[260] | 1 | /***********************************************************************
|
---|
| 2 | ** **
|
---|
| 3 | ** /----------------------------------------------\ **
|
---|
| 4 | ** | Delphes, a framework for the fast simulation | **
|
---|
| 5 | ** | of a generic collider experiment | **
|
---|
| 6 | ** \----------------------------------------------/ **
|
---|
| 7 | ** **
|
---|
| 8 | ** **
|
---|
| 9 | ** This package uses: **
|
---|
| 10 | ** ------------------ **
|
---|
| 11 | ** FastJet algorithm: Phys. Lett. B641 (2006) [hep-ph/0512210] **
|
---|
| 12 | ** Hector: JINST 2:P09005 (2007) [physics.acc-ph:0707.1198v2] **
|
---|
| 13 | ** FROG: [hep-ex/0901.2718v1] **
|
---|
| 14 | ** **
|
---|
| 15 | ** ------------------------------------------------------------------ **
|
---|
| 16 | ** **
|
---|
| 17 | ** Main authors: **
|
---|
| 18 | ** ------------- **
|
---|
| 19 | ** **
|
---|
| 20 | ** Severine Ovyn Xavier Rouby **
|
---|
| 21 | ** severine.ovyn@uclouvain.be xavier.rouby@cern **
|
---|
| 22 | ** **
|
---|
| 23 | ** Center for Particle Physics and Phenomenology (CP3) **
|
---|
| 24 | ** Universite catholique de Louvain (UCL) **
|
---|
| 25 | ** Louvain-la-Neuve, Belgium **
|
---|
| 26 | ** **
|
---|
| 27 | ** Copyright (C) 2008-2009, **
|
---|
| 28 | ** All rights reserved. **
|
---|
| 29 | ** **
|
---|
| 30 | ***********************************************************************/
|
---|
[53] | 31 |
|
---|
[219] | 32 | #include "BFieldProp.h"
|
---|
[53] | 33 | #include<cmath>
|
---|
| 34 | using namespace std;
|
---|
| 35 |
|
---|
| 36 |
|
---|
| 37 | //------------------------------------------------------------------------------
|
---|
| 38 |
|
---|
[219] | 39 | TrackPropagation::TrackPropagation(){
|
---|
| 40 | DET = new RESOLution();
|
---|
| 41 | init();
|
---|
| 42 | }
|
---|
[53] | 43 |
|
---|
[219] | 44 | TrackPropagation::TrackPropagation(const string& DetDatacard){
|
---|
| 45 | DET = new RESOLution();
|
---|
| 46 | DET->ReadDataCard(DetDatacard);
|
---|
| 47 | init();
|
---|
| 48 | }
|
---|
[53] | 49 |
|
---|
[219] | 50 | TrackPropagation::TrackPropagation(const RESOLution* DetDatacard){
|
---|
| 51 | DET= new RESOLution(*DetDatacard);
|
---|
| 52 | init();
|
---|
| 53 | }
|
---|
| 54 |
|
---|
| 55 | TrackPropagation::TrackPropagation(const TrackPropagation & tp){
|
---|
| 56 | MAXITERATION = tp.MAXITERATION;
|
---|
| 57 | DET = new RESOLution(*(tp.DET));
|
---|
| 58 | R_max = tp.R_max; z_max = tp.z_max;
|
---|
| 59 | B_x = tp.B_x; B_y = tp.B_y; B_z = tp.B_z;
|
---|
| 60 | q = tp.q; phi_0 = tp.phi_0;
|
---|
| 61 | gammam= tp.gammam; omega = tp.omega;
|
---|
| 62 | r = tp.r; rr = tp.rr;
|
---|
| 63 | x_c = tp.x_c; y_c = tp.y_c;
|
---|
| 64 | R_c = tp.R_c; Phi_c = tp.Phi_c;
|
---|
| 65 | t = tp.t; t_z = tp.t_z; t_T = tp.t_T;
|
---|
| 66 | x_t = tp.x_t; y_t = tp.y_t; z_t = tp.z_t;
|
---|
| 67 | R_t = tp.R_t; Phi_t = tp.Phi_t;
|
---|
| 68 | Theta_t=tp.Theta_t; Eta_t = tp.Eta_t;
|
---|
| 69 | Px_t = tp.Px_t; Py_t = tp.Py_t; Pz_t = tp.Pz_t;
|
---|
| 70 | PT_t = tp.PT_t; p_t = tp.p_t; E_t = tp.E_t;
|
---|
| 71 | loop_overflow_counter = tp.loop_overflow_counter;
|
---|
| 72 | }
|
---|
| 73 |
|
---|
| 74 | TrackPropagation& TrackPropagation::operator=(const TrackPropagation & tp) {
|
---|
| 75 | if(this==&tp) return *this;
|
---|
| 76 | MAXITERATION = tp.MAXITERATION;
|
---|
| 77 | DET = new RESOLution(*(tp.DET));
|
---|
| 78 | R_max = tp.R_max; z_max = tp.z_max;
|
---|
