[53] | 1 | /*
|
---|
| 2 | * ---- Delphes ----
|
---|
| 3 | * A Fast Simulator for general purpose LHC detector
|
---|
| 4 | * S. Ovyn ~~~~ severine.ovyn@uclouvain.be
|
---|
| 5 | *
|
---|
| 6 | * Center for Particle Physics and Phenomenology (CP3)
|
---|
| 7 | * Universite Catholique de Louvain (UCL)
|
---|
| 8 | * Louvain-la-Neuve, Belgium
|
---|
| 9 | * */
|
---|
| 10 |
|
---|
[219] | 11 | #include "BFieldProp.h"
|
---|
[53] | 12 | #include<cmath>
|
---|
| 13 | using namespace std;
|
---|
| 14 |
|
---|
| 15 |
|
---|
| 16 | //------------------------------------------------------------------------------
|
---|
| 17 |
|
---|
[219] | 18 | TrackPropagation::TrackPropagation(){
|
---|
| 19 | DET = new RESOLution();
|
---|
| 20 | init();
|
---|
| 21 | }
|
---|
[53] | 22 |
|
---|
[219] | 23 | TrackPropagation::TrackPropagation(const string& DetDatacard){
|
---|
| 24 | DET = new RESOLution();
|
---|
| 25 | DET->ReadDataCard(DetDatacard);
|
---|
| 26 | init();
|
---|
| 27 | }
|
---|
[53] | 28 |
|
---|
[219] | 29 | TrackPropagation::TrackPropagation(const RESOLution* DetDatacard){
|
---|
| 30 | DET= new RESOLution(*DetDatacard);
|
---|
| 31 | init();
|
---|
| 32 | }
|
---|
| 33 |
|
---|
| 34 | TrackPropagation::TrackPropagation(const TrackPropagation & tp){
|
---|
| 35 | MAXITERATION = tp.MAXITERATION;
|
---|
| 36 | DET = new RESOLution(*(tp.DET));
|
---|
| 37 | R_max = tp.R_max; z_max = tp.z_max;
|
---|
| 38 | B_x = tp.B_x; B_y = tp.B_y; B_z = tp.B_z;
|
---|
| 39 | q = tp.q; phi_0 = tp.phi_0;
|
---|
| 40 | gammam= tp.gammam; omega = tp.omega;
|
---|
| 41 | r = tp.r; rr = tp.rr;
|
---|
| 42 | x_c = tp.x_c; y_c = tp.y_c;
|
---|
| 43 | R_c = tp.R_c; Phi_c = tp.Phi_c;
|
---|
| 44 | t = tp.t; t_z = tp.t_z; t_T = tp.t_T;
|
---|
| 45 | x_t = tp.x_t; y_t = tp.y_t; z_t = tp.z_t;
|
---|
| 46 | R_t = tp.R_t; Phi_t = tp.Phi_t;
|
---|
| 47 | Theta_t=tp.Theta_t; Eta_t = tp.Eta_t;
|
---|
| 48 | Px_t = tp.Px_t; Py_t = tp.Py_t; Pz_t = tp.Pz_t;
|
---|
| 49 | PT_t = tp.PT_t; p_t = tp.p_t; E_t = tp.E_t;
|
---|
| 50 | loop_overflow_counter = tp.loop_overflow_counter;
|
---|
| 51 | }
|
---|
| 52 |
|
---|
| 53 | TrackPropagation& TrackPropagation::operator=(const TrackPropagation & tp) {
|
---|
| 54 | if(this==&tp) return *this;
|
---|
| 55 | MAXITERATION = tp.MAXITERATION;
|
---|
| 56 | DET = new RESOLution(*(tp.DET));
|
---|
| 57 | R_max = tp.R_max; z_max = tp.z_max;
|
---|
| 58 | B_x = tp.B_x; B_y = tp.B_y; B_z = tp.B_z;
|
---|
| 59 | q = tp.q; phi_0 = tp.phi_0;
|
---|
| 60 | gammam= tp.gammam; omega = tp.omega;
|
---|
| 61 | r = tp.r; rr = tp.rr;
|
---|
| 62 | x_c = tp.x_c; y_c = tp.y_c;
|
---|
| 63 | R_c = tp.R_c; Phi_c = tp.Phi_c;
|
---|
| 64 | t = tp.t; t_z = tp.t_z; t_T = tp.t_T;
|
---|
| 65 | x_t = tp.x_t; y_t = tp.y_t; z_t = tp.z_t;
|
---|
| 66 | R_t = tp.R_t; Phi_t = tp.Phi_t;
|
---|
| 67 | Theta_t=tp.Theta_t; Eta_t = tp.Eta_t;
|
---|
| 68 | Px_t = tp.Px_t; Py_t = tp.Py_t; Pz_t = tp.Pz_t;
