[260] | 1 | /***********************************************************************
|
---|
| 2 | ** **
|
---|
| 3 | ** /----------------------------------------------\ **
|
---|
| 4 | ** | Delphes, a framework for the fast simulation | **
|
---|
| 5 | ** | of a generic collider experiment | **
|
---|
| 6 | ** \----------------------------------------------/ **
|
---|
| 7 | ** **
|
---|
| 8 | ** **
|
---|
| 9 | ** This package uses: **
|
---|
| 10 | ** ------------------ **
|
---|
| 11 | ** FastJet algorithm: Phys. Lett. B641 (2006) [hep-ph/0512210] **
|
---|
| 12 | ** Hector: JINST 2:P09005 (2007) [physics.acc-ph:0707.1198v2] **
|
---|
| 13 | ** FROG: [hep-ex/0901.2718v1] **
|
---|
| 14 | ** **
|
---|
| 15 | ** ------------------------------------------------------------------ **
|
---|
| 16 | ** **
|
---|
| 17 | ** Main authors: **
|
---|
| 18 | ** ------------- **
|
---|
| 19 | ** **
|
---|
| 20 | ** Severine Ovyn Xavier Rouby **
|
---|
| 21 | ** severine.ovyn@uclouvain.be xavier.rouby@cern **
|
---|
| 22 | ** **
|
---|
| 23 | ** Center for Particle Physics and Phenomenology (CP3) **
|
---|
| 24 | ** Universite catholique de Louvain (UCL) **
|
---|
| 25 | ** Louvain-la-Neuve, Belgium **
|
---|
| 26 | ** **
|
---|
| 27 | ** Copyright (C) 2008-2009, **
|
---|
| 28 | ** All rights reserved. **
|
---|
| 29 | ** **
|
---|
| 30 | ***********************************************************************/
|
---|
[53] | 31 |
|
---|
[219] | 32 | #include "BFieldProp.h"
|
---|
[294] | 33 | #include "SystemOfUnits.h"
|
---|
| 34 | #include "PhysicalConstants.h"
|
---|
[53] | 35 | #include<cmath>
|
---|
| 36 | using namespace std;
|
---|
| 37 |
|
---|
| 38 |
|
---|
| 39 | //------------------------------------------------------------------------------
|
---|
[264] | 40 | extern const float UNDEFINED;
|
---|
[53] | 41 |
|
---|
[219] | 42 | TrackPropagation::TrackPropagation(){
|
---|
| 43 | DET = new RESOLution();
|
---|
| 44 | init();
|
---|
| 45 | }
|
---|
[53] | 46 |
|
---|
[219] | 47 | TrackPropagation::TrackPropagation(const string& DetDatacard){
|
---|
| 48 | DET = new RESOLution();
|
---|
| 49 | DET->ReadDataCard(DetDatacard);
|
---|
| 50 | init();
|
---|
| 51 | }
|
---|
[53] | 52 |
|
---|
[219] | 53 | TrackPropagation::TrackPropagation(const RESOLution* DetDatacard){
|
---|
| 54 | DET= new RESOLution(*DetDatacard);
|
---|
| 55 | init();
|
---|
| 56 | }
|
---|
| 57 |
|
---|
| 58 | TrackPropagation::TrackPropagation(const TrackPropagation & tp){
|
---|
| 59 | MAXITERATION = tp.MAXITERATION;
|
---|
| 60 | DET = new RESOLution(*(tp.DET));
|
---|
| 61 | R_max = tp.R_max; z_max = tp.z_max;
|
---|
| 62 | B_x = tp.B_x; B_y = tp.B_y; B_z = tp.B_z;
|
---|
| 63 | q = tp.q; phi_0 = tp.phi_0;
|
---|
| 64 | gammam= tp.gammam; omega = tp.omega;
|
---|
| 65 | r = tp.r; rr = tp.rr;
|
---|
| 66 | x_c = tp.x_c; y_c = tp.y_c;
|
---|
| 67 | R_c = tp.R_c; Phi_c = tp.Phi_c;
|
---|
| 68 | t = tp.t; t_z = tp.t_z; t_T = tp.t_T;
|
---|
| 69 | x_t = tp.x_t; y_t = tp.y_t; z_t = tp.z_t;
|
---|
| 70 | R_t = tp.R_t; Phi_t = tp.Phi_t;
|
---|
| 71 | Theta_t=tp.Theta_t; Eta_t = tp.Eta_t;
|
---|
| 72 | Px_t = tp.Px_t; Py_t = tp.Py_t; Pz_t = tp.Pz_t;
|
---|