| 79 | B_x = tp.B_x; B_y = tp.B_y; B_z = tp.B_z;
|
---|
| 80 | q = tp.q; phi_0 = tp.phi_0;
|
---|
| 81 | gammam= tp.gammam; omega = tp.omega;
|
---|
| 82 | r = tp.r; rr = tp.rr;
|
---|
| 83 | x_c = tp.x_c; y_c = tp.y_c;
|
---|
| 84 | R_c = tp.R_c; Phi_c = tp.Phi_c;
|
---|
| 85 | t = tp.t; t_z = tp.t_z; t_T = tp.t_T;
|
---|
| 86 | x_t = tp.x_t; y_t = tp.y_t; z_t = tp.z_t;
|
---|
| 87 | R_t = tp.R_t; Phi_t = tp.Phi_t;
|
---|
| 88 | Theta_t=tp.Theta_t; Eta_t = tp.Eta_t;
|
---|
| 89 | Px_t = tp.Px_t; Py_t = tp.Py_t; Pz_t = tp.Pz_t;
|
---|
| 90 | PT_t = tp.PT_t; p_t = tp.p_t; E_t = tp.E_t;
|
---|
| 91 | loop_overflow_counter = tp.loop_overflow_counter;
|
---|
| 92 | return *this;
|
---|
| 93 | }
|
---|
| 94 |
|
---|
| 95 | void TrackPropagation::init() {
|
---|
| 96 | MAXITERATION = 10000;
|
---|
| 97 | q= UNDEFINED; phi_0= UNDEFINED; gammam= UNDEFINED; omega=UNDEFINED; r=UNDEFINED;
|
---|
| 98 | x_c=UNDEFINED; y_c=UNDEFINED; R_c=UNDEFINED; Phi_c=UNDEFINED;
|
---|
| 99 | rr=UNDEFINED; t=UNDEFINED; t_z=UNDEFINED; t_T=UNDEFINED;
|
---|
| 100 | x_t=UNDEFINED; y_t=UNDEFINED; z_t=UNDEFINED;
|
---|
| 101 | R_t=UNDEFINED; Phi_t=UNDEFINED; Theta_t=UNDEFINED; Eta_t=UNDEFINED;
|
---|
| 102 | Px_t=UNDEFINED; Py_t=UNDEFINED; Pz_t=UNDEFINED; PT_t=UNDEFINED; p_t=UNDEFINED; E_t=UNDEFINED;
|
---|
| 103 |
|
---|
| 104 | // DET has been initialised in the constructors
|
---|
| 105 | // magnetic field parameters
|
---|
[193] | 106 | R_max = DET->TRACK_radius;
|
---|
| 107 | z_max = DET->TRACK_length/2.;
|
---|
| 108 | B_x = DET->TRACK_bfield_x;
|
---|
| 109 | B_y = DET->TRACK_bfield_y;
|
---|
| 110 | B_z = DET->TRACK_bfield_z;
|
---|
| 111 |
|
---|
| 112 | loop_overflow_counter=0;
|
---|
[53] | 113 | }
|
---|
| 114 |
|
---|
[219] | 115 |
|
---|
| 116 |
|
---|
[193] | 117 | void TrackPropagation::Propagation(const TRootGenParticle *Part,TLorentzVector &momentum) {
|
---|
[53] | 118 |
|
---|
[193] | 119 | q = Charge(Part->PID);
|
---|
| 120 | if(q==0) return;
|
---|
| 121 |
|
---|
| 122 | if(R_max ==0) { cout << "ERROR: magnetic field has no lateral extention\n"; return;}
|
---|
| 123 | if(z_max==0) { cout << "ERROR: magnetic field has no longitudinal extention\n"; return;}
|
---|
| 124 |
|
---|
[199] | 125 | if (B_x== 0 && B_y== 0) { // faster if only B_z
|
---|
[193] | 126 | if (B_z==0) return; // nothing to do
|
---|
| 127 |
|
---|
| 128 | // initial conditions:
|
---|
| 129 | // p_X0 = Part->Px, p_Y0 = Part->Py, p_Z0 = Part->Pz, p_T0 = Part->PT;
|
---|
| 130 | // X_0 = Part->X, Y_0 = Part->Y, Z_0 = Part->Z;
|
---|
| 131 |
|
---|
| 132 | // 1. initial transverse momentum p_{T0} : Part->PT
|
---|
| 133 | // initial transverse momentum direction \phi_0 = -atan(p_X0/p_Y0)
|
---|
| 134 | // relativistic gamma : gamma = E/mc² ; gammam = gamma \times m
|
---|
| 135 | // giration frequency \omega = q/(gamma m) B_z
|
---|
| 136 | // helix radius r = p_T0 / (omega gamma m)
|
---|
| 137 | phi_0 = -atan2(Part->Px,Part->Py);
|
---|
| 138 | gammam = Part->E; // here c==1
|
---|
| 139 | //cout << "gammam" << gammam << "\t gamma" << gammam/Part->M << endl;
|
---|
| 140 | omega = q * B_z /gammam;
|
---|
| 141 | r = Part->PT / (omega * gammam);
|
---|
| 142 |
|
---|
| 143 | // 2. Helix parameters : center coordinates in transverse plane
|
---|
| 144 | // x_c = x_0 - r*cos(phi_0) and y_c = y_0 - r*sin(phi_0)
|
---|
| 145 | // R_c = \sqrt{x_c² + y_c²} and \Phi_c = atan{y_c/x_c}
|
---|
[199] | 146 | x_c = Part->X - r*cos(phi_0); /// TEST !!