|
---|
| 69 | PT_t = tp.PT_t; p_t = tp.p_t; E_t = tp.E_t;
|
---|
| 70 | loop_overflow_counter = tp.loop_overflow_counter;
|
---|
| 71 | return *this;
|
---|
| 72 | }
|
---|
| 73 |
|
---|
| 74 | void TrackPropagation::init() {
|
---|
| 75 | MAXITERATION = 10000;
|
---|
| 76 | q= UNDEFINED; phi_0= UNDEFINED; gammam= UNDEFINED; omega=UNDEFINED; r=UNDEFINED;
|
---|
| 77 | x_c=UNDEFINED; y_c=UNDEFINED; R_c=UNDEFINED; Phi_c=UNDEFINED;
|
---|
| 78 | rr=UNDEFINED; t=UNDEFINED; t_z=UNDEFINED; t_T=UNDEFINED;
|
---|
| 79 | x_t=UNDEFINED; y_t=UNDEFINED; z_t=UNDEFINED;
|
---|
| 80 | R_t=UNDEFINED; Phi_t=UNDEFINED; Theta_t=UNDEFINED; Eta_t=UNDEFINED;
|
---|
| 81 | Px_t=UNDEFINED; Py_t=UNDEFINED; Pz_t=UNDEFINED; PT_t=UNDEFINED; p_t=UNDEFINED; E_t=UNDEFINED;
|
---|
| 82 |
|
---|
| 83 | // DET has been initialised in the constructors
|
---|
| 84 | // magnetic field parameters
|
---|
[193] | 85 | R_max = DET->TRACK_radius;
|
---|
| 86 | z_max = DET->TRACK_length/2.;
|
---|
| 87 | B_x = DET->TRACK_bfield_x;
|
---|
| 88 | B_y = DET->TRACK_bfield_y;
|
---|
| 89 | B_z = DET->TRACK_bfield_z;
|
---|
| 90 |
|
---|
| 91 | loop_overflow_counter=0;
|
---|
[53] | 92 | }
|
---|
| 93 |
|
---|
[219] | 94 |
|
---|
| 95 |
|
---|
[193] | 96 | void TrackPropagation::Propagation(const TRootGenParticle *Part,TLorentzVector &momentum) {
|
---|
[53] | 97 |
|
---|
[193] | 98 | q = Charge(Part->PID);
|
---|
| 99 | if(q==0) return;
|
---|
| 100 |
|
---|
| 101 | if(R_max ==0) { cout << "ERROR: magnetic field has no lateral extention\n"; return;}
|
---|
| 102 | if(z_max==0) { cout << "ERROR: magnetic field has no longitudinal extention\n"; return;}
|
---|
| 103 |
|
---|
[199] | 104 | if (B_x== 0 && B_y== 0) { // faster if only B_z
|
---|
[193] | 105 | if (B_z==0) return; // nothing to do
|
---|
| 106 |
|
---|
| 107 | // initial conditions:
|
---|
| 108 | // p_X0 = Part->Px, p_Y0 = Part->Py, p_Z0 = Part->Pz, p_T0 = Part->PT;
|
---|
| 109 | // X_0 = Part->X, Y_0 = Part->Y, Z_0 = Part->Z;
|
---|
| 110 |
|
---|
| 111 | // 1. initial transverse momentum p_{T0} : Part->PT
|
---|
| 112 | // initial transverse momentum direction \phi_0 = -atan(p_X0/p_Y0)
|
---|
| 113 | // relativistic gamma : gamma = E/mc² ; gammam = gamma \times m
|
---|
| 114 | // giration frequency \omega = q/(gamma m) B_z
|
---|
| 115 | // helix radius r = p_T0 / (omega gamma m)
|
---|
| 116 | phi_0 = -atan2(Part->Px,Part->Py);
|
---|
| 117 | gammam = Part->E; // here c==1
|
---|
| 118 | //cout << "gammam" << gammam << "\t gamma" << gammam/Part->M << endl;
|
---|
| 119 | omega = q * B_z /gammam;
|
---|
| 120 | r = Part->PT / (omega * gammam);
|
---|
| 121 |
|
---|
| 122 | // 2. Helix parameters : center coordinates in transverse plane
|
---|
| 123 | // x_c = x_0 - r*cos(phi_0) and y_c = y_0 - r*sin(phi_0)
|
---|
| 124 | // R_c = \sqrt{x_c² + y_c²} and \Phi_c = atan{y_c/x_c}
|
---|
[199] | 125 | x_c = Part->X - r*cos(phi_0); /// TEST !!