| 73 | PT_t = tp.PT_t; p_t = tp.p_t; E_t = tp.E_t;
|
---|
| 74 | loop_overflow_counter = tp.loop_overflow_counter;
|
---|
| 75 | }
|
---|
| 76 |
|
---|
| 77 | TrackPropagation& TrackPropagation::operator=(const TrackPropagation & tp) {
|
---|
| 78 | if(this==&tp) return *this;
|
---|
| 79 | MAXITERATION = tp.MAXITERATION;
|
---|
| 80 | DET = new RESOLution(*(tp.DET));
|
---|
| 81 | R_max = tp.R_max; z_max = tp.z_max;
|
---|
| 82 | B_x = tp.B_x; B_y = tp.B_y; B_z = tp.B_z;
|
---|
| 83 | q = tp.q; phi_0 = tp.phi_0;
|
---|
| 84 | gammam= tp.gammam; omega = tp.omega;
|
---|
| 85 | r = tp.r; rr = tp.rr;
|
---|
| 86 | x_c = tp.x_c; y_c = tp.y_c;
|
---|
| 87 | R_c = tp.R_c; Phi_c = tp.Phi_c;
|
---|
| 88 | t = tp.t; t_z = tp.t_z; t_T = tp.t_T;
|
---|
| 89 | x_t = tp.x_t; y_t = tp.y_t; z_t = tp.z_t;
|
---|
| 90 | R_t = tp.R_t; Phi_t = tp.Phi_t;
|
---|
| 91 | Theta_t=tp.Theta_t; Eta_t = tp.Eta_t;
|
---|
| 92 | Px_t = tp.Px_t; Py_t = tp.Py_t; Pz_t = tp.Pz_t;
|
---|
| 93 | PT_t = tp.PT_t; p_t = tp.p_t; E_t = tp.E_t;
|
---|
| 94 | loop_overflow_counter = tp.loop_overflow_counter;
|
---|
| 95 | return *this;
|
---|
| 96 | }
|
---|
| 97 |
|
---|
| 98 | void TrackPropagation::init() {
|
---|
| 99 | MAXITERATION = 10000;
|
---|
| 100 | q= UNDEFINED; phi_0= UNDEFINED; gammam= UNDEFINED; omega=UNDEFINED; r=UNDEFINED;
|
---|
| 101 | x_c=UNDEFINED; y_c=UNDEFINED; R_c=UNDEFINED; Phi_c=UNDEFINED;
|
---|
| 102 | rr=UNDEFINED; t=UNDEFINED; t_z=UNDEFINED; t_T=UNDEFINED;
|
---|
| 103 | x_t=UNDEFINED; y_t=UNDEFINED; z_t=UNDEFINED;
|
---|
| 104 | R_t=UNDEFINED; Phi_t=UNDEFINED; Theta_t=UNDEFINED; Eta_t=UNDEFINED;
|
---|
| 105 | Px_t=UNDEFINED; Py_t=UNDEFINED; Pz_t=UNDEFINED; PT_t=UNDEFINED; p_t=UNDEFINED; E_t=UNDEFINED;
|
---|
| 106 |
|
---|
| 107 | // DET has been initialised in the constructors
|
---|
| 108 | // magnetic field parameters
|
---|
[294] | 109 | R_max = DET->TRACK_radius/100.; //[m]
|
---|
| 110 | z_max = DET->TRACK_length/200.; //[m]
|
---|
| 111 | B_x = DET->TRACK_bfield_x*tesla;
|
---|
| 112 | B_y = DET->TRACK_bfield_y*tesla;
|
---|
[193] | 113 | B_z = DET->TRACK_bfield_z;
|
---|
| 114 |
|
---|
| 115 | loop_overflow_counter=0;
|
---|
[53] | 116 | }
|
---|
| 117 |
|
---|
[219] | 118 |
|
---|
| 119 |
|
---|
[53] | 120 |
|
---|
[294] | 121 |
|
---|
| 122 |
|
---|
| 123 | void TrackPropagation::bfield(TRootGenParticle *Part) {
|
---|
| 124 |
|
---|
| 125 |
|
---|
| 126 | // initialisation, valid for z_max==0, R_max==0 and q==0
|
---|
| 127 | Part->EtaCalo = Part->Eta;
|
---|
| 128 | Part->PhiCalo = Part->Phi;//-atan2(Part->Px,Part->Py);
|
---|
| 129 |
|
---|
| 130 | // trivial cases
|
---|
| 131 | if (!DET->FLAG_bfield ) return;
|
---|
| 132 |
|
---|
| 133 | q = ChargeVal(Part->PID) *eplus; // in units of 'e'
|
---|
[193] | 134 | if(q==0) return;
|
---|
[294] | 135 | if(R_max==0) { cout << "ERROR: magnetic field has no lateral extention\n"; return;}
|
---|
[193] | 136 | if(z_max==0) { cout << "ERROR: magnetic field has no longitudinal extention\n"; return;}
|
---|
| 137 |
|
---|
[294] | 138 | double X = Part->X/1000.;//[m]
|
---|
| 139 | double Y = Part->Y/1000.;//[m]
|
---|
| 140 | double Z = Part->Z/1000.;//[m]
|
---|
| 141 |
|
---|
| 142 | // out of tracking coverage?