|
---|
[193] | 147 | y_c = Part->Y - r*sin(phi_0);
|
---|
| 148 | R_c = sqrt(pow(x_c,2.) + pow(y_c,2.) );
|
---|
| 149 | Phi_c = atan2(y_c,x_c);
|
---|
| 150 |
|
---|
| 151 | // 3. time evaluation t = min(t_T, t_z)
|
---|
| 152 | // t_T : time to exit from the sides
|
---|
[199] | 153 | // t_T= [ Phi_c - phi_0 + atan( (R_max^2 - (R_c^2 + r^2))/(2rR_c) ) ]/omega
|
---|
[193] | 154 | // t_z : time to exit from the front or the back
|
---|
[199] | 155 | // t_z = gamma * m /p_z0 \times (-z_0 + z_max * sign(p_z0))
|
---|
[193] | 156 | rr = sqrt( pow(R_c,2.) + pow(r,2.) ); // temp variable
|
---|
| 157 | t_T=0;
|
---|
[219] | 158 | int sign_pz= (Part->Pz >0) ? 1 : -1;
|
---|
| 159 | t_z = gammam / Part->Pz * (-Part->Z + z_max*sign_pz ) ;
|
---|
[193] | 160 | if ( fabs(R_c - r) > R_max || R_c + r < R_max ) t = t_z;
|
---|
| 161 | else {
|
---|
| 162 | t_T = (Phi_c - phi_0 + atan2( (R_max + rr)*(R_max - rr) , 2*r*R_c ) ) / omega;
|
---|
| 163 | t = min(t_T,t_z);
|
---|
| 164 | }
|
---|
| 165 |
|
---|
| 166 | // 4. position in terms of x(t), y(t), z(t)
|
---|
| 167 | // x(t) = x_c + r cos (omega t + phi_0)
|
---|
| 168 | // y(t) = y_c + r sin (omega t + phi_0)
|
---|
| 169 | // z(t) = z_0 + (p_Z0/gammam) t
|
---|
| 170 | x_t = x_c + r * cos(omega * t + phi_0);
|
---|
| 171 | y_t = y_c + r * sin(omega * t + phi_0);
|
---|
| 172 | z_t = Part->Z + Part->Pz / gammam * t;
|
---|
| 173 |
|
---|
| 174 | // 5. position in terms of Theta(t), Phi(t), R(t), Eta(t)
|
---|
| 175 | // R(t) = sqrt(x(t)² + y(t)²)
|
---|
| 176 | // Phi(t) = atan(y(t)/x(t))
|
---|
| 177 | // Theta(t) = atan(R(t)/z(t))
|
---|
| 178 | // Eta(t) = -ln tan (Theta(t)/2)
|
---|
| 179 | R_t = sqrt( pow(x_t,2.) + pow(y_t,2.) );
|
---|
| 180 | Phi_t = atan2( y_t, x_t);
|
---|
[219] | 181 | if(R_t>0) {
|
---|
[199] | 182 | Theta_t = acos( z_t / sqrt(z_t*z_t+ R_t*R_t));
|
---|
| 183 | Eta_t = - log(tan(Theta_t/2.));
|
---|
| 184 | } else{
|
---|
| 185 | Theta_t=0; Eta_t = 9999;
|
---|
| 186 | }
|
---|
[219] | 187 |
|
---|
[199] | 188 | Px_t = - Part->PT * sin(omega*t + phi_0);
|
---|
| 189 | Py_t = Part->PT * cos(omega*t + phi_0);
|
---|
| 190 | Pz_t = Part->Pz;
|
---|
| 191 | PT_t = sqrt(Px_t*Px_t + Py_t*Py_t);
|
---|
| 192 | p_t = sqrt(PT_t*PT_t + Pz_t*Pz_t);
|
---|
| 193 | E_t=sqrt(Part->M*Part->M +p_t);
|
---|
[219] | 194 | //if(p_t != fabs(Pz_t) ) Eta_t = log( (p_t+Pz_t)/(p_t-Pz_t) )/2.;
|
---|
| 195 | //if(p_t>0) Theta_t = acos(Pz_t/p_t);
