | double xold=Xvertex1; double x=xold;
|
---|
469 | double yold=Yvertex1; double y=yold;
|
---|
470 | double zold=Zvertex1; double z=zold;
|
---|
471 |
|
---|
472 | double VTold = pt/M; //=sqrt(vx*vx+vy*vy);
|
---|
473 |
|
---|
474 | unsigned int k = 0;
|
---|
475 | double VTratio=0;
|
---|
476 | double R_max2 = R_max*R_max;
|
---|
477 | double r2=0; // will be x*x+y*y
|
---|
478 |
|
---|
479 | while(k < MAXITERATION){
|
---|
480 | k++;
|
---|
481 |
|
---|
482 | vx += ax*dt;
|
---|
483 | vy += ay*dt;
|
---|
484 | vz += az*dt;
|
---|
485 |
|
---|
486 | VTratio = VTold/sqrt(vx*vx+vy*vy);
|
---|
487 | vx *= VTratio;
|
---|
488 | vy *= VTratio;
|
---|
489 |
|
---|
490 | ax = qm*(B_z*vy - B_y*vz);
|
---|
491 | ay = qm*(B_x*vz - B_z*vx);
|
---|
492 | az = qm*(B_y*vx - B_x*vy);
|
---|
493 |
|
---|
494 | x += vx*dt;
|
---|
495 | y += vy*dt;
|
---|
496 | z += vz*dt;
|
---|
497 | r2 = x*x + y*y;
|
---|
498 |
|
---|
499 | if( r2 > R_max2 ){
|
---|
500 | x /= r2/R_max2;
|
---|
501 | y /= r2/R_max2;
|
---|
502 | break;
|
---|
503 | }
|
---|
504 | if( fabs(z)>z_max)break;
|
---|
505 |
|
---|
506 | xold = x;
|
---|
507 | yold = y;
|
---|
508 | zold = z;
|
---|
509 | } // while loop
|
---|
510 |
|
---|
511 | if(k == MAXITERATION) loop_overflow_counter++;
|
---|
512 | //cout << "too short loop in " << loop_overflow_counter << " cases" << endl;
|
---|
513 | float Theta=0;
|
---|
514 | if(x!=0 && y!=0 && z!=0) {
|
---|
515 | Theta = atan2(sqrt(r2),z);
|
---|
516 | Part->EtaCalo = -log(tan(Theta/2.));
|
---|
517 | Part->PhiCalo = atan2(y,x);
|
---|
518 | //momentum.SetPtEtaPhiE(Part->PT,eta,phi,Part->E);
|
---|
519 | }
|
---|
520 | } // if b_x or b_y non zero
|
---|
521 | }
|
---|