|
---|
| 143 | if(sqrt(X*X+Y*Y) > R_max){return;}
|
---|
| 144 | if(fabs(Z) > z_max){return;}
|
---|
| 145 |
|
---|
[199] | 146 | if (B_x== 0 && B_y== 0) { // faster if only B_z
|
---|
[193] | 147 | if (B_z==0) return; // nothing to do
|
---|
| 148 |
|
---|
[294] | 149 |
|
---|
| 150 | //in test mode, just run once
|
---|
| 151 | if (loop_overflow_counter) return;
|
---|
| 152 |
|
---|
[193] | 153 | // initial conditions:
|
---|
| 154 | // p_X0 = Part->Px, p_Y0 = Part->Py, p_Z0 = Part->Pz, p_T0 = Part->PT;
|
---|
| 155 | // X_0 = Part->X, Y_0 = Part->Y, Z_0 = Part->Z;
|
---|
| 156 |
|
---|
| 157 | // 1. initial transverse momentum p_{T0} : Part->PT
|
---|
| 158 | // initial transverse momentum direction \phi_0 = -atan(p_X0/p_Y0)
|
---|
| 159 | // relativistic gamma : gamma = E/mc² ; gammam = gamma \times m
|
---|
| 160 | // giration frequency \omega = q/(gamma m) B_z
|
---|
| 161 | // helix radius r = p_T0 / (omega gamma m)
|
---|
[294] | 162 | double Px = Part->Px; // [GeV/c]
|
---|
| 163 | double Py = Part->Py;
|
---|
| 164 | double Pz = Part->Pz;
|
---|
| 165 | double PT = Part->PT;
|
---|
| 166 | double E = Part->E; // [GeV]
|
---|
| 167 | double M = Part->M; // [GeV]/c²
|
---|
| 168 | double Phi = UNDEFINED;
|
---|
[193] | 169 |
|
---|
[294] | 170 | unsigned int method =2;
|
---|
| 171 | gammam = E * 1E-9 ; // gammam in [eV]
|
---|
| 172 | omega = q * e_SI * B_z * 2.99792458E+8* 2.99792458E+8 / gammam; // omega is here in [rad/s]
|
---|
| 173 | r = PT * 1E-9 * 2.99792458E+8 / (omega * gammam ); // in [m] m2 /( s)
|
---|
| 174 |
|
---|
| 175 | // test mode
|
---|
| 176 | bool test=false; if(test) loop_overflow_counter++;
|
---|
| 177 |
|
---|
| 178 | // test -- point 1) // tests faciles: changer le signe de q et de Py
|
---|
| 179 | if(test && false) {
|
---|
| 180 | q = -e_SI; X = Y = Z = Px = Pz = M = 0;
|
---|
| 181 | Py= R_max * (q*B_z);
|
---|
| 182 | PT = sqrt(Px*Px + Py*Py + Pz*Pz);
|
---|
| 183 | E = PT* 2.99792458E+8; gammam = PT/ 2.99792458E+8;
|
---|
| 184 | omega = q/e_SI * 2.99792458E+8/R_max; // omega has a sign!
|
---|
| 185 | r = PT / (omega * gammam ); // r has a sign!
|
---|
| 186 | }
|
---|
| 187 | // test -- point 2)
|
---|
| 188 | if(test && false) {
|
---|
| 189 | q = e_SI; X = R_max/2.; Y = Z = Px = Pz = M = 0;
|
---|
| 190 | Py= -R_max * (q*B_z);
|
---|
| 191 | PT = sqrt(Px*Px + Py*Py + Pz*Pz);
|
---|
| 192 | E = PT* 2.99792458E+8; gammam = PT/ 2.99792458E+8;
|
---|
| 193 | omega = q/e_SI * 2.99792458E+8/R_max;
|
---|
| 194 | r = PT / (omega * gammam );
|
---|
| 195 | }
|
---|
| 196 | // test -- point 3)
|
---|
| 197 | if(test && false) {
|
---|
| 198 | q = -e_SI; X = 0; Y= -R_max/2.; Z = Px = Pz = M = 0;
|
---|
| 199 | Py= R_max * (q*B_z);
|
---|
| 200 | PT = sqrt(Px*Px + Py*Py + Pz*Pz);
|
---|
| 201 | E = PT* 2.99792458E+8; gammam = PT/ 2.99792458E+8;
|
---|
| 202 | omega = q/e_SI * 2.99792458E+8/R_max;
|
---|
| 203 | r = PT / (omega * gammam );
|
---|
| 204 | }
|
---|
| 205 | // test -- point 4)
|
---|
| 206 | if(test && false) {
|
---|
| 207 | q = -e_SI; X = R_max/2.; Y = Z = Py = Pz = M = 0;