|
---|
[199] | 196 | momentum.SetPxPyPzE(Px_t,Py_t,Pz_t,E_t);
|
---|
[193] | 197 |
|
---|
[199] | 198 | // test zone ---
|
---|
| 199 | /*
|
---|
| 200 | cout << cos(atan(R_t/z_t)) << "\t" << cos(Theta_t) << "\t" << cos(momentum.Theta()) << "\t" << Pz_t/temp_p << endl;
|
---|
| 201 | double Eta_t1 = log( (E+Pz_t)/(E-Pz_t) )/2.;
|
---|
| 202 | double Eta_t2 = log( (temp_p+Pz_t)/(temp_p-Pz_t) )/2.;
|
---|
| 203 | if(0 && fabs(Eta_t -Eta_t2)>1e-310) {
|
---|
| 204 | cout << "ERROR-BUG: Eta_t != Eta_t2\n";
|
---|
| 205 | cout << "Eta_t= " << Eta_t << "\t Eta_t1= " << Eta_t1 << "\t Eta_t2= " << Eta_t2 << endl;
|
---|
[193] | 206 | }
|
---|
| 207 |
|
---|
[199] | 208 | double R_t2 = sqrt( pow(R_c,2.) + pow(r,2.) + 2*r*R_c*cos(phi_0 + omega*t - Phi_c) ); // cross-check
|
---|
| 209 | if(fabs(R_t - R_t2) > 1e-7)
|
---|
| 210 | cout << "ERROR-BUG: R_t != R_t2: R_t=" << R_t << " R_t2=" << R_t2 << " R_t - R_t2 =" << R_t - R_t2 << endl;
|
---|
| 211 | if( fabs(E - gammam) > 1e-3 ) {
|
---|
[193] | 212 | cout << "ERROR-BUG: energy is not conserved in src/BFieldProp.cc\n";
|
---|
| 213 | cout << "E - momentum.E() = " << fabs(E - momentum.E()) << " gammam - E " << fabs(gammam -E) << endl; }
|
---|
| 214 | if( fabs(PT_t - Part->PT) > 1e-10 ) {
|
---|
[199] | 215 | cout << "ERROR-BUG: PT is not conversed in src/BFieldProp.cc. ";
|
---|
[193] | 216 | cout << "(at " << 100*(PT_t - Part->PT) << "%)\n";
|
---|
| 217 | }
|
---|
| 218 | if(momentum.Pz() != Pz_t)
|
---|
| 219 | cout << "ERROR-BUG: Pz is not conserved in src/BFieldProp.cc\n";
|
---|
| 220 |
|
---|
[199] | 221 | double temp_p0=sqrt(Part->PT*Part->PT + Part->Pz*Part->Pz);
|
---|
| 222 | if(fabs( (temp_p-temp_p0)*(temp_p+temp_p0) )>1e-10 ) {
|
---|
| 223 | cout << "ERROR-BUG: momentum |vec{p}| is not conserved in src/BFieldProp.cc\n";
|
---|
| 224 | cout << temp_p << "\t" << temp_p0 << endl;
|
---|
| 225 | }
|
---|
| 226 |
|
---|
| 227 | // if x_c == y_c ==0 (set it by hand!), easy cross-check
|
---|
| 228 | //cout << "tan(phi_p)= " << momentum.Py()/momentum.Px() << "\t -1/tan(phi_x)= " << -x_t/y_t << endl;
|
---|
| 229 | */
|
---|
| 230 |
|
---|
[193] | 231 | } else { // if B_x or B_y are non zero: longer computation
|
---|
| 232 |
|
---|
[53] | 233 | float Xvertex1 = Part->X;
|
---|
| 234 | float Yvertex1 = Part->Y;
|
---|
| 235 | float Zvertex1 = Part->Z;
|
---|
| 236 |
|
---|
[193] | 237 | //out of tracking coverage?
