Fork me on GitHub

source: svn/trunk/src/BFieldProp.cc@ 199

Last change on this file since 199 was 199, checked in by Xavier Rouby, 16 years ago

fast bfield is working

File size: 8.0 KB
Line 
1/*
2 * ---- Delphes ----
3 * A Fast Simulator for general purpose LHC detector
4 * S. Ovyn ~~~~ severine.ovyn@uclouvain.be
5 *
6 * Center for Particle Physics and Phenomenology (CP3)
7 * Universite Catholique de Louvain (UCL)
8 * Louvain-la-Neuve, Belgium
9 * */
10
11#include "interface/BFieldProp.h"
12#include<cmath>
13#include "TMath.h"
14using namespace std;
15
16
17//------------------------------------------------------------------------------
18
19TrackPropagation::TrackPropagation(const string DetDatacard):
20 MAXITERATION(10000), q(-9999.), phi_0(-9999.), gammam(-9999.), omega(-9999.), r(-9999.),
21 x_c(-9999.), y_c(-9999.), R_c(-9999.), Phi_c(-9999.),
22 rr(-9999.), t(-9999.), t_z(-9999.), t_T(-9999.),
23 x_t(-9999.), y_t(-9999.), z_t(-9999.),
24 R_t(-9999.), Phi_t(-9999.), Theta_t(-9999.), Eta_t(-9999.),
25 Px_t(-9999), Py_t(-9999), Pz_t(-9999), PT_t(-9999), p_t(-9999), E_t(-9999) {
26
27 // if(DetDatacard="") { DET = new RESOLution(); }
28 // else DET = new RESOLution(DetDatacard);
29 DET = new RESOLution();
30 DET->ReadDataCard(DetDatacard);
31
32 // magnetic field parameters
33 R_max = DET->TRACK_radius;
34 z_max = DET->TRACK_length/2.;
35 B_x = DET->TRACK_bfield_x;
36 B_y = DET->TRACK_bfield_y;
37 B_z = DET->TRACK_bfield_z;
38
39 loop_overflow_counter=0;
40}
41
42void TrackPropagation::Propagation(const TRootGenParticle *Part,TLorentzVector &momentum) {
43
44 q = Charge(Part->PID);
45 if(q==0) return;
46
47 if(R_max ==0) { cout << "ERROR: magnetic field has no lateral extention\n"; return;}
48 if(z_max==0) { cout << "ERROR: magnetic field has no longitudinal extention\n"; return;}
49
50 if (B_x== 0 && B_y== 0) { // faster if only B_z
51 if (B_z==0) return; // nothing to do
52
53 // initial conditions:
54 // p_X0 = Part->Px, p_Y0 = Part->Py, p_Z0 = Part->Pz, p_T0 = Part->PT;
55 // X_0 = Part->X, Y_0 = Part->Y, Z_0 = Part->Z;
56
57 // 1. initial transverse momentum p_{T0} : Part->PT
58 // initial transverse momentum direction \phi_0 = -atan(p_X0/p_Y0)
59 // relativistic gamma : gamma = E/mc² ; gammam = gamma \times m
60 // giration frequency \omega = q/(gamma m) B_z
61 // helix radius r = p_T0 / (omega gamma m)
62 phi_0 = -atan2(Part->Px,Part->Py);
63 gammam = Part->E; // here c==1
64 //cout << "gammam" << gammam << "\t gamma" << gammam/Part->M << endl;
65 omega = q * B_z /gammam;
66 r = Part->PT / (omega * gammam);
67
68 // 2. Helix parameters : center coordinates in transverse plane
69 // x_c = x_0 - r*cos(phi_0) and y_c = y_0 - r*sin(phi_0)
70 // R_c = \sqrt{x_c² + y_c²} and \Phi_c = atan{y_c/x_c}
71 x_c = Part->X - r*cos(phi_0); /// TEST !!