|
---|
[193] | 126 | y_c = Part->Y - r*sin(phi_0);
|
---|
| 127 | R_c = sqrt(pow(x_c,2.) + pow(y_c,2.) );
|
---|
| 128 | Phi_c = atan2(y_c,x_c);
|
---|
| 129 |
|
---|
| 130 | // 3. time evaluation t = min(t_T, t_z)
|
---|
| 131 | // t_T : time to exit from the sides
|
---|
[199] | 132 | // t_T= [ Phi_c - phi_0 + atan( (R_max^2 - (R_c^2 + r^2))/(2rR_c) ) ]/omega
|
---|
[193] | 133 | // t_z : time to exit from the front or the back
|
---|
[199] | 134 | // t_z = gamma * m /p_z0 \times (-z_0 + z_max * sign(p_z0))
|
---|
[193] | 135 | rr = sqrt( pow(R_c,2.) + pow(r,2.) ); // temp variable
|
---|
| 136 | t_T=0;
|
---|
[219] | 137 | int sign_pz= (Part->Pz >0) ? 1 : -1;
|
---|
| 138 | t_z = gammam / Part->Pz * (-Part->Z + z_max*sign_pz ) ;
|
---|
[193] | 139 | if ( fabs(R_c - r) > R_max || R_c + r < R_max ) t = t_z;
|
---|
| 140 | else {
|
---|
| 141 | t_T = (Phi_c - phi_0 + atan2( (R_max + rr)*(R_max - rr) , 2*r*R_c ) ) / omega;
|
---|
| 142 | t = min(t_T,t_z);
|
---|
| 143 | }
|
---|
| 144 |
|
---|
| 145 | // 4. position in terms of x(t), y(t), z(t)
|
---|
| 146 | // x(t) = x_c + r cos (omega t + phi_0)
|
---|
| 147 | // y(t) = y_c + r sin (omega t + phi_0)
|
---|
| 148 | // z(t) = z_0 + (p_Z0/gammam) t
|
---|
| 149 | x_t = x_c + r * cos(omega * t + phi_0);
|
---|
| 150 | y_t = y_c + r * sin(omega * t + phi_0);
|
---|
| 151 | z_t = Part->Z + Part->Pz / gammam * t;
|
---|
| 152 |
|
---|
| 153 | // 5. position in terms of Theta(t), Phi(t), R(t), Eta(t)
|
---|
| 154 | // R(t) = sqrt(x(t)² + y(t)²)
|
---|
| 155 | // Phi(t) = atan(y(t)/x(t))
|
---|
| 156 | // Theta(t) = atan(R(t)/z(t))
|
---|
| 157 | // Eta(t) = -ln tan (Theta(t)/2)
|
---|
| 158 | R_t = sqrt( pow(x_t,2.) + pow(y_t,2.) );
|
---|
| 159 | Phi_t = atan2( y_t, x_t);
|
---|
[219] | 160 | if(R_t>0) {
|
---|
[199] | 161 | Theta_t = acos( z_t / sqrt(z_t*z_t+ R_t*R_t));
|
---|
| 162 | Eta_t = - log(tan(Theta_t/2.));
|
---|
| 163 | } else{
|
---|
| 164 | Theta_t=0; Eta_t = 9999;
|
---|
| 165 | }
|
---|
[219] | 166 |
|
---|
[199] | 167 | Px_t = - Part->PT * sin(omega*t + phi_0);
|
---|
| 168 | Py_t = Part->PT * cos(omega*t + phi_0);
|
---|
| 169 | Pz_t = Part->Pz;
|
---|
| 170 | PT_t = sqrt(Px_t*Px_t + Py_t*Py_t);
|
---|
| 171 | p_t = sqrt(PT_t*PT_t + Pz_t*Pz_t);
|
---|
| 172 | E_t=sqrt(Part->M*Part->M +p_t);
|
---|
[219] | 173 | //if(p_t != fabs(Pz_t) ) Eta_t = log( (p_t+Pz_t)/(p_t-Pz_t) )/2.;
|
---|
| 174 | //if(p_t>0) Theta_t = acos(Pz_t/p_t);
|
---|
[199] | 175 | momentum.SetPxPyPzE(Px_t,Py_t,Pz_t,E_t);
|
---|
[193] | 176 |
|
---|
[199] | 177 | // test zone ---
|
---|
| 178 | /*
|
---|
| 179 | cout << cos(atan(R_t/z_t)) << "\t" << cos(Theta_t) << "\t" << cos(momentum.Theta()) << "\t" << Pz_t/temp_p << endl;
|
---|
| 180 | double Eta_t1 = log( (E+Pz_t)/(E-Pz_t) )/2.;
|
---|
| 181 | double Eta_t2 = log( (temp_p+Pz_t)/(temp_p-Pz_t) )/2.;
|
---|
| 182 | if(0 && fabs(Eta_t -Eta_t2)>1e-310) {