|
---|
| 238 | if(sqrt(Xvertex1*Xvertex1+Yvertex1*Yvertex1) > R_max){return;}
|
---|
| 239 | if(fabs(Zvertex1) > z_max){return;}
|
---|
[53] | 240 |
|
---|
[193] | 241 | double px = Part->Px / 0.003;
|
---|
| 242 | double py = Part->Py / 0.003;
|
---|
| 243 | double pz = Part->Pz / 0.003;
|
---|
| 244 | double pt = Part->PT / 0.003; // sqrt(px*px+py*py);
|
---|
[199] | 245 | double p = sqrt(pz*pz + pt*pt); //sqrt(px*px+py*py+pz*pz);
|
---|
[59] | 246 |
|
---|
[193] | 247 | double M = Part->M;
|
---|
| 248 | double vx = px/M;
|
---|
| 249 | double vy = py/M;
|
---|
| 250 | double vz = pz/M;
|
---|
| 251 | double qm = q/M;
|
---|
[53] | 252 |
|
---|
[193] | 253 | double ax = qm*(B_z*vy - B_y*vz);
|
---|
| 254 | double ay = qm*(B_x*vz - B_z*vx);
|
---|
| 255 | double az = qm*(B_y*vx - B_x*vy);
|
---|
| 256 | double dt = 1/p;
|
---|
| 257 | if(pt<266 && vz < 0.0012) dt = fabs(0.001/vz); // ?????
|
---|
[59] | 258 |
|
---|
[193] | 259 | double xold=Xvertex1; double x=xold;
|
---|
| 260 | double yold=Yvertex1; double y=yold;
|
---|
| 261 | double zold=Zvertex1; double z=zold;
|
---|
[59] | 262 |
|
---|
[193] | 263 | double VTold = pt/M; //=sqrt(vx*vx+vy*vy);
|
---|
[59] | 264 |
|
---|
[193] | 265 | unsigned int k = 0;
|
---|
| 266 | double VTratio=0;
|
---|
| 267 | double R_max2 = R_max*R_max;
|
---|
| 268 | double r2=0; // will be x*x+y*y
|
---|
[100] | 269 |
|
---|
[193] | 270 | while(k < MAXITERATION){
|
---|
[59] | 271 | k++;
|
---|
| 272 |
|
---|
| 273 | vx += ax*dt;
|
---|
| 274 | vy += ay*dt;
|
---|
| 275 | vz += az*dt;
|
---|
| 276 |
|
---|
[193] | 277 | VTratio = VTold/sqrt(vx*vx+vy*vy);
|
---|
[59] | 278 | vx *= VTratio;
|
---|
| 279 | vy *= VTratio;
|
---|
| 280 |
|
---|
[193] | 281 | ax = qm*(B_z*vy - B_y*vz);
|
---|
| 282 | ay = qm*(B_x*vz - B_z*vx);
|
---|
| 283 | az = qm*(B_y*vx - B_x*vy);
|
---|
[59] | 284 |
|
---|
| 285 | x += vx*dt;
|
---|
| 286 | y += vy*dt;
|
---|
| 287 | z += vz*dt;
|
---|
[193] | 288 | r2 = x*x + y*y;
|
---|
[59] | 289 |
|
---|
[193] | 290 | if( r2 > R_max2 ){
|
---|
| 291 | x /= r2/R_max2;
|
---|
| 292 | y /= r2/R_max2;
|
---|
| 293 | break;
|
---|
| 294 | }
|
---|
| 295 | if( fabs(z)>z_max)break;
|
---|
[59] | 296 |
|
---|
| 297 | xold = x;
|
---|
| 298 | yold = y;
|
---|
| 299 | zold = z;
|
---|
[193] | 300 | } // while loop
|
---|
| 301 |
|
---|
| 302 | if(k == MAXITERATION) loop_overflow_counter++;
|
---|
| 303 | //cout << "too short loop in " << loop_overflow_counter << " cases" << endl;
|
---|
[59] | 304 |
|
---|
[193] | 305 | if(x!=0 && y!=0 && z!=0) {
|
---|
| 306 | float Theta = atan2(sqrt(r2),z);
|
---|
| 307 | double eta = -log(tan(Theta/2.));
|
---|
[53] | 308 | double phi = atan2(y,x);
|
---|
[193] | 309 | momentum.SetPtEtaPhiE(Part->PT,eta,phi,Part->E);
|
---|
| 310 | }
|
---|
| 311 |
|
---|
| 312 | } // if b_x or b_y non zero
|
---|
[53] | 313 | }
|
---|
[248] | 314 |
|
---|
| 315 |
|
---|
| 316 |
|
---|
| 317 | void TrackPropagation::bfield(const TRootGenParticle *Part, float& etacalo, float& phicalo) {
|
---|
| 318 |
|
---|
| 319 | // initialisation, valid for z_max==0, R_max==0 and q==0
|
---|
| 320 | etacalo = Part->Eta;
|
---|
| 321 | phicalo = -atan2(Part->Px,Part->Py);
|
---|