72 y_c = Part->Y - r*sin(phi_0);
73 R_c = sqrt(pow(x_c,2.) + pow(y_c,2.) );
74 Phi_c = atan2(y_c,x_c);
75
76 // 3. time evaluation t = min(t_T, t_z)
77 // t_T : time to exit from the sides
78 // t_T= [ Phi_c - phi_0 + atan( (R_max^2 - (R_c^2 + r^2))/(2rR_c) ) ]/omega
79 // t_z : time to exit from the front or the back
80 // t_z = gamma * m /p_z0 \times (-z_0 + z_max * sign(p_z0))
81 rr = sqrt( pow(R_c,2.) + pow(r,2.) ); // temp variable
82 t_T=0;
83 t_z = gammam / Part->Pz * (-Part->Z + z_max* TMath::Sign((Float_t)1.,(Float_t)Part->Pz) ) ;
84 if ( fabs(R_c - r) > R_max || R_c + r < R_max ) t = t_z;
85 else {
86 t_T = (Phi_c - phi_0 + atan2( (R_max + rr)*(R_max - rr) , 2*r*R_c ) ) / omega;
87 t = min(t_T,t_z);
88 }
89
90 // 4. position in terms of x(t), y(t), z(t)
91 // x(t) = x_c + r cos (omega t + phi_0)
92 // y(t) = y_c + r sin (omega t + phi_0)
93 // z(t) = z_0 + (p_Z0/gammam) t
94 x_t = x_c + r * cos(omega * t + phi_0);
95 y_t = y_c + r * sin(omega * t + phi_0);
96 z_t = Part->Z + Part->Pz / gammam * t;
97
98 // 5. position in terms of Theta(t), Phi(t), R(t), Eta(t)
99 // R(t) = sqrt(x(t)² + y(t)²)
100 // Phi(t) = atan(y(t)/x(t))
101 // Theta(t) = atan(R(t)/z(t))
102 // Eta(t) = -ln tan (Theta(t)/2)
103 R_t = sqrt( pow(x_t,2.) + pow(y_t,2.) );
104 Phi_t = atan2( y_t, x_t);
105/* if(R_t>0) {
106 Theta_t = acos( z_t / sqrt(z_t*z_t+ R_t*R_t));
107 Eta_t = - log(tan(Theta_t/2.));
108 } else{
109 Theta_t=0; Eta_t = 9999;
110 }
111*/
112 Px_t = - Part->PT * sin(omega*t + phi_0);
113 Py_t = Part->PT * cos(omega*t + phi_0);
114 Pz_t = Part->Pz;
115 PT_t = sqrt(Px_t*Px_t + Py_t*Py_t);
116 p_t = sqrt(PT_t*PT_t + Pz_t*Pz_t);
117 E_t=sqrt(Part->M*Part->M +p_t);
118 if(p_t != fabs(Pz_t) ) Eta_t = log( (p_t+Pz_t)/(p_t-Pz_t) )/2.;
119 if(p_t>0) Theta_t = acos(Pz_t/p_t);
120 momentum.SetPxPyPzE(Px_t,Py_t,Pz_t,E_t);
121
122// test zone ---
123/*
124 cout << cos(atan(R_t/z_t)) << "\t" << cos(Theta_t) << "\t" << cos(momentum.Theta()) << "\t" << Pz_t/temp_p << endl;
125 double Eta_t1 = log( (E+Pz_t)/(E-Pz_t) )/2.;
126 double Eta_t2 = log( (temp_p+Pz_t)/(temp_p-Pz_t) )/2.;
127 if(0 && fabs(Eta_t -Eta_t2)>1e-310) {
128 cout << "ERROR-BUG: Eta_t != Eta_t2\n";
129 cout << "Eta_t= " << Eta_t << "\t Eta_t1= " << Eta_t1 << "\t Eta_t2= " << Eta_t2 << endl;
130 }
131
132 double R_t2 = sqrt( pow(R_c,2.) + pow(r,2.) + 2*r*R_c*cos(phi_0 + omega*t - Phi_c) ); // cross-check
133 if(fabs(R_t - R_t2) > 1e-7)
134 cout << "ERROR-BUG: R_t != R_t2: R_t=" << R_t << " R_t2=" << R_t2 << " R_t - R_t2 =" << R_t - R_t2 << endl;
135 if( fabs(E - gammam) > 1e-3 ) {
136 cout << "ERROR-BUG: energy is not conserved in src/BFieldProp.cc\n";
137 cout << "E - momentum.E() = " << fabs(E - momentum.E()) << " gammam - E " << fabs(gammam -E) << endl; }
138 if( fabs(PT_t - Part->PT) > 1e-10 ) {