|
---|
| 183 | cout << "ERROR-BUG: Eta_t != Eta_t2\n";
|
---|
| 184 | cout << "Eta_t= " << Eta_t << "\t Eta_t1= " << Eta_t1 << "\t Eta_t2= " << Eta_t2 << endl;
|
---|
[193] | 185 | }
|
---|
| 186 |
|
---|
[199] | 187 | double R_t2 = sqrt( pow(R_c,2.) + pow(r,2.) + 2*r*R_c*cos(phi_0 + omega*t - Phi_c) ); // cross-check
|
---|
| 188 | if(fabs(R_t - R_t2) > 1e-7)
|
---|
| 189 | cout << "ERROR-BUG: R_t != R_t2: R_t=" << R_t << " R_t2=" << R_t2 << " R_t - R_t2 =" << R_t - R_t2 << endl;
|
---|
| 190 | if( fabs(E - gammam) > 1e-3 ) {
|
---|
[193] | 191 | cout << "ERROR-BUG: energy is not conserved in src/BFieldProp.cc\n";
|
---|
| 192 | cout << "E - momentum.E() = " << fabs(E - momentum.E()) << " gammam - E " << fabs(gammam -E) << endl; }
|
---|
| 193 | if( fabs(PT_t - Part->PT) > 1e-10 ) {
|
---|
[199] | 194 | cout << "ERROR-BUG: PT is not conversed in src/BFieldProp.cc. ";
|
---|
[193] | 195 | cout << "(at " << 100*(PT_t - Part->PT) << "%)\n";
|
---|
| 196 | }
|
---|
| 197 | if(momentum.Pz() != Pz_t)
|
---|
| 198 | cout << "ERROR-BUG: Pz is not conserved in src/BFieldProp.cc\n";
|
---|
| 199 |
|
---|
[199] | 200 | double temp_p0=sqrt(Part->PT*Part->PT + Part->Pz*Part->Pz);
|
---|
| 201 | if(fabs( (temp_p-temp_p0)*(temp_p+temp_p0) )>1e-10 ) {
|
---|
| 202 | cout << "ERROR-BUG: momentum |vec{p}| is not conserved in src/BFieldProp.cc\n";
|
---|
| 203 | cout << temp_p << "\t" << temp_p0 << endl;
|
---|
| 204 | }
|
---|
| 205 |
|
---|
| 206 | // if x_c == y_c ==0 (set it by hand!), easy cross-check
|
---|
| 207 | //cout << "tan(phi_p)= " << momentum.Py()/momentum.Px() << "\t -1/tan(phi_x)= " << -x_t/y_t << endl;
|
---|
| 208 | */
|
---|
| 209 |
|
---|
[193] | 210 | } else { // if B_x or B_y are non zero: longer computation
|
---|
| 211 |
|
---|
[53] | 212 | float Xvertex1 = Part->X;
|
---|
| 213 | float Yvertex1 = Part->Y;
|
---|
| 214 | float Zvertex1 = Part->Z;
|
---|
| 215 |
|
---|
[193] | 216 | //out of tracking coverage?
|
---|
| 217 | if(sqrt(Xvertex1*Xvertex1+Yvertex1*Yvertex1) > R_max){return;}
|
---|
| 218 | if(fabs(Zvertex1) > z_max){return;}
|
---|
[53] | 219 |
|
---|
[193] | 220 | double px = Part->Px / 0.003;
|
---|
| 221 | double py = Part->Py / 0.003;
|
---|
| 222 | double pz = Part->Pz / 0.003;
|
---|
| 223 | double pt = Part->PT / 0.003; // sqrt(px*px+py*py);
|
---|
[199] | 224 | double p = sqrt(pz*pz + pt*pt); //sqrt(px*px+py*py+pz*pz);
|
---|
[59] | 225 |
|
---|
[193] | 226 | double M = Part->M;
|
---|
| 227 | double vx = px/M;
|
---|
| 228 | double vy = py/M;
|
---|
| 229 | double vz = pz/M;
|
---|
| 230 | double qm = q/M;
|
---|
[53] | 231 |
|
---|
[193] | 232 | double ax = qm*(B_z*vy - B_y*vz);
|
---|
| 233 | double ay = qm*(B_x*vz - B_z*vx);
|
---|
| 234 | double az = qm*(B_y*vx - B_x*vy);
|
---|
| 235 | double dt = 1/p;
|
---|
| 236 | if(pt<266 && vz < 0.0012) dt = fabs(0.001/vz); // ?????