| 322 |
|
---|
| 323 | q = Charge(Part->PID);
|
---|
| 324 | if(q==0) return;
|
---|
| 325 | if(R_max ==0) { cout << "ERROR: magnetic field has no lateral extention\n"; return;}
|
---|
| 326 | if(z_max==0) { cout << "ERROR: magnetic field has no longitudinal extention\n"; return;}
|
---|
| 327 |
|
---|
| 328 | if (B_x== 0 && B_y== 0) { // faster if only B_z
|
---|
| 329 | if (B_z==0) return; // nothing to do
|
---|
| 330 |
|
---|
| 331 | // initial conditions:
|
---|
| 332 | // p_X0 = Part->Px, p_Y0 = Part->Py, p_Z0 = Part->Pz, p_T0 = Part->PT;
|
---|
| 333 | // X_0 = Part->X, Y_0 = Part->Y, Z_0 = Part->Z;
|
---|
| 334 |
|
---|
| 335 | // 1. initial transverse momentum p_{T0} : Part->PT
|
---|
| 336 | // initial transverse momentum direction \phi_0 = -atan(p_X0/p_Y0)
|
---|
| 337 | // relativistic gamma : gamma = E/mc² ; gammam = gamma \times m
|
---|
| 338 | // giration frequency \omega = q/(gamma m) B_z
|
---|
| 339 | // helix radius r = p_T0 / (omega gamma m)
|
---|
| 340 | phi_0 = -atan2(Part->Px,Part->Py);
|
---|
| 341 | gammam = Part->E; // here c==1
|
---|
| 342 | //cout << "gammam" << gammam << "\t gamma" << gammam/Part->M << endl;
|
---|
| 343 | omega = q * B_z /gammam;
|
---|
| 344 | r = Part->PT / (omega * gammam);
|
---|
| 345 |
|
---|
| 346 | // 2. Helix parameters : center coordinates in transverse plane
|
---|
| 347 | // x_c = x_0 - r*cos(phi_0) and y_c = y_0 - r*sin(phi_0)
|
---|
| 348 | // R_c = \sqrt{x_c² + y_c²} and \Phi_c = atan{y_c/x_c}
|
---|
| 349 | x_c = Part->X - r*cos(phi_0); /// TEST !!
|
---|
| 350 | y_c = Part->Y - r*sin(phi_0);
|
---|
| 351 | R_c = sqrt(pow(x_c,2.) + pow(y_c,2.) );
|
---|
| 352 | Phi_c = atan2(y_c,x_c);
|
---|
| 353 |
|
---|
| 354 | // 3. time evaluation t = min(t_T, t_z)
|
---|
| 355 | // t_T : time to exit from the sides
|
---|
| 356 | // t_T= [ Phi_c - phi_0 + atan( (R_max^2 - (R_c^2 + r^2))/(2rR_c) ) ]/omega
|
---|
| 357 | // t_z : time to exit from the front or the back
|
---|
| 358 | // t_z = gamma * m /p_z0 \times (-z_0 + z_max * sign(p_z0))
|
---|
| 359 | rr = sqrt( pow(R_c,2.) + pow(r,2.) ); // temp variable
|
---|
| 360 | t_T=0;
|
---|
| 361 | int sign_pz= (Part->Pz >0) ? 1 : -1;
|
---|
| 362 | t_z = gammam / Part->Pz * (-Part->Z + z_max*sign_pz ) ;
|
---|
| 363 | if ( fabs(R_c - r) > R_max || R_c + r < R_max ) t = t_z;
|
---|
| 364 | else {
|
---|
| 365 | t_T = (Phi_c - phi_0 + atan2( (R_max + rr)*(R_max - rr) , 2*r*R_c ) ) / omega;
|
---|
| 366 | t = min(t_T,t_z);
|
---|
| 367 | }
|
---|
| 368 |
|
---|
| 369 | // 4. position in terms of x(t), y(t), z(t)
|
---|
| 370 | // x(t) = x_c + r cos (omega t + phi_0)
|
---|
| 371 | // y(t) = y_c + r sin (omega t + phi_0)
|
---|
| 372 | // z(t) = z_0 + (p_Z0/gammam) t
|
---|
| 373 | x_t = x_c + r * cos(omega * t + phi_0);
|
---|
| 374 | y_t = y_c + r * sin(omega * t + phi_0);
|
---|
| 375 | z_t = Part->Z + Part->Pz / gammam * t;
|
---|
| 376 |
|
---|
| 377 | // 5. position in terms of Theta(t), Phi(t), R(t), Eta(t)
|
---|
| 378 | // R(t) = sqrt(x(t)² + y(t)²)
|
---|
| 379 | // Phi(t) = atan(y(t)/x(t))
|
---|
| 380 | // Theta(t) = atan(R(t)/z(t))
|
---|
| 381 | // Eta(t) = -ln tan (Theta(t)/2)
|
---|
| 382 | R_t = sqrt( pow(x_t,2.) + pow(y_t,2.) );
