Fork me on GitHub

source: svn/trunk/paper/notes.tex@ 123

Last change on this file since 123 was 121, checked in by Xavier Rouby, 16 years ago

two column; chap1,2 ok. chap3 ok sauf Etmis. validation presque ok

File size: 49.5 KB
Line 
1\documentclass[a4paper,11pt,oneside,twocolumn]{article}
2%\usepackage[english]{babel}
3\usepackage[ansinew]{inputenc}
4\usepackage{abstract}
5
6\usepackage{amsmath}
7\usepackage{epic}
8\usepackage{wrapfig}
9\usepackage{eepic}
10\usepackage{color}
11\usepackage{latexsym}
12\usepackage{array}
13\usepackage{multicol}
14
15\usepackage{fancyhdr}
16\usepackage{verbatim}
17\addtolength{\textwidth}{1cm} \addtolength{\hoffset}{-0.5cm}
18\usepackage[colorlinks=true, pdfstartview=FitV, linkcolor=black, citecolor=black, urlcolor=black, unicode]{hyperref}
19\usepackage{ifpdf}
20\usepackage{cite}
21
22\usepackage{enumitem}
23
24\newcommand{\dollar}{\$}
25
26\ifpdf
27 \usepackage[pdftex]{graphicx}
28 \graphicspath{{all_png/}}
29 \pdfinfo{
30 /Author (S. Ovyn, X. Rouby)
31 /Title (Delphes, a framework for fast simulation of a general purpose LHC detector)
32 /Subject ()
33 /Keywords (Delphes, Fast simulation, LHC, FROG, Hector, Smearing, FastJet)}
34\else
35 \usepackage[dvips]{graphicx}
36 \graphicspath{{figures/}}
37\fi
38
39\title{\textsc{Delphes}, a framework for fast simulation \\of a general purpose LHC detector}
40\author{S. Ovyn and X. Rouby\thanks{Now in Physikalisches Institut, Albert-Ludwigs-Universit\"at Freiburg} \\
41 Center for Particle Physics and Phenomenology (CP3)\\ Universit\'e catholique de Louvain \\ B-1348 Louvain-la-Neuve, Belgium \\ \\
42 \textit{severine.ovyn@uclouvain.be, xavier.rouby@cern.ch} \\
43}
44\date{}
45
46\begin{document}
47
48\twocolumn[
49\maketitle
50\begin{abstract}
51Knowing whether theoretical predictions are visible and measurable in a high energy experiment is always delicate, due to the
52complexity of the related detectors, data acquisition chain and software. We introduce here a new framework, \textsc{Delphes}, for fast simulation of
53a general purpose experiment. The simulation includes a tracking system, embedded into a magnetic field, calorimetry and a muon
54system, and possible very forward detectors arranged along the beamline.
55The framework is interfaced to standard file formats (e.g. Les Houches Event File) and outputs observable analysis data objects, like missing transverse energy and collections of electrons or jets.
56The simulation of detector response takes into account the detector resolution, and usual reconstruction algorithms for complex objects, like \textsc{FastJet}. A simplified preselection can also be applied on processed data for trigger emulation. Detection of very forward scattered particles relies on the transport in beamlines with the \textsc{Hector} software. Finally, the \textsc{Frog} 2D/3D event display is used for visualisation of the collision final states.
57An overview of \textsc{Delphes} is given as well as a few use-cases for illustration.
58\vspace{1cm}
59
60\noindent
61\textit{Keywords:} \textsc{Delphes}, fast simulation, LHC, smearing, trigger, \textsc{FastJet}, \textsc{Hector}, \textsc{Frog}
62\vspace{1cm}
63\end{abstract}
64]
65\saythanks
66
67\section{Introduction}
68% Motiver l'utilisation d'un simulateur rapide
69% - 1) rapide VS lent
70% - 2) relativement bonne prédiction en premiÚre approximation
71% - 3) permet de comparer
72
73Experiments at high energy colliders are very complex systems, in several ways. First, in terms of the various detector subsystems, including tracking, central calorimetry, forward calorimetry, and muon chambers. These detectors differ with their principles, technologies, geometries and sensitivities. Then, due to the requirement of a highly effective online selection (i.e. a \textit{trigger}), subdivided into several levels for an optimal reduction factor, but based only on partially processed data. Finally, in terms of the experiment software, with different data formats (like \textit{raw} or \textit{reconstructed} data), many reconstruction algorithms and particle identification schemes.
74
75This complexity is handled by large collaborations of thousands of people, which restrict the availability of the data, software and documentation to their members. Real data analyses require a full detector simulation, including the various detector inefficiencies, the dead material, the imperfections and the geometrical details. Moreover, detector calibration and alignment are crucial. Such simulation is very complicated, technical and slow. On the other hand, phenomenological studies, looking for the observability of given signals, may require only fast but realistic estimates of the observables.
76
77A new framework, called \textsc{Delphes}~\cite{bib:Delphes}, is introduced here, for the fast simulation of a general purpose collider experiment.
78Using the framework, observables can be estimated for specific signal and background channels, as well as their production and measurement rates, under a set of assumptions.
79Starting from the output of event generators, the simulation of the detector response takes into account the subdetector resolutions, by smearing the kinematical properties of the visible final particles. Tracks of charged particles and calorimetric towers (or \textit{calotowers} are then created.
80
81\textsc{Delphes} includes the most crucial experimental features, like (1) the geometry of both central or forward detectors; (2) lepton isolation; (3) reconstruction of photons, leptons, jets, $b$-jets, $\tau$-jets and missing transverse energy; (4) trigger emulation and (5) an event display (Fig.~\ref{fig:FlowChart}).
82
83\begin{figure*}[t]
84\begin{center}
85%\includegraphics[width=0.9\textwidth]{FlowDelphes}
86\includegraphics[scale=0.78]{FlowDelphes}
87\caption{Flow chart describing the principles behind \textsc{Delphes}. Event files coming from external Monte Carlo generators are read by a convertor stage.
88The kinematical variables of the final state particles are then smeared according to the subdetector resolutions.
89Tracks are reconstructed in a simulated dipolar magnetic field and calorimetric towers sample the energy deposits. Based on these, dedicated algorithms are applied for particle identification, isolation and reconstruction.
90The transport of very forward particle to the near-beam detectors is also simulated.
91Finally, an output file is written, including generator level and analysis object data. If requested, a fully parametrisable trigger can be emulated. Optionnally, the geometry and visualisation files for the 3D event display can also be produced.
92All user parameters are set in the \textit{Smearing Card} and the \textit{Trigger Card}. }
93\label{fig:FlowChart}
94\end{center}
95\end{figure*}
96
97Although this kind of approach yields much realistic results than a simple ``parton-level" analysis, a fast simulation comes with some limitations. Detector geometry is idealised, being uniform, symmetric around the beam axis, and having no cracks nor dead material. Secondary interactions, multiple scatterings, photon conversion and bremsstrahlung are also neglected.