|
---|
[59] | 237 |
|
---|
[193] | 238 | double xold=Xvertex1; double x=xold;
|
---|
| 239 | double yold=Yvertex1; double y=yold;
|
---|
| 240 | double zold=Zvertex1; double z=zold;
|
---|
[59] | 241 |
|
---|
[193] | 242 | double VTold = pt/M; //=sqrt(vx*vx+vy*vy);
|
---|
[59] | 243 |
|
---|
[193] | 244 | unsigned int k = 0;
|
---|
| 245 | double VTratio=0;
|
---|
| 246 | double R_max2 = R_max*R_max;
|
---|
| 247 | double r2=0; // will be x*x+y*y
|
---|
[100] | 248 |
|
---|
[193] | 249 | while(k < MAXITERATION){
|
---|
[59] | 250 | k++;
|
---|
| 251 |
|
---|
| 252 | vx += ax*dt;
|
---|
| 253 | vy += ay*dt;
|
---|
| 254 | vz += az*dt;
|
---|
| 255 |
|
---|
[193] | 256 | VTratio = VTold/sqrt(vx*vx+vy*vy);
|
---|
[59] | 257 | vx *= VTratio;
|
---|
| 258 | vy *= VTratio;
|
---|
| 259 |
|
---|
[193] | 260 | ax = qm*(B_z*vy - B_y*vz);
|
---|
| 261 | ay = qm*(B_x*vz - B_z*vx);
|
---|
| 262 | az = qm*(B_y*vx - B_x*vy);
|
---|
[59] | 263 |
|
---|
| 264 | x += vx*dt;
|
---|
| 265 | y += vy*dt;
|
---|
| 266 | z += vz*dt;
|
---|
[193] | 267 | r2 = x*x + y*y;
|
---|
[59] | 268 |
|
---|
[193] | 269 | if( r2 > R_max2 ){
|
---|
| 270 | x /= r2/R_max2;
|
---|
| 271 | y /= r2/R_max2;
|
---|
| 272 | break;
|
---|
| 273 | }
|
---|
| 274 | if( fabs(z)>z_max)break;
|
---|
[59] | 275 |
|
---|
| 276 | xold = x;
|
---|
| 277 | yold = y;
|
---|
| 278 | zold = z;
|
---|
[193] | 279 | } // while loop
|
---|
| 280 |
|
---|
| 281 | if(k == MAXITERATION) loop_overflow_counter++;
|
---|
| 282 | //cout << "too short loop in " << loop_overflow_counter << " cases" << endl;
|
---|
[59] | 283 |
|
---|
[193] | 284 | if(x!=0 && y!=0 && z!=0) {
|
---|
| 285 | float Theta = atan2(sqrt(r2),z);
|
---|
| 286 | double eta = -log(tan(Theta/2.));
|
---|
[53] | 287 | double phi = atan2(y,x);
|
---|
[193] | 288 | momentum.SetPtEtaPhiE(Part->PT,eta,phi,Part->E);
|
---|
| 289 | }
|
---|
| 290 |
|
---|
| 291 | } // if b_x or b_y non zero
|
---|
[53] | 292 | }
|
---|
[248] | 293 |
|
---|
| 294 |
|
---|
| 295 |
|
---|
| 296 | void TrackPropagation::bfield(const TRootGenParticle *Part, float& etacalo, float& phicalo) {
|
---|
| 297 |
|
---|
| 298 | // initialisation, valid for z_max==0, R_max==0 and q==0
|
---|
| 299 | etacalo = Part->Eta;
|
---|
| 300 | phicalo = -atan2(Part->Px,Part->Py);
|
---|
| 301 |
|
---|
| 302 | q = Charge(Part->PID);
|
---|
| 303 | if(q==0) return;
|
---|
| 304 | if(R_max ==0) { cout << "ERROR: magnetic field has no lateral extention\n"; return;}
|
---|
| 305 | if(z_max==0) { cout << "ERROR: magnetic field has no longitudinal extention\n"; return;}
|
---|
| 306 |
|
---|
| 307 | if (B_x== 0 && B_y== 0) { // faster if only B_z
|
---|
| 308 | if (B_z==0) return; // nothing to do
|
---|
| 309 |
|
---|
| 310 | // initial conditions:
|
---|
| 311 | // p_X0 = Part->Px, p_Y0 = Part->Py, p_Z0 = Part->Pz, p_T0 = Part->PT;
|
---|
| 312 | // X_0 = Part->X, Y_0 = Part->Y, Z_0 = Part->Z;