|
---|
| 383 | Phi_t = atan2( y_t, x_t);
|
---|
| 384 | if(R_t>0) {
|
---|
| 385 | Theta_t = acos( z_t / sqrt(z_t*z_t+ R_t*R_t));
|
---|
| 386 | Eta_t = - log(tan(Theta_t/2.));
|
---|
| 387 | } else{
|
---|
| 388 | Theta_t=0; Eta_t = 9999;
|
---|
| 389 | }
|
---|
| 390 | /* Not needed here. but these formulae are correct -------
|
---|
| 391 | Px_t = - Part->PT * sin(omega*t + phi_0);
|
---|
| 392 | Py_t = Part->PT * cos(omega*t + phi_0);
|
---|
| 393 | Pz_t = Part->Pz;
|
---|
| 394 | PT_t = sqrt(Px_t*Px_t + Py_t*Py_t);
|
---|
| 395 | p_t = sqrt(PT_t*PT_t + Pz_t*Pz_t);
|
---|
| 396 | E_t=sqrt(Part->M*Part->M +p_t);
|
---|
| 397 | //if(p_t != fabs(Pz_t) ) Eta_t = log( (p_t+Pz_t)/(p_t-Pz_t) )/2.;
|
---|
| 398 | //if(p_t>0) Theta_t = acos(Pz_t/p_t);
|
---|
| 399 | momentum.SetPxPyPzE(Px_t,Py_t,Pz_t,E_t);
|
---|
| 400 | */
|
---|
| 401 | etacalo = Eta_t;
|
---|
| 402 | phicalo = Phi_t;
|
---|
| 403 | return;
|
---|
| 404 | // test zone ---
|
---|
| 405 | /*
|
---|
| 406 | cout << cos(atan(R_t/z_t)) << "\t" << cos(Theta_t) << "\t" << cos(momentum.Theta()) << "\t" << Pz_t/temp_p << endl;
|
---|
| 407 | double Eta_t1 = log( (E+Pz_t)/(E-Pz_t) )/2.;
|
---|
| 408 | double Eta_t2 = log( (temp_p+Pz_t)/(temp_p-Pz_t) )/2.;
|
---|
| 409 | if(0 && fabs(Eta_t -Eta_t2)>1e-310) {
|
---|
| 410 | cout << "ERROR-BUG: Eta_t != Eta_t2\n";
|
---|
| 411 | cout << "Eta_t= " << Eta_t << "\t Eta_t1= " << Eta_t1 << "\t Eta_t2= " << Eta_t2 << endl;
|
---|
| 412 | }
|
---|
| 413 |
|
---|
| 414 | double R_t2 = sqrt( pow(R_c,2.) + pow(r,2.) + 2*r*R_c*cos(phi_0 + omega*t - Phi_c) ); // cross-check
|
---|
| 415 | if(fabs(R_t - R_t2) > 1e-7)
|
---|
| 416 | cout << "ERROR-BUG: R_t != R_t2: R_t=" << R_t << " R_t2=" << R_t2 << " R_t - R_t2 =" << R_t - R_t2 << endl;
|
---|
| 417 | if( fabs(E - gammam) > 1e-3 ) {
|
---|
| 418 | cout << "ERROR-BUG: energy is not conserved in src/BFieldProp.cc\n";
|
---|
| 419 | cout << "E - momentum.E() = " << fabs(E - momentum.E()) << " gammam - E " << fabs(gammam -E) << endl; }
|
---|
| 420 | if( fabs(PT_t - Part->PT) > 1e-10 ) {
|
---|
| 421 | cout << "ERROR-BUG: PT is not conversed in src/BFieldProp.cc. ";
|
---|
| 422 | cout << "(at " << 100*(PT_t - Part->PT) << "%)\n";
|
---|
| 423 | }
|
---|
| 424 | if(momentum.Pz() != Pz_t)
|
---|
| 425 | cout << "ERROR-BUG: Pz is not conserved in src/BFieldProp.cc\n";
|
---|
| 426 |
|
---|
| 427 | double temp_p0=sqrt(Part->PT*Part->PT + Part->Pz*Part->Pz);
|
---|
| 428 | if(fabs( (temp_p-temp_p0)*(temp_p+temp_p0) )>1e-10 ) {
|
---|
| 429 | cout << "ERROR-BUG: momentum |vec{p}| is not conserved in src/BFieldProp.cc\n";
|
---|
| 430 | cout << temp_p << "\t" << temp_p0 << endl;
|
---|
| 431 | }
|
---|
| 432 |
|
---|
| 433 | // if x_c == y_c ==0 (set it by hand!), easy cross-check
|
---|
| 434 | //cout << "tan(phi_p)= " << momentum.Py()/momentum.Px() << "\t -1/tan(phi_x)= " << -x_t/y_t << endl;
|
---|
| 435 | */
|
---|
| 436 |
|
---|
| 437 | } else { // if B_x or B_y are non zero: longer computation
|
---|
| 438 |
|
---|
| 439 | float Xvertex1 = Part->X;
|
---|
| 440 | float Yvertex1 = Part->Y;
|
---|
| 441 | float Zvertex1 = Part->Z;
|
---|
| 442 |
|
---|
| 443 | //out of tracking coverage?