98
99%The simulation package proceeds in two stages. The first part is executed on the generated events. ``Particle-level" informations are read from input files and stored in a {\it \textsc{gen}} \textsc{root} tree.
100
101Three formats of input files can currently be used as input in \textsc{Delphes}\footnote{\texttt{[code] }See the \texttt{HEPEVTConverter}, \texttt{LHEFConverter} and \texttt{STDHEPConverter} classes.}. In order to process events from many different generators, the standard Monte Carlo event structure \mbox{\textsc{s}td\textsc{hep}} can be used as an input. Besides, \textsc{Delphes} can also provide detector response for events read in ``Les Houches Event Format'' (\textsc{lhef}) and \textsc{root} files obtained using the \textbf{h2root} utility from the \textsc{root} framework~\cite{bib:Root}.
102%Afterwards, \textsc{Delphes} performs a simple trigger simulation and reconstruct "high-level objects". These informations are organised in classes and each objects are ordered with respect to the transverse momentum.
103
104The output of \textsc{Delphes} contains a copy of the generator level data (\textsc{gen} tree), the analysis data objects after reconstruction (\mbox{\textsc{A}nalysis} tree), and possibly the results of the trigger emulation (\mbox{\textsc{T}rigger} tree). The program is driven by input cards. The detector card (\texttt{data/DataCardDet.dat}) allows a large spectrum of running conditions by modifying basic detector parameters, including calorimeter and tracking coverage and resolution, thresholds or jet algorithm parameters. The trigger card (\texttt{data/trigger.dat}) lists the user algorithms for the simplified online preselection.\\
105
106
107\section{Detector simulation}
108
109The overall layout of the general purpose detector simulated by \textsc{Delphes} is shown in Fig.~\ref{fig:GenDet3}.
110A central tracking system (\textsc{tracker}) is surrounded by an electromagnetic and a hadron calorimeters (\textsc{ecal} and \textsc{hcal}, resp.). Two forward calorimeters (\textsc{fcal}) ensure a larger geometric coverage for the measurement of the missing transverse energy. Finally, a muon system (\textsc{muon}) encloses the central detector volume
111The fast simulation of the detector response takes into account geometrical acceptance of sub-detectors and their finite resolution, as defined in the smearing data card\footnote{\texttt{[code] }See the \texttt{RESOLution} class.}.
112If no such file is provided, predifined values are used. The coverage of the various subsystems used in the default configuration are summarised in table \ref{tab:defEta}.
113
114\begin{table*}[t]
115\begin{center}
116\caption{Default extension in pseudorapidity $\eta$ of the different subdetectors.
117The corresponding parameter name, in the smearing card, is given. \vspace{0.5cm}}
118\begin{tabular}{lll}
119\hline
120\textsc{tracker} & {\verb CEN_max_tracker } & $0.0 \leq |\eta| \leq 2.5$\\
121\textsc{ecal}, \textsc{hcal} & {\verb CEN_max_calo_cen } & $0.0 \leq |\eta| \leq 3.0$\\
122\textsc{fcal} & {\verb CEN_max_calo_fwd } & $3.0 \leq |\eta| \leq5.0$\\
123\textsc{muon} & {\verb CEN_max_mu } & $0.0 \leq |\eta| \leq 2.4$\\\hline
124\end{tabular}
125\label{tab:defEta}
126\end{center}
127\end{table*}
128
129\begin{figure}[!h]
130\begin{center}
131\includegraphics[width=\columnwidth]{Detector_Delphes_3}
132\caption{
133Profile of layout of the generic detector geometry assumed in \textsc{Delphes}. The innermost layer, close to the interaction point, is a central tracking system (pink).
134It is surrounded by a central calorimeter volume (green) with both electromagnetic and hadronic sections.
135The outer layer of the central system (red) consist of a muon system. In addition, two end-cap calorimeters (blue) extend the pseudorapidity coverage of the central detector.
136The detector parameters are defined in the user-configuration card. The extension of the various subdetectors, as defined in Tab.~\ref{tab:defEta}, are clearly visible. The detector is assumed to be strictly symmetric around the beam axis (black line). Additional forward detectors are not depicted.
137}
138\label{fig:GenDet3}
139\end{center}
140\end{figure}
141
142
143\subsubsection*{Magnetic field}
144In addition to the subdetectors, the effects of a dipolar magnetic field is simulated for the charged particles\footnote{\texttt{[code] }See the \texttt{TrackPropagation} class.}. This simply modifies the corresponding particle direction before it enters the calorimeters.
145
146
147
148\subsection{Tracks reconstruction}
149Every stable charged particle with a transverse momentum above some threshold and lying inside the fiducial volume of the tracker provides a track.
150By default, a track is assumed to be reconstructed with $90\%$ probability\footnote{\texttt{[code]} The reconstruction efficiency is defined in the smearing datacard by the \texttt{TRACKING\_EFF} term.} if its transverse momentum $p_T$ is higher than $0.9~\textrm{GeV}$ and if its pseudorapidity $|\eta| \leq 2.5$.
151
152
153\subsection{Simulation of calorimeters}
154
155The energy of each particle considered as stable in the generator particle list is smeared, with a Gaussian distribution depending on the calorimeter resolution. This resolution varies with the sub-calorimeter (\textsc{ecal}, \textsc{hcal}, \textsc{fcal}) measuring the particle.
156The response of each sub-calorimeter is parametrised as a function of the energy:
157\begin{equation}
158\frac{\sigma}{E} = \frac{S}{\sqrt{E}} \oplus \frac{N}{E} \oplus C,
159\label{eq:caloresolution}
160\end{equation}
161where $S$, $N$ and $C$ are the \textit{stochastic}, \textit{noise} and \textit{constant} terms, respectively.\\
162
163
164The particle four-momentum $p^\mu$ are smeared with a parametrisation directly derived from the detector techinal designs\footnote{\texttt{[code] }The response of the detector is applied to the electromagnetic and the hadronic particles through the \texttt{SmearElectron} and \texttt{SmearHadron} functions.}.
165In the default parametrisation, the calorimeter is assumed to cover the pseudorapidity range $|\eta|<3$ and consists in an electromagnetic and an hadronic part. Coverage between pseudorapidities of $3.0$ and $5.0$ is provided by forward calorimeters, with different response to electromagnetic objects ($e^\pm, \gamma$) or hadrons.
166Muons and neutrinos are assumed no to interact with the calorimeters\footnote{In the current \textsc{Delphes} version, particles other than electrons ($e^\pm$), photons ($\gamma$), muons ($\mu^\pm$) and neutrinos ($\nu_e$, $\nu_\mu$ and $\nu_\tau$) are simulated as hadrons for their interactions with the calorimeters. The simulation of stable particles beyond the Standard Model should subsequently be handled with care.}.