|
---|
| 208 | Px= R_max * (q*B_z);
|
---|
| 209 | PT = sqrt(Px*Px + Py*Py + Pz*Pz);
|
---|
| 210 | E = PT* 2.99792458E+8; gammam = PT/ 2.99792458E+8;
|
---|
| 211 | omega = q/e_SI * 2.99792458E+8/R_max;
|
---|
| 212 | r = PT / (omega * gammam );
|
---|
| 213 | }
|
---|
| 214 | // test -- point 5)
|
---|
| 215 | if(test && false) {
|
---|
| 216 | q = e_SI; X = -R_max/2.; Y = Z = Px = Pz = M = 0;
|
---|
| 217 | Py= -R_max * (q*B_z);
|
---|
| 218 | PT = sqrt(Px*Px + Py*Py + Pz*Pz);
|
---|
| 219 | E = PT* 2.99792458E+8; gammam = PT/ 2.99792458E+8;
|
---|
| 220 | omega = q/e_SI * 2.99792458E+8/R_max;
|
---|
| 221 | r = PT / (omega * gammam );
|
---|
| 222 | }
|
---|
| 223 | // test -- point 6)
|
---|
| 224 | if(test && true) {
|
---|
| 225 | q = e_SI; Y = -R_max/2.; X = Z = Py = Pz = M = 0;
|
---|
| 226 | Px= -R_max * (q*B_z);
|
---|
| 227 | PT = sqrt(Px*Px + Py*Py + Pz*Pz);
|
---|
| 228 | E = PT* 2.99792458E+8; gammam = PT/ 2.99792458E+8;
|
---|
| 229 | omega = q/e_SI * 2.99792458E+8/R_max;
|
---|
| 230 | r = PT / (omega * gammam );
|
---|
| 231 | }
|
---|
| 232 |
|
---|
| 233 |
|
---|
| 234 | double delta= UNDEFINED;
|
---|
| 235 |
|
---|
| 236 | if (method==1) {
|
---|
| 237 |
|
---|
| 238 | phi_0 = -atan2(Px,Py); // [rad]
|
---|
| 239 | //if(phi_0<0)phi_0 = 2*pi+phi_0; // [rad], in [0 - 2 pi]
|
---|
| 240 |
|
---|
[193] | 241 | // 2. Helix parameters : center coordinates in transverse plane
|
---|
| 242 | // x_c = x_0 - r*cos(phi_0) and y_c = y_0 - r*sin(phi_0)
|
---|
| 243 | // R_c = \sqrt{x_c² + y_c²} and \Phi_c = atan{y_c/x_c}
|
---|
[294] | 244 | x_c = X - r*cos(phi_0);
|
---|
| 245 | y_c = Y - r*sin(phi_0);
|
---|
[193] | 246 | R_c = sqrt(pow(x_c,2.) + pow(y_c,2.) );
|
---|
| 247 | Phi_c = atan2(y_c,x_c);
|
---|
[294] | 248 | //if(Phi_c<0)Phi_c = 2*pi+Phi_c;
|
---|
| 249 | Phi = Phi_c;
|
---|
| 250 | //r=fabs(r);
|
---|
[193] | 251 |
|
---|
| 252 | // 3. time evaluation t = min(t_T, t_z)
|
---|
| 253 | // t_T : time to exit from the sides
|
---|
[291] | 254 | // t_T= [ Phi_c - phi_0 + acos( (R_max^2 - (R_c^2 + r^2))/(2rR_c) ) ]/omega
|
---|
[193] | 255 | // t_z : time to exit from the front or the back
|
---|
[199] | 256 | // t_z = gamma * m /p_z0 \times (-z_0 + z_max * sign(p_z0))
|
---|
[193] | 257 | rr = sqrt( pow(R_c,2.) + pow(r,2.) ); // temp variable
|
---|
[294] | 258 | t_T=0; //[ns]
|
---|
| 259 | int sign_pz= (Pz >0) ? 1 : -1;
|
---|
| 260 | if(Pz==0) t_z = 1E99;
|
---|
| 261 | else t_z = gammam / (Pz*1E-9* 2.99792458E+8) * (-Z + z_max*sign_pz );
|
---|
| 262 | if( t_z <0) cout << "ERROR: t_z <0 !" << endl;
|
---|
| 263 |
|
---|
[193] | 264 | if ( fabs(R_c - r) > R_max || R_c + r < R_max ) t = t_z;
|
---|
| 265 | else {
|
---|
[291] | 266 | if(r==0|| R_c ==0) t_T=1E99;
|
---|
[294] | 267 | else {
|
---|
| 268 | //t_T = fabs((Phi_c - phi_0 - acos( (R_max + rr)*(R_max - rr) / (2*r*R_c) ))/omega) ;
|
---|
| 269 | double A = fabs(acos( (R_max + rr)*(R_max - rr) / (2*r*R_c) )) ;
|
---|
| 270 | double a = phi_0 + A;
|
---|
| 271 | // validé si acos >0 , mais quid si acos < 0?