|
---|
| 313 |
|
---|
| 314 | // 1. initial transverse momentum p_{T0} : Part->PT
|
---|
| 315 | // initial transverse momentum direction \phi_0 = -atan(p_X0/p_Y0)
|
---|
| 316 | // relativistic gamma : gamma = E/mc² ; gammam = gamma \times m
|
---|
| 317 | // giration frequency \omega = q/(gamma m) B_z
|
---|
| 318 | // helix radius r = p_T0 / (omega gamma m)
|
---|
| 319 | phi_0 = -atan2(Part->Px,Part->Py);
|
---|
| 320 | gammam = Part->E; // here c==1
|
---|
| 321 | //cout << "gammam" << gammam << "\t gamma" << gammam/Part->M << endl;
|
---|
| 322 | omega = q * B_z /gammam;
|
---|
| 323 | r = Part->PT / (omega * gammam);
|
---|
| 324 |
|
---|
| 325 | // 2. Helix parameters : center coordinates in transverse plane
|
---|
| 326 | // x_c = x_0 - r*cos(phi_0) and y_c = y_0 - r*sin(phi_0)
|
---|
| 327 | // R_c = \sqrt{x_c² + y_c²} and \Phi_c = atan{y_c/x_c}
|
---|
| 328 | x_c = Part->X - r*cos(phi_0); /// TEST !!
|
---|
| 329 | y_c = Part->Y - r*sin(phi_0);
|
---|
| 330 | R_c = sqrt(pow(x_c,2.) + pow(y_c,2.) );
|
---|
| 331 | Phi_c = atan2(y_c,x_c);
|
---|
| 332 |
|
---|
| 333 | // 3. time evaluation t = min(t_T, t_z)
|
---|
| 334 | // t_T : time to exit from the sides
|
---|
| 335 | // t_T= [ Phi_c - phi_0 + atan( (R_max^2 - (R_c^2 + r^2))/(2rR_c) ) ]/omega
|
---|
| 336 | // t_z : time to exit from the front or the back
|
---|
| 337 | // t_z = gamma * m /p_z0 \times (-z_0 + z_max * sign(p_z0))
|
---|
| 338 | rr = sqrt( pow(R_c,2.) + pow(r,2.) ); // temp variable
|
---|
| 339 | t_T=0;
|
---|
| 340 | int sign_pz= (Part->Pz >0) ? 1 : -1;
|
---|
| 341 | t_z = gammam / Part->Pz * (-Part->Z + z_max*sign_pz ) ;
|
---|
| 342 | if ( fabs(R_c - r) > R_max || R_c + r < R_max ) t = t_z;
|
---|
| 343 | else {
|
---|
| 344 | t_T = (Phi_c - phi_0 + atan2( (R_max + rr)*(R_max - rr) , 2*r*R_c ) ) / omega;
|
---|
| 345 | t = min(t_T,t_z);
|
---|
| 346 | }
|
---|
| 347 |
|
---|
| 348 | // 4. position in terms of x(t), y(t), z(t)
|
---|
| 349 | // x(t) = x_c + r cos (omega t + phi_0)
|
---|
| 350 | // y(t) = y_c + r sin (omega t + phi_0)
|
---|
| 351 | // z(t) = z_0 + (p_Z0/gammam) t
|
---|
| 352 | x_t = x_c + r * cos(omega * t + phi_0);
|
---|
| 353 | y_t = y_c + r * sin(omega * t + phi_0);
|
---|
| 354 | z_t = Part->Z + Part->Pz / gammam * t;
|
---|
| 355 |
|
---|
| 356 | // 5. position in terms of Theta(t), Phi(t), R(t), Eta(t)
|
---|
| 357 | // R(t) = sqrt(x(t)² + y(t)²)
|
---|
| 358 | // Phi(t) = atan(y(t)/x(t))
|
---|
| 359 | // Theta(t) = atan(R(t)/z(t))
|
---|
| 360 | // Eta(t) = -ln tan (Theta(t)/2)
|
---|
| 361 | R_t = sqrt( pow(x_t,2.) + pow(y_t,2.) );
|
---|
| 362 | Phi_t = atan2( y_t, x_t);
|
---|
| 363 | if(R_t>0) {
|
---|
| 364 | Theta_t = acos( z_t / sqrt(z_t*z_t+ R_t*R_t));
|
---|
| 365 | Eta_t = - log(tan(Theta_t/2.));
|
---|
| 366 | } else{
|
---|
| 367 | Theta_t=0; Eta_t = 9999;
|
---|
| 368 | }
|
---|