139 cout << "ERROR-BUG: PT is not conversed in src/BFieldProp.cc. ";
140 cout << "(at " << 100*(PT_t - Part->PT) << "%)\n";
141 }
142 if(momentum.Pz() != Pz_t)
143 cout << "ERROR-BUG: Pz is not conserved in src/BFieldProp.cc\n";
144
145 double temp_p0=sqrt(Part->PT*Part->PT + Part->Pz*Part->Pz);
146 if(fabs( (temp_p-temp_p0)*(temp_p+temp_p0) )>1e-10 ) {
147 cout << "ERROR-BUG: momentum |vec{p}| is not conserved in src/BFieldProp.cc\n";
148 cout << temp_p << "\t" << temp_p0 << endl;
149 }
150
151 // if x_c == y_c ==0 (set it by hand!), easy cross-check
152 //cout << "tan(phi_p)= " << momentum.Py()/momentum.Px() << "\t -1/tan(phi_x)= " << -x_t/y_t << endl;
153*/
154
155 } else { // if B_x or B_y are non zero: longer computation
156
157 float Xvertex1 = Part->X;
158 float Yvertex1 = Part->Y;
159 float Zvertex1 = Part->Z;
160
161 //out of tracking coverage?
162 if(sqrt(Xvertex1*Xvertex1+Yvertex1*Yvertex1) > R_max){return;}
163 if(fabs(Zvertex1) > z_max){return;}
164
165 double px = Part->Px / 0.003;
166 double py = Part->Py / 0.003;
167 double pz = Part->Pz / 0.003;
168 double pt = Part->PT / 0.003; // sqrt(px*px+py*py);
169 double p = sqrt(pz*pz + pt*pt); //sqrt(px*px+py*py+pz*pz);
170
171 double M = Part->M;
172 double vx = px/M;
173 double vy = py/M;
174 double vz = pz/M;
175 double qm = q/M;
176
177 double ax = qm*(B_z*vy - B_y*vz);
178 double ay = qm*(B_x*vz - B_z*vx);
179 double az = qm*(B_y*vx - B_x*vy);
180 double dt = 1/p;
181 if(pt<266 && vz < 0.0012) dt = fabs(0.001/vz); // ?????
182
183 double xold=Xvertex1; double x=xold;
184 double yold=Yvertex1; double y=yold;
185 double zold=Zvertex1; double z=zold;
186
187 double VTold = pt/M; //=sqrt(vx*vx+vy*vy);
188
189 unsigned int k = 0;
190 double VTratio=0;
191 double R_max2 = R_max*R_max;
192 double r2=0; // will be x*x+y*y
193
194 while(k < MAXITERATION){
195 k++;
196
197 vx += ax*dt;
198 vy += ay*dt;
199 vz += az*dt;
200
201 VTratio = VTold/sqrt(vx*vx+vy*vy);
202 vx *= VTratio;
203 vy *= VTratio;
204
205 ax = qm*(B_z*vy - B_y*vz);
206 ay = qm*(B_x*vz - B_z*vx);
207 az = qm*(B_y*vx - B_x*vy);
208
209 x += vx*dt;
210 y += vy*dt;
211 z += vz*dt;
212 r2 = x*x + y*y;
213
214 if( r2 > R_max2 ){
215 x /= r2/R_max2;
216 y /= r2/R_max2;
217 break;
218 }
219 if( fabs(z)>z_max)break;
220
221 xold = x;
222 yold = y;
223 zold = z;
224 } // while loop
225
226 if(k == MAXITERATION) loop_overflow_counter++;
227 //cout << "too short loop in " << loop_overflow_counter << " cases" << endl;
228
229 if(x!=0 && y!=0 && z!=0) {
230 float Theta = atan2(sqrt(r2),z);
231 double eta = -log(tan(Theta/2.));
232 double phi = atan2(y,x);
233 momentum.SetPtEtaPhiE(Part->PT,eta,phi,Part->E);
234 }
235
236 } // if b_x or b_y non zero
237}
Note: See TracBrowser for help on using the repository browser.