|
---|
| 272 |
|
---|
| 273 | double tm = (Phi_c - a) / omega;
|
---|
| 274 | double tp = (-Phi_c + a) / omega;
|
---|
| 275 | //cout << "t- = " << tm << "\t t+ = " << tp << endl;
|
---|
| 276 | if(tm<0) t_T = tp;
|
---|
| 277 | else if(tp<0) t_T=tm;
|
---|
| 278 | else t_T = min(tm,tp);
|
---|
| 279 |
|
---|
| 280 | //cout << "t_T = " << t_T << "\t T_z = " << t_z << "\t r = " << r << endl;
|
---|
| 281 | t = min(t_T,t_z); // t is output here in [ns], which is compatible with omega
|
---|
| 282 | }
|
---|
[193] | 283 | }
|
---|
| 284 |
|
---|
| 285 | // 4. position in terms of x(t), y(t), z(t)
|
---|
| 286 | x_t = x_c + r * cos(omega * t + phi_0);
|
---|
| 287 | y_t = y_c + r * sin(omega * t + phi_0);
|
---|
[294] | 288 | z_t = Z + Pz*1E-9* 2.99792458E+8 / gammam * t;
|
---|
[193] | 289 |
|
---|
| 290 | // 5. position in terms of Theta(t), Phi(t), R(t), Eta(t)
|
---|
| 291 | R_t = sqrt( pow(x_t,2.) + pow(y_t,2.) );
|
---|
| 292 | Phi_t = atan2( y_t, x_t);
|
---|
[219] | 293 | if(R_t>0) {
|
---|
[199] | 294 | Theta_t = acos( z_t / sqrt(z_t*z_t+ R_t*R_t));
|
---|
| 295 | Eta_t = - log(tan(Theta_t/2.));
|
---|
| 296 | } else{
|
---|
[294] | 297 | Theta_t=0; Eta_t = UNDEFINED;
|
---|
[199] | 298 | }
|
---|
[219] | 299 |
|
---|
[294] | 300 | //if(phi_0 <0 || phi_0 > 2*pi) cout <<"ERROR: phi_0 out of range: [0 ; 2pi] " << phi_0 << endl;
|
---|
| 301 | //if(Phi_c <0 || Phi_c > 2*pi) cout <<"ERROR: Phi_c out of range: [0 ; 2pi] " << Phi_c << endl;
|
---|
[193] | 302 |
|
---|
[294] | 303 | } // method 1
|
---|
| 304 | else {
|
---|
[193] | 305 |
|
---|
[294] | 306 | phi_0 = atan2(Py,Px); // [rad] in [-pi ; pi ]
|
---|
| 307 | //if(phi_0<0)phi_0 = 2*pi+phi_0; // [rad], in [0 - 2 pi]
|
---|
[193] | 308 |
|
---|
[294] | 309 | x_c = X + r*sin(phi_0);
|
---|
| 310 | y_c = Y - r*cos(phi_0);
|
---|
| 311 | R_c = sqrt( pow(x_c,2.) + pow(y_c,2.) );
|
---|
[248] | 312 | Phi_c = atan2(y_c,x_c);
|
---|
[294] | 313 | Phi = Phi_c;
|
---|
| 314 | if(x_c<0) Phi += pi;
|
---|
| 315 | //if(Phi<0)Phi = 2*pi+Phi; // ne pas le mettre pour que le test1 fonctionne
|
---|
[248] | 316 |
|
---|
| 317 | // 3. time evaluation t = min(t_T, t_z)
|
---|
| 318 | // t_T : time to exit from the sides
|
---|
| 319 | // t_z : time to exit from the front or the back
|
---|
| 320 | rr = sqrt( pow(R_c,2.) + pow(r,2.) ); // temp variable
|
---|
[294] | 321 | t_T=0; //[ns]
|
---|
| 322 | int sign_pz= (Pz >0) ? 1 : -1;
|
---|
| 323 | if(Pz==0) t_z = 1E99;
|
---|
| 324 | else t_z = gammam / (Pz*1E-9* 2.99792458E+8) * (-Z + z_max*sign_pz );
|
---|
| 325 | if( t_z <0) cout << "ERROR: t_z <0 !" << endl;
|
---|
| 326 |
|
---|
| 327 | if ( fabs(R_c - fabs(r)) > R_max || R_c + fabs(r) < R_max ) t = t_z;
|
---|
[248] | 328 | else {
|
---|
[294] | 329 | if(r==0) cout << "r ==0 !" << endl;
|
---|
| 330 | if(R_c==0) cout << "R_c ==0 !" << endl;
|
---|
[291] | 331 | if(r==0|| R_c ==0) t_T=1E99;
|
---|
[294] | 332 | else {
|
---|
| 333 | double asinrho = asin( (R_max + rr)*(R_max - rr) / (2*fabs(r)*R_c) );
|
---|
| 334 | delta = phi_0 - Phi;
|
---|
| 335 | if(delta<-pi) delta += 2*pi;
|
---|
| 336 | if(delta> pi) delta -= 2*pi;
|
---|
| 337 | double t1 = (delta + asinrho) / omega;
|
---|
| 338 | double t2 = (delta + pi - asinrho) / omega;
|
---|
| 339 | double t3 = (delta + pi + asinrho) / omega;