| 369 | /* Not needed here. but these formulae are correct -------
|
---|
| 370 | Px_t = - Part->PT * sin(omega*t + phi_0);
|
---|
| 371 | Py_t = Part->PT * cos(omega*t + phi_0);
|
---|
| 372 | Pz_t = Part->Pz;
|
---|
| 373 | PT_t = sqrt(Px_t*Px_t + Py_t*Py_t);
|
---|
| 374 | p_t = sqrt(PT_t*PT_t + Pz_t*Pz_t);
|
---|
| 375 | E_t=sqrt(Part->M*Part->M +p_t);
|
---|
| 376 | //if(p_t != fabs(Pz_t) ) Eta_t = log( (p_t+Pz_t)/(p_t-Pz_t) )/2.;
|
---|
| 377 | //if(p_t>0) Theta_t = acos(Pz_t/p_t);
|
---|
| 378 | momentum.SetPxPyPzE(Px_t,Py_t,Pz_t,E_t);
|
---|
| 379 | */
|
---|
| 380 | etacalo = Eta_t;
|
---|
| 381 | phicalo = Phi_t;
|
---|
| 382 | return;
|
---|
| 383 | // test zone ---
|
---|
| 384 | /*
|
---|
| 385 | cout << cos(atan(R_t/z_t)) << "\t" << cos(Theta_t) << "\t" << cos(momentum.Theta()) << "\t" << Pz_t/temp_p << endl;
|
---|
| 386 | double Eta_t1 = log( (E+Pz_t)/(E-Pz_t) )/2.;
|
---|
| 387 | double Eta_t2 = log( (temp_p+Pz_t)/(temp_p-Pz_t) )/2.;
|
---|
| 388 | if(0 && fabs(Eta_t -Eta_t2)>1e-310) {
|
---|
| 389 | cout << "ERROR-BUG: Eta_t != Eta_t2\n";
|
---|
| 390 | cout << "Eta_t= " << Eta_t << "\t Eta_t1= " << Eta_t1 << "\t Eta_t2= " << Eta_t2 << endl;
|
---|
| 391 | }
|
---|
| 392 |
|
---|
| 393 | double R_t2 = sqrt( pow(R_c,2.) + pow(r,2.) + 2*r*R_c*cos(phi_0 + omega*t - Phi_c) ); // cross-check
|
---|
| 394 | if(fabs(R_t - R_t2) > 1e-7)
|
---|
| 395 | cout << "ERROR-BUG: R_t != R_t2: R_t=" << R_t << " R_t2=" << R_t2 << " R_t - R_t2 =" << R_t - R_t2 << endl;
|
---|
| 396 | if( fabs(E - gammam) > 1e-3 ) {
|
---|
| 397 | cout << "ERROR-BUG: energy is not conserved in src/BFieldProp.cc\n";
|
---|
| 398 | cout << "E - momentum.E() = " << fabs(E - momentum.E()) << " gammam - E " << fabs(gammam -E) << endl; }
|
---|
| 399 | if( fabs(PT_t - Part->PT) > 1e-10 ) {
|
---|
| 400 | cout << "ERROR-BUG: PT is not conversed in src/BFieldProp.cc. ";
|
---|
| 401 | cout << "(at " << 100*(PT_t - Part->PT) << "%)\n";
|
---|
| 402 | }
|
---|
| 403 | if(momentum.Pz() != Pz_t)
|
---|
| 404 | cout << "ERROR-BUG: Pz is not conserved in src/BFieldProp.cc\n";
|
---|
| 405 |
|
---|
| 406 | double temp_p0=sqrt(Part->PT*Part->PT + Part->Pz*Part->Pz);
|
---|
| 407 | if(fabs( (temp_p-temp_p0)*(temp_p+temp_p0) )>1e-10 ) {
|
---|
| 408 | cout << "ERROR-BUG: momentum |vec{p}| is not conserved in src/BFieldProp.cc\n";
|
---|
| 409 | cout << temp_p << "\t" << temp_p0 << endl;
|
---|
| 410 | }
|
---|
| 411 |
|
---|
| 412 | // if x_c == y_c ==0 (set it by hand!), easy cross-check
|
---|
| 413 | //cout << "tan(phi_p)= " << momentum.Py()/momentum.Px() << "\t -1/tan(phi_x)= " << -x_t/y_t << endl;
|
---|
| 414 | */
|
---|
| 415 |
|
---|
| 416 | } else { // if B_x or B_y are non zero: longer computation
|
---|
| 417 |
|
---|
| 418 | float Xvertex1 = Part->X;
|
---|
| 419 | float Yvertex1 = Part->Y;
|
---|
| 420 | float Zvertex1 = Part->Z;
|
---|
| 421 |
|
---|
| 422 | //out of tracking coverage?