167The default values of the stochastic, noisy and constant terms are given in Table~\ref{tab:defResol}.\\
168
169\begin{table}[!h]
170\begin{center}
171\caption{Default values for the resolution of the central and forward calorimeters. Resolution is parametrised by the \textit{stochastic} ($S$), \textit{noise} ($N$) and \textit{constant} ($C$) terms (Eq.~\ref{eq:caloresolution}).
172The corresponding parameter name, in the smearing card, is given. \vspace{0.5cm}}
173\begin{tabular}[!h]{lclc}
174\hline
175\multicolumn{2}{c}{Resolution Term} & Card flag & Value\\\hline
176 \multicolumn{4}{l}{\textsc{ecal}} \\
177 & $S$ & {\verb ELG_Scen } & $0.05$ \\
178 & $N$ & {\verb ELG_Ncen } & $0.25$ \\
179 & $C$ & {\verb ELG_Ccen } & $0.0055$ \\
180 \multicolumn{4}{l}{\textsc{fcal}, electromagnetic part} \\
181 & $S$ & {\verb ELG_Sfwd } & $2.084$ \\
182 & $N$ & {\verb ELG_Nfwd } & $0$ \\
183 & $C$ & {\verb ELG_Cfwd } & $0.107$ \\
184 \multicolumn{4}{l}{\textsc{hcal}} \\
185 & $S$ & {\verb HAD_Shcal } & $1.5$ \\
186 & $N$ & {\verb HAD_Nhcal } & $0$\\
187 & $C$ & {\verb HAD_Chcal } & $0.05$\\
188 \multicolumn{4}{l}{\textsc{fcal}, hadronic part} \\
189 & $S$ & {\verb HAD_Shf } & $2.7$\\
190 & $N$ & {\verb HAD_Nhf } & $0$. \\
191 & $C$ & {\verb HAD_Chf } & $0.13$\\
192\hline
193\end{tabular}
194\label{tab:defResol}
195\end{center}
196\end{table}
197
198The energy of electrons and photons found in the particle list are smeared using the \textsc{ecal} resolution terms. Charged and neutral final state hadrons interact with the \textsc{ecal}, \textsc{hcal} and \textsc{fcal}.
199Some long-living particles, such as the $K^0_s$, possessing lifetime $c\tau$ smaller than $10~\textrm{mm}$ are considered as stable particles although they decay before the calorimeters. The energy smearing of such particles is performed using the expected fraction of the energy, determined according to their decay products, that would be deposited into the \textsc{ecal} ($E_{\textsc{ecal}}$) and into the \textsc{hcal} ($E_{\textsc{hcal}}$). Defining $F$ as the fraction of the energy leading to a \textsc{hcal} deposit, the two energy values are given by
200\begin{equation}
201\left\{
202\begin{array}{l}
203E_{\textsc{hcal}} = E \times F \\
204E_{\textsc{ecal}} = E \times (1-F) \\
205\end{array}
206\right.
207\end{equation}
208where $0 \leq F \leq 1$. The electromagnetic part is handled as the electrons. The resulting final energy given after the application of the smearing is then $E = E_{\textsc{hcal}} + E_{\textsc{ecal}}$. For $K_S^0$ and $\Lambda$ hadrons, the energy fraction is $F$ is assumed to be worth $0.7$.\\
209
210\subsection{Calorimetric towers}
211
212The smallest unit for geometrical sampling of the calorimeters is a \textit{tower}; it segments the $(\eta,\phi)$ plane for the energy measurement.
213All undecayed particles, except muons and neutrinos produce a calorimetric tower, either in \textsc{ecal}, in \textsc{hcal} or \textsc{fcal}.
214As the detector is assumed to be symmetric in $\phi$ and with respect to the $\eta=0$ plane, the smearing card stores the number of calorimetric towers with $\phi=0$ and $\eta>0$ (default: $40$ towers). For a given $\eta$, the size of the $\phi$ segmentation is also specified. Fig.~\ref{fig:calosegmentation} illustrates the default segmentation of the $(\eta,\phi)$ plane.
215
216
217
218\begin{figure}[!h]
219\begin{center}
220\includegraphics[width=\columnwidth]{calosegmentation}
221\caption{Default segmentation of the calorimeters in the $(\eta,\phi)$ plane. Only the central detectors (\textsc{ecal}, \textsc{hcal} and \textsc{fcal}) are considered.}
222\label{fig:calosegmentation}
223\end{center}
224\end{figure}
225
226The calorimetric towers directly enter in the calculation of the missing transverse energy, and as input for the jet reconstruction algorithms. No longitudinal segmentation is available in the simulated calorimeters. No sharing between neighbouring towers is implemented when particles enter a tower very close to its geometrical edge.
227
228\subsection{Very forward detectors simulation}
229
230Most of the recent experiments in beam colliders have additional instrumentation along the beamline. These extend the $\eta$ coverage to higher values, for the detection of very forward final-state particles.
231Zero Degree Calorimeters (\textsc{zdc}) are located at zero angle, i.e. are aligned with the beamline axis at the interaction point, and placed at the distance where the paths of incoming and outgoing beams separate (Fig.~\ref{fig:fdets}). These allow the measurement of stable neutral particles ($\gamma$ and $n$) coming from the interaction point, with large pseudorapirities (e.g. $|\eta_{\textrm{n,}\gamma}| > 8.3$ in \textsc{cms}).
232Forward taggers (called here \textsc{rp220} and \textsc{fp420} as at the \textsc{lhc}) are meant for the measurement of particles following very closely the beam path. To be able to reach these detectors, such particles must have a charge identical to the beam particles, and a momentum very close to the nominal value for the beam. These taggers are near-beam detectors located a few millimeters from the true beam trajectory and this distance defines their acceptance (Table~\ref{tab:fdetacceptance}).
233
234\begin{figure}[!h]
235\begin{center}
236\includegraphics[width=\columnwidth]{fdets}
237\caption{Default location of the very forward detectors, including \textsc{zdc}, \textsc{rp220} and \textsc{fp420} in the \textsc{lhc} beamline.
238Incoming (red) and outgoing (black) beams on one side of the interaction point ($s=0~\textrm{m}$).
239The Zero Degree Calorimeter is located in perfect alignment with the beamline axis at the interaction point, at $140~\textrm{m}$, where the beam paths are separated. The forward taggers are near-beam detectors located at $220~\textrm{m}$ and $420~\textrm{m}$.}
240\label{fig:fdets}
241\end{center}
242\end{figure}
243
244\begin{table*}[t]
245\begin{center}
246\caption{Default parameters for the forward detectors: distance from the interaction point and detector acceptance. The \textsc{lhc} beamline is assumed around the fifth interaction point. For the \textsc{zdc}, the acceptance depends only on the pseudorapidity $\eta$ of the particle, which should be neutral and stable.