|
---|
| 340 | double t4 = (delta - asinrho) / omega;
|
---|
| 341 | double t5 = (delta - pi - asinrho) / omega;
|
---|
| 342 | double t6 = (delta - pi + asinrho) / omega;
|
---|
| 343 |
|
---|
| 344 | if(test) {
|
---|
| 345 | cout << "t4 = " << t4 << "\t t5 = " << t5 << "\t t_6=" << t6 << "\t t_3 = " << t3 << endl;
|
---|
| 346 | cout << "t1 = " << t1 << "\t t2 = " << t2 << "\t t_T=" << t_T << "\t t_z = " << t_z << endl;
|
---|
| 347 | cout << "delta= " << delta << endl;
|
---|
| 348 | }
|
---|
| 349 | if(t1<0)t1=1E99;
|
---|
| 350 | if(t2<0)t2=1E99;
|
---|
| 351 | if(t3<0)t3=1E99;
|
---|
| 352 | if(t4<0)t4=1E99;
|
---|
| 353 | if(t5<0)t5=1E99;
|
---|
| 354 | if(t6<0)t6=1E99;
|
---|
| 355 |
|
---|
| 356 | double t_Ta = min(t1,min(t2,t3));
|
---|
| 357 | double t_Tb = min(t4,min(t5,t6));
|
---|
| 358 | t_T = min(t_Ta,t_Tb);
|
---|
| 359 |
|
---|
| 360 | //if(t1<0) t_T = t2;
|
---|
| 361 | //else if(t2<0) t_T = t1;
|
---|
| 362 | //else {t_T = min(t1,t2); /*cout << "**";*/}
|
---|
| 363 | //if (t1<0 && t2<0) {t_T = fabs(min(t1,t2)); cout << "\tbad!!\n";}
|
---|
| 364 | t = min(t_T,t_z);
|
---|
| 365 | if(test) {
|
---|
| 366 | // cout << "t4 = " << t4 << "\t t5 = " << t5 << "\t t_6=" << t6 << "\t t_3 = " << t3 << endl;
|
---|
| 367 | // cout << "t1 = " << t1 << "\t t2 = " << t2 << "\t t_T=" << t_T << "\t t_z = " << t_z << endl;
|
---|
| 368 | }
|
---|
| 369 | }
|
---|
[248] | 370 | }
|
---|
[294] | 371 | //r = PT / (omega * gammam );
|
---|
[248] | 372 |
|
---|
| 373 | // 4. position in terms of x(t), y(t), z(t)
|
---|
[294] | 374 | x_t = x_c + r * sin(omega * t - phi_0);
|
---|
| 375 | y_t = y_c + r * cos(omega * t - phi_0);
|
---|
| 376 | z_t = Z + Pz*1E-9* 2.99792458E+8 / gammam * t;
|
---|
[248] | 377 |
|
---|
| 378 | // 5. position in terms of Theta(t), Phi(t), R(t), Eta(t)
|
---|
| 379 | R_t = sqrt( pow(x_t,2.) + pow(y_t,2.) );
|
---|
| 380 | Phi_t = atan2( y_t, x_t);
|
---|
| 381 | if(R_t>0) {
|
---|
[294] | 382 | Theta_t = acos( z_t / sqrt(z_t*z_t+ R_t*R_t));
|
---|
| 383 | Eta_t = - log(tan(Theta_t/2.));
|
---|
| 384 | }
|
---|
| 385 | else {
|
---|
[264] | 386 | Theta_t=0; Eta_t = UNDEFINED;
|
---|
[248] | 387 | }
|
---|
[294] | 388 | } // method2
|
---|
| 389 |
|
---|
| 390 | if(test) {
|
---|
| 391 | cout << endl << endl;
|
---|
| 392 | cout << "method " << method << "----------------\n";
|
---|
| 393 | cout << "x0,y0,z0= " << X << ", " << Y << ", " << Z << endl;
|
---|
| 394 | cout << "px0,py0,pz0= " << Px << ", " << Py << ", " << Pz << endl;
|
---|
| 395 | cout << "r = " << r << "R_max = " << R_max << "\t phi_0=" << phi_0 << endl;
|
---|
| 396 | cout << "gammam= " << gammam << "\t omega=" << omega << "\t PT = " << PT << endl;
|
---|
| 397 | cout << "x_c = " << x_c << "\t y_c = " << y_c << "\t R_c = " << R_c << "\t Phi = " << Phi << endl;
|
---|
| 398 | cout << "omega t = " << omega*t << "\t";
|
---|
| 399 | cout << "cos(omega t -phi0)= " << cos(omega*t-phi_0) << "\t sin(omega t -phi0)= " << sin(omega*t-phi_0) << endl;
|
---|
| 400 | cout << "t_T = " << t_T << "\t t_z = " << t_z << "\t r = " << r << endl;
|
---|
| 401 | cout << "x_t = " << x_t << "\t y_t = " << y_t << "\t z_t = " << z_t << endl;
|
---|
| 402 | cout << "R_t = " << R_t << "\t Phi_t = " << Phi_t << "\t";
|
---|