|
---|
| 423 | if(sqrt(Xvertex1*Xvertex1+Yvertex1*Yvertex1) > R_max){return;}
|
---|
| 424 | if(fabs(Zvertex1) > z_max){return;}
|
---|
| 425 |
|
---|
| 426 | double px = Part->Px / 0.003;
|
---|
| 427 | double py = Part->Py / 0.003;
|
---|
| 428 | double pz = Part->Pz / 0.003;
|
---|
| 429 | double pt = Part->PT / 0.003; // sqrt(px*px+py*py);
|
---|
| 430 | double p = sqrt(pz*pz + pt*pt); //sqrt(px*px+py*py+pz*pz);
|
---|
| 431 |
|
---|
| 432 | double M = Part->M;
|
---|
| 433 | double vx = px/M;
|
---|
| 434 | double vy = py/M;
|
---|
| 435 | double vz = pz/M;
|
---|
| 436 | double qm = q/M;
|
---|
| 437 |
|
---|
| 438 | double ax = qm*(B_z*vy - B_y*vz);
|
---|
| 439 | double ay = qm*(B_x*vz - B_z*vx);
|
---|
| 440 | double az = qm*(B_y*vx - B_x*vy);
|
---|
| 441 | double dt = 1/p;
|
---|
| 442 | if(pt<266 && vz < 0.0012) dt = fabs(0.001/vz); // ?????
|
---|
| 443 |
|
---|
| 444 | double xold=Xvertex1; double x=xold;
|
---|
| 445 | double yold=Yvertex1; double y=yold;
|
---|
| 446 | double zold=Zvertex1; double z=zold;
|
---|
| 447 |
|
---|
| 448 | double VTold = pt/M; //=sqrt(vx*vx+vy*vy);
|
---|
| 449 |
|
---|
| 450 | unsigned int k = 0;
|
---|
| 451 | double VTratio=0;
|
---|
| 452 | double R_max2 = R_max*R_max;
|
---|
| 453 | double r2=0; // will be x*x+y*y
|
---|
| 454 |
|
---|
| 455 | while(k < MAXITERATION){
|
---|
| 456 | k++;
|
---|
| 457 |
|
---|
| 458 | vx += ax*dt;
|
---|
| 459 | vy += ay*dt;
|
---|
| 460 | vz += az*dt;
|
---|
| 461 |
|
---|
| 462 | VTratio = VTold/sqrt(vx*vx+vy*vy);
|
---|
| 463 | vx *= VTratio;
|
---|
| 464 | vy *= VTratio;
|
---|
| 465 |
|
---|
| 466 | ax = qm*(B_z*vy - B_y*vz);
|
---|
| 467 | ay = qm*(B_x*vz - B_z*vx);
|
---|
| 468 | az = qm*(B_y*vx - B_x*vy);
|
---|
| 469 |
|
---|
| 470 | x += vx*dt;
|
---|
| 471 | y += vy*dt;
|
---|
| 472 | z += vz*dt;
|
---|
| 473 | r2 = x*x + y*y;
|
---|
| 474 |
|
---|
| 475 | if( r2 > R_max2 ){
|
---|
| 476 | x /= r2/R_max2;
|
---|
| 477 | y /= r2/R_max2;
|
---|
| 478 | break;
|
---|
| 479 | }
|
---|
| 480 | if( fabs(z)>z_max)break;
|
---|
| 481 |
|
---|
| 482 | xold = x;
|
---|
| 483 | yold = y;
|
---|
| 484 | zold = z;
|
---|
| 485 | } // while loop
|
---|
| 486 |
|
---|
| 487 | if(k == MAXITERATION) loop_overflow_counter++;
|
---|
| 488 | //cout << "too short loop in " << loop_overflow_counter << " cases" << endl;
|
---|
| 489 | float Theta=0;
|
---|
| 490 | if(x!=0 && y!=0 && z!=0) {
|
---|
| 491 | Theta = atan2(sqrt(r2),z);
|
---|
| 492 | etacalo = -log(tan(Theta/2.));
|
---|
| 493 | phicalo = atan2(y,x);
|
---|
| 494 | //momentum.SetPtEtaPhiE(Part->PT,eta,phi,Part->E);
|
---|
| 495 | }
|
---|
| 496 | } // if b_x or b_y non zero
|
---|
| 497 | }
|
---|