247The tagger acceptance is fully determined by the distance in the transverse plane of the detector to the real beam position~\cite{bib:Hector}. It is expressed in terms of the particle energy.
248\vspace{0.5cm}}
249\begin{tabular}{llcl}
250\hline
251Detector & Distance & Acceptance & \\ \hline
252\textsc{zdc} & $140$ m & $|\eta|> 8.3$ & for $n$ and $\gamma$\\
253\textsc{rp220} & $220$ m & $E \in [6100 ; 6880]$ (GeV) & at $2~\textrm{mm}$\\
254\textsc{fp420} & $420$ m & $E \in [6880 ; 6980]$ (GeV) & at $4~\textrm{mm}$\\
255\hline
256\end{tabular}
257\label{tab:fdetacceptance}
258\end{center}
259\end{table*}
260
261
262While neutral particles propagate along a straight line to the \textsc{zdc}, a dedicated simulation of the transport of charged particles is needed for \textsc{rp220} and \textsc{fp420}. This fast simulation uses the \textsc{Hector} software~\cite{bib:Hector}, which includes the chromaticity effects and the geometrical aperture of the beamline elements.
263
264Some subdetectors have the ability to measure the time of flight of the particle.
265This corresponds to the delay after which the particle is observed in the detector, after the bunch crossing. The time of flight measurement of \textsc{zdc} and \textsc{fp420} detector is implemented here. For the \textsc{zdc}, the formula is simply
266\begin{equation}
267 t = t_0 + \frac{1}{v} \times \Big( \frac{s-z}{\cos \theta}\Big),
268\end{equation}
269where $t$ is the time of flight, $t_0$ is the true time coordinate of the vertex from which the particle originates, $v$ the particle velocity, $s$ is the \textsc{zdc} distance to the interaction point, $z$ is the longitudinal coordinate of the vertex from which the particle comes from, $\theta$ is the particle emission angle. This assumes that the neutral particle observed in the \textsc{zdc} is highly relativistic, i.e. travelling at the speed of light $c$. We also assume that $\cos \theta = 1$, i.e. $\theta \approx 0$ or equivalently $\eta$ is large. As an example, $\eta = 5$ leads to $\theta = 0.013$ and $1 - \cos \theta < 10^{-4}$.
270The formula then reduces to
271\begin{equation}
272 t = \frac{1}{c} \times (s-z)
273\end{equation}
274Only neutrons and photons are currently assumed to be able to reach the \textsc{zdc}. All other particles are neglected in the \textsc{zdc}.
275To fix the ideas, if the \textsc{zdc} is located at $s=140~\textrm{m}$, neglecting $z$ and $\theta$, and assuming that $v=c$, one gets $t=0.47~\mu\textrm{s}$.
276
277\section{High-level object reconstruction}
278
279Analysis object data contain the final collections of particles ($e^\pm$, $\mu^\pm$, $\gamma$) or objects (light jets, $b$-jets, $\tau$-jets, $E_T^\textrm{miss}$) and are stored\footnote{\texttt{[code] }All these processed data are located under the \texttt{Analysis} tree.} in the output file created by \textsc{Delphes}.
280In addition, some detector data are added: tracks, calorometric towers and hits in \textsc{zdc}, \textsc{rp220} and \textsc{fp420}.
281While electrons, muons and photons are easily identified, some other objects are more difficult to measure, like jets or missing energy due to invisible particles.
282
283For most of these objects, their four-momentum $p^\mu$ and related quantities are directly accessible in \textsc{Delphes} output ($E$, $\vec{p}$, $p_T$, $\eta$ and $\phi$). Additional properties are available for specific objects (like the charge and the isolation status for $e^\pm$ and $\mu^\pm$, the result of application of $b$-tag for jets and time-of-flight for some detector hits).
284
285
286
287\subsection{Photon and charged lepton reconstruction}
288From here onwards, \textit{electrons} refer to both positrons ($e^+$) and electrons ($e^-$), and $\textit{charged leptons}$ refer to electrons and muons ($\mu^\pm$), leaving out the $\tau^\pm$ leptons as they decay before being detected.
289\subsubsection*{Electrons and photons}
290Photon and electron ($e^\pm$) candidates are reconstructed if they fall into the acceptance of the tracking system and have a transverse momentum above a threshold (default $p_T > 10~\textrm{GeV}$). A calorimetric tower will be seen in the detector, an electrons leave in addition a track. Consequently, electrons and photons creates as usual a candidate in the jet collection.
291
292\subsubsection*{Muons}
293
294Generator level muons entering the detector acceptance are considered as candidates for the analysis level.
295The acceptance is defined in terms of a transverse momentum threshold to overpass (default : $p_T > 10~\textrm{GeV}$) and of the pseudorapidity coverage of the muon system of the detector (default: $-2.4 \leq \eta \leq 2.4$).
296The application of the detector resolution on the muon momentum depends on a Gaussian smearing of the $p_T$ variable\footnote{\texttt{[code]} See the \texttt{SmearMuon} method.}. Neither $\eta$ nor $\phi$ variables are modified beyond the calorimeters: no additional magnetic field is applied. In addition, multiple scattering is also neglected. This implies that low energy muons have in \textsc{Delphes} a better resolution than in a real detector.
297
298\subsubsection*{Charged lepton isolation}
299
300To improve the quality of the contents of the charged lepton collections, additional criteria can be applied to impose some isolation. This requires that electron or muon candidates are isolated in the detector from any other particle, within a small cone. In \textsc{Delphes}, charged lepton isolation demands that there is no other charged particle with $p_T>2~\textrm{GeV}$ within a cone of $\Delta R = \sqrt{\Delta \eta^2 + \Delta \phi^2} <0.5$ around the lepton. The result (i.e. \textit{isolated} or \textit{not}) is added to the charged lepton measured properties\footnote{\texttt{[code] }See the \texttt{IsolFlag} output of the \texttt{Electron} or \texttt{Muon} collections in the \texttt{Analysis} tree.}.\\
301
302
303
304
305
306
307
308\subsection{Jet reconstruction}
309
310A realistic analysis requires a correct treatment of final state particles which hadronise. Therefore, the most widely currently used jet algorithms have been integrated into the \textsc{Delphes} framework using the \textsc{FastJet} tools~\cite{bib:FastJet}.
311Six different jet reconstruction schemes are available\footnote{\texttt{[code] }The choice is done by allocating the \texttt{JET\_jetalgo } input parameter in the smearing card.}. The first three belong to the cone algorithm class while the last three are using a sequential recombinaison scheme. For all of them, the towers are used as input of the jet clustering. Jet algorithms also differ with their sensitivity to soft particles or collinear splittings, and with their computing speed performance.
312
313\subsubsection*{Cone algorithms}
314
315\begin{enumerate}
316
317\item {\it CDF Jet Clusters}: Algorithm forming jets by associating together towers lying within a circle (default radius $\Delta R=0.7$) in the $(\eta$, $\phi)$ space.