| 403 | cout << "Theta_t = " << Theta_t << "\t Eta_t = " << Eta_t << endl;
|
---|
| 404 | }
|
---|
| 405 |
|
---|
| 406 |
|
---|
[248] | 407 | /* Not needed here. but these formulae are correct -------
|
---|
[294] | 408 | // method1
|
---|
| 409 | Px_t = - PT * sin(omega*t + phi_0);
|
---|
| 410 | Py_t = PT * cos(omega*t + phi_0);
|
---|
| 411 |
|
---|
| 412 | // method2
|
---|
| 413 | Px_t = PT * cos(phi_0 - omega*t);
|
---|
| 414 | Py_t = PT * sin(phi_0 - omega*t);
|
---|
| 415 |
|
---|
| 416 | Pz_t = Pz;
|
---|
[248] | 417 | PT_t = sqrt(Px_t*Px_t + Py_t*Py_t);
|
---|
| 418 | p_t = sqrt(PT_t*PT_t + Pz_t*Pz_t);
|
---|
[294] | 419 | E_t=sqrt(M*M +p_t*p_t);
|
---|
[248] | 420 | //if(p_t != fabs(Pz_t) ) Eta_t = log( (p_t+Pz_t)/(p_t-Pz_t) )/2.;
|
---|
[294] | 421 | //if(p_t>0) Theta_t = acos(Pz_t/p_t)>;
|
---|
[248] | 422 | momentum.SetPxPyPzE(Px_t,Py_t,Pz_t,E_t);
|
---|
| 423 | */
|
---|
[294] | 424 |
|
---|
| 425 | //cout << "R_c = " << R_c << " r " << r << " rr = " << rr << " R_t" << R_t << endl;
|
---|
| 426 | //cout << "x_t = " << x_t << " x_c = " << x_c << "\ty_t = " << y_t << " y_c = " << y_c << " z_t " << z_t << endl;
|
---|
| 427 | //cout << "Eta = " << Part->Eta << " Eta_t " << Eta_t << "Phi = " << Part->Phi << " Phi_t= " << Phi_t << "-----" << endl;
|
---|
[264] | 428 | Part->EtaCalo = Eta_t;
|
---|
| 429 | Part->PhiCalo = Phi_t;
|
---|
[294] | 430 |
|
---|
[248] | 431 | // test zone ---
|
---|
| 432 | /*
|
---|
[294] | 433 |
|
---|
| 434 | cout << "r = " << r << " et " << fabs(PT/(q*B_z)) << endl;
|
---|
[248] | 435 | cout << cos(atan(R_t/z_t)) << "\t" << cos(Theta_t) << "\t" << cos(momentum.Theta()) << "\t" << Pz_t/temp_p << endl;
|
---|
| 436 | double Eta_t1 = log( (E+Pz_t)/(E-Pz_t) )/2.;
|
---|
| 437 | double Eta_t2 = log( (temp_p+Pz_t)/(temp_p-Pz_t) )/2.;
|
---|
| 438 | if(0 && fabs(Eta_t -Eta_t2)>1e-310) {
|
---|
| 439 | cout << "ERROR-BUG: Eta_t != Eta_t2\n";
|
---|
| 440 | cout << "Eta_t= " << Eta_t << "\t Eta_t1= " << Eta_t1 << "\t Eta_t2= " << Eta_t2 << endl;
|
---|
| 441 | }
|
---|
| 442 |
|
---|
| 443 | double R_t2 = sqrt( pow(R_c,2.) + pow(r,2.) + 2*r*R_c*cos(phi_0 + omega*t - Phi_c) ); // cross-check
|
---|
| 444 | if(fabs(R_t - R_t2) > 1e-7)
|
---|
| 445 | cout << "ERROR-BUG: R_t != R_t2: R_t=" << R_t << " R_t2=" << R_t2 << " R_t - R_t2 =" << R_t - R_t2 << endl;
|
---|
| 446 | if( fabs(E - gammam) > 1e-3 ) {
|
---|
| 447 | cout << "ERROR-BUG: energy is not conserved in src/BFieldProp.cc\n";
|
---|
| 448 | cout << "E - momentum.E() = " << fabs(E - momentum.E()) << " gammam - E " << fabs(gammam -E) << endl; }
|
---|
| 449 | if( fabs(PT_t - Part->PT) > 1e-10 ) {
|
---|
| 450 | cout << "ERROR-BUG: PT is not conversed in src/BFieldProp.cc. ";
|
---|
| 451 | cout << "(at " << 100*(PT_t - Part->PT) << "%)\n";
|
---|
| 452 | }
|
---|
| 453 | if(momentum.Pz() != Pz_t)
|
---|
| 454 | cout << "ERROR-BUG: Pz is not conserved in src/BFieldProp.cc\n";
|
---|
| 455 |
|
---|
| 456 | double temp_p0=sqrt(Part->PT*Part->PT + Part->Pz*Part->Pz);
|
---|
| 457 | if(fabs( (temp_p-temp_p0)*(temp_p+temp_p0) )>1e-10 ) {
|
---|
| 458 | cout << "ERROR-BUG: momentum |vec{p}| is not conserved in src/BFieldProp.cc\n";
|
---|
| 459 | cout << temp_p << "\t" << temp_p0 << endl;
|
---|
| 460 | }
|
---|
| 461 |
|
---|