|
---|
| 444 | if(sqrt(Xvertex1*Xvertex1+Yvertex1*Yvertex1) > R_max){return;}
|
---|
| 445 | if(fabs(Zvertex1) > z_max){return;}
|
---|
| 446 |
|
---|
| 447 | double px = Part->Px / 0.003;
|
---|
| 448 | double py = Part->Py / 0.003;
|
---|
| 449 | double pz = Part->Pz / 0.003;
|
---|
| 450 | double pt = Part->PT / 0.003; // sqrt(px*px+py*py);
|
---|
| 451 | double p = sqrt(pz*pz + pt*pt); //sqrt(px*px+py*py+pz*pz);
|
---|
| 452 |
|
---|
| 453 | double M = Part->M;
|
---|
| 454 | double vx = px/M;
|
---|
| 455 | double vy = py/M;
|
---|
| 456 | double vz = pz/M;
|
---|
| 457 | double qm = q/M;
|
---|
| 458 |
|
---|
| 459 | double ax = qm*(B_z*vy - B_y*vz);
|
---|
| 460 | double ay = qm*(B_x*vz - B_z*vx);
|
---|
| 461 | double az = qm*(B_y*vx - B_x*vy);
|
---|
| 462 | double dt = 1/p;
|
---|
| 463 | if(pt<266 && vz < 0.0012) dt = fabs(0.001/vz); // ?????
|
---|
| 464 |
|
---|
| 465 | double xold=Xvertex1; double x=xold;
|
---|
| 466 | double yold=Yvertex1; double y=yold;
|
---|
| 467 | double zold=Zvertex1; double z=zold;
|
---|
| 468 |
|
---|
| 469 | double VTold = pt/M; //=sqrt(vx*vx+vy*vy);
|
---|
| 470 |
|
---|
| 471 | unsigned int k = 0;
|
---|
| 472 | double VTratio=0;
|
---|
| 473 | double R_max2 = R_max*R_max;
|
---|
| 474 | double r2=0; // will be x*x+y*y
|
---|
| 475 |
|
---|
| 476 | while(k < MAXITERATION){
|
---|
| 477 | k++;
|
---|
| 478 |
|
---|
| 479 | vx += ax*dt;
|
---|
| 480 | vy += ay*dt;
|
---|
| 481 | vz += az*dt;
|
---|
| 482 |
|
---|
| 483 | VTratio = VTold/sqrt(vx*vx+vy*vy);
|
---|
| 484 | vx *= VTratio;
|
---|
| 485 | vy *= VTratio;
|
---|
| 486 |
|
---|
| 487 | ax = qm*(B_z*vy - B_y*vz);
|
---|
| 488 | ay = qm*(B_x*vz - B_z*vx);
|
---|
| 489 | az = qm*(B_y*vx - B_x*vy);
|
---|
| 490 |
|
---|
| 491 | x += vx*dt;
|
---|
| 492 | y += vy*dt;
|
---|
| 493 | z += vz*dt;
|
---|
| 494 | r2 = x*x + y*y;
|
---|
| 495 |
|
---|
| 496 | if( r2 > R_max2 ){
|
---|
| 497 | x /= r2/R_max2;
|
---|
| 498 | y /= r2/R_max2;
|
---|
| 499 | break;
|
---|
| 500 | }
|
---|
| 501 | if( fabs(z)>z_max)break;
|
---|
| 502 |
|
---|
| 503 | xold = x;
|
---|
| 504 | yold = y;
|
---|
| 505 | zold = z;
|
---|
| 506 | } // while loop
|
---|
| 507 |
|
---|
| 508 | if(k == MAXITERATION) loop_overflow_counter++;
|
---|
| 509 | //cout << "too short loop in " << loop_overflow_counter << " cases" << endl;
|
---|
| 510 | float Theta=0;
|
---|
| 511 | if(x!=0 && y!=0 && z!=0) {
|
---|
| 512 | Theta = atan2(sqrt(r2),z);
|
---|
| 513 | etacalo = -log(tan(Theta/2.));
|
---|
| 514 | phicalo = atan2(y,x);
|
---|
| 515 | //momentum.SetPtEtaPhiE(Part->PT,eta,phi,Part->E);
|
---|
| 516 | }
|
---|
| 517 | } // if b_x or b_y non zero
|
---|
| 518 | }
|
---|