318The so-called \textsc{jetclu} cone jet algorithm that was used by \textsc{cdf} in Run II is used.
319All towers with a transverse energy $E_T$ higher than a given threshold (default: $E_T > 1~\textrm{GeV}$) are used to seed the jet candidates.
320The existing \textsc{FastJet} code as been modified to allow easy modification or the tower pattern in $\eta$, $\phi$ space.
321In the following versions of \textsc{Delphes}, a new dedicated plug-in will be created on this purpose\footnote{\texttt{[code] }\texttt{JET\_coneradius} and \texttt{JET\_seed} variables in the smearing card.}.
322
323\item {\it CDF MidPoint}: Algorithm developped for the \textsc{cdf} Run II to reduce infrared and collinear sensitivity compared to purely seed-based cone by adding `midpoints' (energy barycenters) in the list of cone seeds.
324
325\item {\it SISCone}: Seedless Infrared Safe Cone~\cite{bib:SIScone}: Cone algorithm simultaneously insensitive to additional soft particles and collinear splittings, and fast enough to be used in experimental analysis.
326
327\end{enumerate}
328
329\subsubsection*{Recombination algorithms}
330
331The three following jet algorithms are safe for soft radiations (\textit{infrared}) and collinear splittings. They rely on recombination schemes where neighbouring calotower pairs are successively merged. The definitions of the jet algorithms are similar except for the definition of the \textit{distances} $d$ used during the merging procedure. Two such variables are defined: the distance $d_{ij}$ between each pair of towers $(i,j)$, and a variable $d_{iB}$ (\textit{beam distance}) depending on the transverse momentum of the tower $i$.
332
333The jet reconstruction algorithm browses the calotower list. It starts by finding the minimum value $d_\textrm{min}$ of all the distances $d_{ij}$ and $d_{iB}$. If $d_\textrm{min}$ is a $d_{ij}$, the towers $i$ and $j$ are merged into a single tower with a four-momentum $p^\mu = p^\mu (i) + p^\mu (j)$ (\textit{E-scheme recombination}). If $d_\textrm{min}$ is a $d_{iB}$, the tower is declared as a final jet and is removed from the input list. This procedure is repeated until no input towers are left. Further information on these jet algorithms is given here below, using $k_{ti}$, $y_{i}$ and $\phi_i$ as the transverse momentum, rapidity and azimuth of calotower $i$ and $\Delta R_{ij}= \sqrt{(y_i-y_j)^2+(\phi_i-\phi_j)^2}$ as the jet-radius parameter:
334
335\begin{enumerate}[start=4]
336
337\item {\it Longitudinally invariant $k_t$ jet}:
338\begin{equation}
339\begin{array}{l}
340 d_{ij} = \min(k_{ti}^2,k_{tj}^2)\Delta R_{ij}^2/R^2 \\
341 d_{iB}=k_{ti}^2 \\
342\end{array}
343\end{equation}
344
345\item {\it Cambridge/Aachen jet}:
346
347\begin{equation}
348\begin{array}{l}
349d_{ij} = \Delta R_{ij}^2/R^2\\
350d_{iB}=1 \\
351\end{array}
352\end{equation}
353
354\item {\it Anti $k_t$ jet}: where hard jets are exactly circular
355
356\begin{equation}
357\begin{array}{l}
358d_{ij} = \min(1/k_{ti}^2,1/k_{tj}^2)\Delta R_{ij}^2/R^2 \\
359d_{iB}=1/k_{ti}^2 \\
360\end{array}
361\end{equation}
362\end{enumerate}
363
364By default, reconstruction uses a cone algorithm with $\Delta R=0.7$. Jets are stored if their transverse energy is higher\footnote{\texttt{[code] PTCUT\_jet }variable in the smearing card.} than $20~\textrm{GeV}$.
365
366
367\subsection{$b$-tagging}
368
369A jet is tagged as $b$-jets if its direction lies in the acceptance of the tracker and if it is associated to a parent $b$-quark. A $b$-tagging efficiency of $40\%$ is assumed if the jet has a parent $b$ quark. For $c$-jets and light jets (i.e. originating in $u$,$d$,$s$ quarks or in gluons), a fake $b$-tagging efficiency of $10 \%$ and $1 \%$ respectively is assumed\footnote{\texttt{[code] }Corresponding to the \texttt{TAGGING\_B}, \texttt{MISTAGGING\_C} and \texttt{MISTAGGING\_L} constants, for (respectively) the efficiency of tagging of a $b$-jet, the efficiency of mistagging a $c$-jet as a $b$-jet, and the efficiency of mistagging a light jet ($u$,$d$,$s$,$g$) as a $b$-jet.}
370%(Fig.~\ref{fig:btag})
371.
372The (mis)tagging relies on the true particle identity (\textsc{pid}) of the most energetic particle within a cone around the observed $(\eta,\phi)$ region, with a radius $\Delta R$ of $0.7$.
373
374%\begin{figure}[!h]
375%\begin{center}
376%\includegraphics[width=0.6\columnwidth]{btag}
377%\caption{Default efficiency of $b$-tag for jets coming from $b$ quarks, $c$ quarks and from other particles (jets from gluons or $u$, $d$ and $s$ quarks).}
378%\label{fig:btag}
379%\end{center}
380%\end{figure}
381
382
383\subsection{$\tau$ identification}
384
385Jets originating from $\tau$-decays are identified using an identification procedure consistent with the one applied in a full detector simulation~\cite{bib:cmstaus}.
386The tagging rely on two properties of the $\tau$ lepton. First, $77\%$ of the $\tau$ hadronic decays contain only one charged hadron associated to a few neutrals (table~\ref{tab:taudecay}). Tracks are useful for this criterium. Secondly, the particles arisen from the $\tau$ lepton produce narrow jets in the calorimeter (\textit{collimation}).
387
388\begin{table}[!h]
389\begin{center}
390\caption{ Branching rations for $\tau^-$ lepton~\cite{bib:pdg}. $h^\pm$ and $h^0$ refer to charged and neutral hadrons, respectively. $n \geq 0$ and $m \geq 0$ are integers.