| 462 | // if x_c == y_c ==0 (set it by hand!), easy cross-check
|
---|
| 463 | //cout << "tan(phi_p)= " << momentum.Py()/momentum.Px() << "\t -1/tan(phi_x)= " << -x_t/y_t << endl;
|
---|
| 464 | */
|
---|
[294] | 465 | return;
|
---|
[248] | 466 |
|
---|
| 467 | } else { // if B_x or B_y are non zero: longer computation
|
---|
[264] | 468 | //cout << "bfield de loic\n";
|
---|
[248] | 469 | float Xvertex1 = Part->X;
|
---|
| 470 | float Yvertex1 = Part->Y;
|
---|
| 471 | float Zvertex1 = Part->Z;
|
---|
| 472 |
|
---|
| 473 | double px = Part->Px / 0.003;
|
---|
| 474 | double py = Part->Py / 0.003;
|
---|
| 475 | double pz = Part->Pz / 0.003;
|
---|
| 476 | double pt = Part->PT / 0.003; // sqrt(px*px+py*py);
|
---|
| 477 | double p = sqrt(pz*pz + pt*pt); //sqrt(px*px+py*py+pz*pz);
|
---|
| 478 |
|
---|
| 479 | double M = Part->M;
|
---|
| 480 | double vx = px/M;
|
---|
| 481 | double vy = py/M;
|
---|
| 482 | double vz = pz/M;
|
---|
| 483 | double qm = q/M;
|
---|
[294] | 484 |
|
---|
| 485 | //double v = sqrt(vx*vx + vy*vy + vz*vz)/3E8;
|
---|
| 486 | //cout << "v = " << v;
|
---|
| 487 | //double gamma = 1./sqrt(1-v*v);
|
---|
| 488 | //cout << "gamma = " << gamma << endl;
|
---|
[248] | 489 |
|
---|
| 490 | double ax = qm*(B_z*vy - B_y*vz);
|
---|
| 491 | double ay = qm*(B_x*vz - B_z*vx);
|
---|
| 492 | double az = qm*(B_y*vx - B_x*vy);
|
---|
| 493 | double dt = 1/p;
|
---|
| 494 | if(pt<266 && vz < 0.0012) dt = fabs(0.001/vz); // ?????
|
---|
| 495 |
|
---|
| 496 | double xold=Xvertex1; double x=xold;
|
---|
| 497 | double yold=Yvertex1; double y=yold;
|
---|
| 498 | double zold=Zvertex1; double z=zold;
|
---|
| 499 |
|
---|
| 500 | double VTold = pt/M; //=sqrt(vx*vx+vy*vy);
|
---|
| 501 |
|
---|
| 502 | unsigned int k = 0;
|
---|
| 503 | double VTratio=0;
|
---|
| 504 | double R_max2 = R_max*R_max;
|
---|
| 505 | double r2=0; // will be x*x+y*y
|
---|
| 506 |
|
---|
| 507 | while(k < MAXITERATION){
|
---|
| 508 | k++;
|
---|
| 509 |
|
---|
| 510 | vx += ax*dt;
|
---|
| 511 | vy += ay*dt;
|
---|
| 512 | vz += az*dt;
|
---|
| 513 |
|
---|
| 514 | VTratio = VTold/sqrt(vx*vx+vy*vy);
|
---|
| 515 | vx *= VTratio;
|
---|
| 516 | vy *= VTratio;
|
---|
| 517 |
|
---|
| 518 | ax = qm*(B_z*vy - B_y*vz);
|
---|
| 519 | ay = qm*(B_x*vz - B_z*vx);
|
---|
| 520 | az = qm*(B_y*vx - B_x*vy);
|
---|
| 521 |
|
---|
| 522 | x += vx*dt;
|
---|
| 523 | y += vy*dt;
|
---|
| 524 | z += vz*dt;
|
---|
| 525 | r2 = x*x + y*y;
|
---|
| 526 |
|
---|
| 527 | if( r2 > R_max2 ){
|
---|
| 528 | x /= r2/R_max2;
|
---|
| 529 | y /= r2/R_max2;
|
---|
| 530 | break;
|
---|
| 531 | }
|
---|
| 532 | if( fabs(z)>z_max)break;
|
---|
| 533 |
|
---|
| 534 | xold = x;
|
---|
| 535 | yold = y;
|
---|
| 536 | zold = z;
|
---|
| 537 | } // while loop
|
---|
| 538 |
|
---|
| 539 | if(k == MAXITERATION) loop_overflow_counter++;
|
---|
| 540 | //cout << "too short loop in " << loop_overflow_counter << " cases" << endl;
|
---|
| 541 | float Theta=0;
|
---|
| 542 | if(x!=0 && y!=0 && z!=0) {
|
---|
| 543 | Theta = atan2(sqrt(r2),z);
|
---|
[264] | 544 | Part->EtaCalo = -log(tan(Theta/2.));
|
---|
| 545 | Part->PhiCalo = atan2(y,x);
|
---|
[248] | 546 | //momentum.SetPtEtaPhiE(Part->PT,eta,phi,Part->E);
|
---|
| 547 | }
|
---|
| 548 | } // if b_x or b_y non zero
|
---|
| 549 | }
|
---|