391\vspace{0.5cm} }
392\begin{tabular}[!h]{ll}
393\hline
394 \multicolumn{2}{l}{\textbf{Leptonic decays}}\\
395 $ \tau^- \rightarrow e^- \ \bar \nu_e \ \nu_\tau$ & $17.85\% $ \\
396 $ \tau^- \rightarrow \mu^- \ \bar \nu_\mu \ \nu_\tau$ & $17.36\%$ \\
397 \multicolumn{2}{l}{\textbf{Hadronic decays}}\\
398 $ \tau^- \rightarrow h^-\ n\times h^\pm \ m\times h^0\ \nu_\tau$ & $64.79\%$ \\
399 $ \tau^- \rightarrow h^-\ m\times h^0 \ \nu_\tau$ & $50.15\%$ \\
400 $ \tau^- \rightarrow h^-\ h^+ h^- m\times h^0 \ \nu_\tau$ & $15.18\%$ \\
401\hline
402\end{tabular}
403\label{tab:taudecay}
404\end{center}
405\end{table}
406
407
408%\begin{wrapfigure}{l}{0.3\columnwidth}
409\begin{figure}[!h]
410\begin{center}
411\includegraphics[width=0.6\columnwidth]{Tau}
412\caption{Illustration of the identification of $\tau$-jets. The jet cone is narrow and contains only one track.}
413\label{h_WW_ss_cut1}
414\end{center}
415\end{figure}
416%\end{wrapfigure}
417
418
419\subsubsection*{Electromagnetic collimation}
420
421To use the narrowness of the $\tau$-jet, the \textit{electromagnetic collimation} $C_{\tau}^{em}$ is defined as the sum of the energy of towers in a small cone of radius $R^\textrm{em}$ around the jet axis, divided by the energy of the reconstructed jet.
422To be taken into account, a calorimeter tower should have a transverse energy $E_T^\textrm{tower}$ above a given threshold.
423A large fraction of the jet energy is expected in this small cone. This fraction, or collimation factor, is represented in Fig.~\ref{fig:tau2} for the default values (see table \ref{tab:tauRef}).
424
425\begin{figure}[!h]
426\begin{center}
427\includegraphics[width=\columnwidth]{Tau2}
428\caption{Distribution of the electromagnetic collimation $C_\tau$ variable for true $\tau$-jets, normalised to unity. This distribution is shown for associated $WH$ photoproduction~\cite{bib:whphotoproduction}, where the Higgs boson decays into a $W^+ W^-$ pair. Each $W$ boson decays into a $\ell \nu_\ell$ pair, where $\ell = e, \mu, \tau$.
429Events generated with MadGraph/MadEvent~\cite{bib:mgme}.
430Histogram entries correspond to true $\tau$-jets, matched with generator level data. }
431\label{fig:tau2}
432\end{center}
433\end{figure}
434
435\subsubsection*{Tracking isolation}
436
437The tracking isolation for the $\tau$ identification requires that the number of tracks associated to a particle with a significant transverse momentum is one and only one in a cone of radius $R^\textrm{tracks}$.
438This cone should be entirely pointing to the tracker to be taken into account. Default values of these parameters are given in table~\ref{tab:tauRef}.
439
440
441
442\begin{figure}[!h]
443\begin{center}
444\includegraphics[width=\columnwidth]{Tau1}
445\caption{Distribution of the number of tracks $N^\textrm{tracks}$ within a small jet cone for true $\tau$-jets, normalised to unity. Photoproduced $WH$ events, where $W$ bosons decay leptonically ($e,\mu,\tau$), as in Fig.~\ref{fig:tau2}.
446Histogram entries correspond to true $\tau$-jets, matched with generator level data.}
447\label{fig:tau1}
448\end{center}
449\end{figure}
450
451
452\begin{table}[!h]
453\begin{center}
454\caption{Default values for parameters used in $\tau$-jet reconstruction algorithm. Electromagnetic collimation requirements involve the inner \textit{small} cone radius $R^\textrm{em}$, the minimum transverse energy for calotowers $E_T^\textrm{tower}$ and the collimation factor $C_\tau$. Tracking isolation constrains the number of tracks with a significant transverse momentum $p_T^\textrm{tracks}$ in a cone of radius $R^\textrm{tracks}$. Finally, the $\tau$-jet collection is purified by the application of a cut on the $p_T$ of $\tau$-jet candidates.
455\vspace{0.5cm} }
456\begin{tabular}[!h]{lll}
457\hline
458Parameter & Card flag & Value\\\hline
459\multicolumn{3}{l}{\textbf{Electromagnetic collimation}} \\
460$R^\textrm{em}$ & \texttt{TAU\_energy\_scone } & $0.15$\\
461min $E_{T}^\textrm{tower}$ & {\verb JET_M_seed } & $1.0$~GeV\\
462$C_{\tau}$ & \texttt{TAU\_energy\_frac} & $0.95$\\
463\multicolumn{3}{l}{\textbf{Tracking isolation}} \\
464$R^\textrm{tracks}$ & \texttt{TAU\_track\_scone} & $0.4$\\
465min $p_T^{tracks}$ & \texttt{PTAU\_track\_pt } & $2$ GeV\\
466\multicolumn{3}{l}{\textbf{$\tau$-jet candidate}} \\
467$\min p_T$ & \texttt{TAUJET\_pt} & $10$ GeV\\
468\hline
469\end{tabular}
470\label{tab:tauRef}
471\end{center}
472\end{table}
473
474\subsubsection*{Purity}
475Once both electromagnetic collimation and tracking isolation are applied, a threshold on the $p_T$ of the $\tau$-jet candidate is requested to purify the collection. This procedure selects $\tau$ leptons decaying hadronically with a typical efficiency of $60\%$.
476
477\subsection{Transverse missing energy}
478In an ideal detector, the transverse momentum of the observed final state $p_T^\textrm{obs}$ should be equal to the $p_T$ sum of the invisible particles, written $p_T^\textrm{miss}$.
479\begin{equation}
480 p_T^\textrm{miss} = - p_T^\textrm{obs}
481\end{equation}
482
483the transverse missing energy would simply be computed as the term which balances the transverse momentum sum in the observed event. Its value is then computed as the opposite of the sum of the momentum of all observed particles. In a real experiment, any problem affecting the detector (dead channels, misalignment, noisy towers, cracks) is directly worsening the measured missing transverse energy. In this document, the missing transverse energy (\textcolor{red}{symbol???}) is based on the calorimetric towers and only muons and neutrinos are not taken into account for its evaluation.
484
485\section{Trigger emulation}
486
487New physics in collider experiment are often characterised by the phenomenology by low cross-section values. High statistics are required for their studies, which in turn imposes high luminosity collisions.
488
489On the other hand, due to the very high collision rate in recent collider ($40~\textrm{MHz}$ at the \textsc{lhc}) and the large total cross-section ($\mathcal{O}(110~\textrm{mb})$ at the \textsc{lhc}), the need for an online event selection is crucial in order to reject most of the event and keep
490
491\section{Validation}
492
493\subsection{Jet resolution}
494
495The majority of interesting processes at the \textsc{lhc} contain jets in the final state. The jet resolution obtained using \textsc{Delphes} is therefore a crucial point of the validation. While \textsc{Delphes} contains six jet reconstruction algorithms, only the jet clustering algorithm with $R=0.7$ is used to validate the jet collection. Cross-check has been made with the results obtained using the \textsc{cms} detector. This validation employs $pp \rightarrow gg$ events produced using \textsc{mg/me} and hadronized using \textsc{pythia}. The events were divided into 14 bins of $\hat{p_T}$ of the gluons. Each \textsc{Delphes} jet is matched to the closest {\it particle-level} jet using the spatial separation in $\eta - \phi$ between the two jet axis $\Delta R<0.25$, otherwise they are discarded. The particle-level jets are obtained by applying the same clustering algorithm to all particles considered as stable by \textsc{pythia}.
496
497For each $\hat{p}_T$ bin, the \textsc{Delphes} jet transverse energy ($E_T^{rec}$) of all jets satisfying the matching criteria is compaired to the {\it particle level} transverse energy ($E_T^{MC}$). The obtained histograms of the $E_T^{rec}/E_T^{MC}$ response have been fitted with a Gaussian function in the interval $\pm 2.RMS$ centered around the mean value. The final jet resolution is obtained using the following formula:
498
499\begin{equation}
500\frac{\sigma(R_{jet})}{<R_{jet}>}=\frac{\sigma(\frac{E_T^{rec}}{E_T^{MC}})_{fit}}{<\frac{E_T^{rec}}{E_T^{MC}}>_{fit}}.
501\end{equation}
502
503\begin{figure}[!h]
504\begin{center}
505\includegraphics[width=\columnwidth]{resolutionJet}
506\caption{Distribution of the jet transverse energy resolution as a function of the {\it particle-level} jet transverse energy. The maximum allowed separation between the \textsc{Delphes} and the {\it partile-level} jets is $\Delta R<0.25$.}
507\label{fig:jetresol}
508\end{center}
509\end{figure}
510
511The resulting jet resolution, plotted as a function of $E_T^{GEN}$ is shown in figure \ref{fig:jetresol}. The plots were then fitted with a function of the following form:
512
513\begin{equation}
514\frac{a}{E_T^{GEN}}\oplus \frac{b}{\sqrt{E_T^{GEN}}}\oplus c,
515\end{equation}
516
517where a, b, and c are the fit parameters. The obtained resolution is compared to the one obtained with a recent version of the simulation package of the CMS detector. Overall, the resolution curve of \textsc{Delphes} matches relatively well to those of \textsc{cms}.
518
519\subsection{$E_T^{mis}$ resolution}
520
521Because all major detectors at hadron colliders have been designed to be as mutch hermetic as possible in order to detect the presence of one or more neutrinos through apparent missing transverse energy, the resolution of the $E_T^{miss}$ obtained with \textsc{Delphes} is a crucial point. The samples used to study the transverse missing energy performance are identical to those used for the jet validation. The {\it particle-level} true transverse missing energy is calculated as the vector sum of the transverse momenta of all visible particles (or equivalently, to the vector sum of invisible particles). It should be noticed that the contribution to the transverse missing energy from muons is negligeable in the sample we are interested in.
522
523In order to obtain the x-component missing energy resolution ($E_x^{miss}$), the distribution of the difference between the \textsc{Delphes} and the {\it particle-level} $E_x^{miss}$ has been fitted with a Gaussian function. The resulting $E_x^{mis}$ is plotted in figure \ref{fig:resolETmis} as a function of the total visible transverse energy, defined as the scalar sum of transverse energy in all towers ($\Sigma E_T$).
524
525\begin{figure}[!h]
526\begin{center}
527\includegraphics[width=\columnwidth]{figures/resolutionETmis}
528\caption{$\sigma(E^{miss}_{x})$ as a function on the scalar sum of all towers ($\Sigma E_T$) for $pp \rightarrow gg$ events.}
529\label{fig:resolETmis}
530\end{center}
531\end{figure}
532
533The resolution is observed to follow the form
534\begin{equation}
535\sigma_X = \alpha ~\Sigma E_T ~\mathrm{GeV}^{1/2},
536\end{equation}
537whith $\alpha$ is depending on the resolution of the calorimeters. Knowing that the expected transverse missing energy resolution expected using the \textsc{cms} detector for similar events is $\sigma_X = (0.6-0.7) ~ \Sigma E_T ~ \mathrm{GeV}^{1/2}$ with no pile-up (no extra simultaneous $pp$ collision occuring at the same bunch crossing), we can conclude that the resolution obtained by \textsc{Delphes} ( $\sigma_X = 0.68~ \Sigma E_T ~\mathrm{GeV}^{1/2}$) is in excellent agreement with the expectations of a general purpose detector.
538
539\subsection{$tau$-jet efficiency}
540with an efficiciency of about $50\%$ for the $\tau$-jets in CMS~\cite{bib:cmstauresolution}.
541
542\section{Visualisation}
543
544\begin{figure}[!h]
545\begin{center}
546\includegraphics[width=\columnwidth]{Detector_Delphes_1}
547\caption{Layout of the generic detector geometry assumed in \textsc{Delphes}. The innermost layer, close to the interaction point, is a central tracking system (pink).
548It is surrounded by a central calorimeter volume (green) with both electromagnetic and hadronic sections.
549The outer layer of the central system (red) consist of a muon system. In addition, two end-cap calorimeters (blue) extend the pseudorapidity coverage of the central detector.
550The actual detector granularity and extension is defined in the user-configuration card. The detector is assumed to be strictly symmetric around the beam axis (black line). Additional forward detectors are not depicted.}
551\label{fig:GenDet}
552\end{center}
553\end{figure}
554
555
556\begin{figure}[!h]
557\begin{center}
558\includegraphics[width=0.6\columnwidth]{Detector_Delphes_2b}
559\caption{Layout of the generic detector geometry assumed in \textsc{Delphes}. Open 3D-view of the detector with solid volumes. Same colour codes as for Fig.~\ref{fig:GenDet} are applied. Additional forward detectors are not depicted.}
560\label{fig:GenDet2}
561\end{center}
562\end{figure}
563
564
565As an illustration, an associated photoproduction of a $W$ boson and a $t$ quark is shown in Fig.~\ref{fig:wt}. This corresponds to a $pp \rightarrow Wt \ + \ p \ + \ X$ process, where the $Wt$ couple is induced by an incoming photon emitted by one interacting proton. This leading proton survives from the photon emission and subsequently from the $pp$ interaction, and is present in the final state. The experimental signature is a lack of hadronic activity in one forward hemisphere, where the surviving proton escapes. The $t$ quark decays into a $W$ and a $b$. Both $W$ bosons decay into leptons ($W \rightarrow \mu \nu_\mu$ and $W \rightarrow \tau \nu_\tau$).
566
567\begin{figure}[!h]
568\begin{center}
569\includegraphics[width=\columnwidth]{Events_Delphes_1}
570\caption{Example of $pp(\gamma p \rightarrow Wt)pY$ event. One $W$ boson decays into a $\mu \ \nu_\mu$ pair and the second one into a $\tau \ \nu_\tau$ pair. The surviving proton leaves a forward hemisphere with no hadronic activity. The isolated muon is shown as the blue vector. The $\tau$-jet is the cone around the green vector, while the reconstructed missing energy is shown in gray. One jet is visible in one forward region, along the beamline axis, opposite to the direction of the escaping proton.}
571\label{fig:wt}
572\end{center}
573\end{figure}
574
575
576
577
578\section{Conclusion and perspectives}
579
580\begin{thebibliography}{99}
581
582\bibitem{bib:Delphes} \textsc{Delphes}, hepforge:
583\bibitem{bib:FastJet} \textsc{Fast-Jet},
584\bibitem{bib:SIScone} A practical Seedless Infrared-Safe Cone jet algorithm, G.P. Salam, G. Soyez, JHEP0705:086,2007.
585\bibitem{bib:Hector} \textsc{Hector},
586\bibitem{bib:Frog} \textsc{Frog},
587\bibitem{bib:CMSresolution} CMS IN 2007/053
588\bibitem{bib:Root} \textsc{Root} - An Object Oriented Data Analysis Framework, R. Brun and F. Rademakers, Nucl. Inst. \& Meth. in Phys. Res. A 389 (1997) 81-86, \url{http://root.cern.ch}
589\bibitem{bib:cmstaus} Tau reconstruction in CMS
590\bibitem{bib:whphotoproduction} WH photoproduction, S. Ovyn
591\bibitem{bib:mgme} Madgraph/Madevent
592\bibitem{bib:pdg} C. Amsler et al. (Particle Data Group), PL B667, 1 (2008) (URL: http://pdg.lbl.gov)
593\bibitem{bib:cmstauresolution} R. Kinnunen, \textit{Study of $\tau$-jet identification in CMS}, CMS NOTE 1997/002.
594\end{thebibliography}
595
596\onecolumn
597\appendix
598
599\section{User manual}
600
601The available code is a tar file which comes with everything you need to run the \textsc{Delphes} package. Nevertheless in order to visualise the events with the \textsc{Frog} program, you need to install libraries as explained in {\it href="http://projects.hepforge.org/frog/}
602
603\subsection{Getting started}
604
605In order to run \textsc{Delphes} on your system, first download is sources and compile it:\\
606\begin{quote}
607\begin{verbatim}
608me@mylaptop:~$ wget http://www.fynu.ucl.ac.be/users/s.ovyn/files/Delphes_V_*.*.tar
609me@mylaptop:~$ tar -xvf Delphes_V_*.*. tar
610me@mylaptop:~$ cd Delphes_V_*.*
611me@mylaptop:~$ ./genMakefile.tcl > Makefile
612me@mylaptop:~$ make
613\end{verbatim}
614\end{quote}
615
616
617\subsection{Running \textsc{Delphes} on your events}
618
619\subsubsection{Setting the run configuration}
620
621The program is driven by two datacards (default cards are data/DataCardDet.dat and data/trigger.dat) which allow a large spectrum of running conditions.
622{\b The run card }\\
623
624Contains all needed information to run \textsc{Delphes}
625\begin{itemize}
626
627\item The following parameters are available: detector parameters, including calorimeter and tracking coverage and resolution, transverse energy thresholds allowed for reconstructed objects, jet algorithm to use as well as jet parameters.
628
629\item Four flags, {\verb FLAG_bfield }, {\verb FLAG_vfd }, {\verb FLAG_trigger } and {\verb FLAG_frog } should be assigned to decide if the magnetic field propagation, the very forward detectors acceptance, the trigger selection and the preparation for \textsc{Frog} display respectively are running by \textsc{Delphes}.
630
631\item An example (the default detector card) can be found in {\verb files/DataCardDet.dat }
632\end{itemize}
633
634{\b The trigger card }\\
635Contains the definition of all trigger bits
636\begin{itemize}
637
638\item Cuts can be applied on the transverse momentum of electrons, muons, jets, tau-jets, photons and transverse missing energy.
639\item Be careful that the following structured should be used:
640 \begin{enumerate}
641 \item One trigger bit per line, the first entry in the line is the name of the trigger bit
642 \item If the trigger bit uses the presence of multiple identical objects, their transverse momentum thresholds must be defined in decreasing order
643 \item The different object requirements must be separated by a {\verb && } flag
644 \item Example of a trigger bit line:\\
645 \begin{quote}
646\begin{verbatim}
647DoubleElec >> ELEC1_PT: '20' && ELEC2_PT: '10'
648\end{verbatim}
649 \end{quote}
650 \end{enumerate}
651\item An example (the default trigger card) can be found <a href="files/trigger.dat" title="Home">here</a></li>
652\end{itemize}
653
654\subsubsection{Running the code}
655Create the above cards (data/mydetector.dat and data/mytrigger.dat)
656Create a text file containing the list of input files that will be used by \textsc{Delphes} (with extension *.lhe, *.root or *.hep)
657To run the code, type the following
658\begin{quote}
659\begin{verbatim}
660me@mylaptop:~$ ./Delphes inputlist.list OutputRootFileName.root data/mydetector.dat data/mytrigger.dat
661\end{verbatim}
662\end{quote}
663
664
665\subsection{Running an analysis on your \textsc{Delphes} events}
666
667Two examples of codes running on the output root file of \textsc{Delphes} are coming with the package
668\begin{enumerate}
669\item The {\verb Examples/Analysis_Ex.cpp } code shows how to access the available reconstructed objects and the trigger information The two following arguments are required: a text file containing the input \textsc{Delphes} root files to run, and the name of the output root file. To run the code:
670 \begin{quote}
671\begin{verbatim}
672./Analysis_Ex input_file.list output_file.root
673\end{verbatim}
674 \end{quote}
675
676\item The {\verb Examples/Trigger_Only.cpp } code permits to run the trigger selection separately from the general detector simulation on output \textsc{Delphes} root files. An input \textsc{Delphes} root file is mandatory as argument. The new tree containing the trigger information will be added in these file. The trigger datacard is also necessary. To run the code:
677 \begin{quote}
678\begin{verbatim}
679./Trigger_Only input_file.root data/trigger.dat
680\end{verbatim}
681 \end{quote}
682
683\end{enumerate}
684
685\subsection{Running the \textsc{Frog} event display}
686
687
688
689
690\begin{itemize}
691\item If the { \verb FLAG_frog } was switched on, two files were created during the run of \textsc{Delphes}: {\verb DelphesToFrog.vis } and {\verb DelphesToFrog.geom }. They contain all the needed information to run frog.
692\item To display the events and the geometry, you first need to compile \textsc{Frog}. Go to the {\verb Utilities/FROG } and type {\verb make }.
693\item Go back into the main directory and type {\verb ./Utilities/FROG/frog }.
694\end{itemize}
695
696
697In the list of input files, all files should have the same type
698
699 in other words, the effect related to the particle showers that would happen in the calorimeters are not taken into account.
700
701\end{document}
Note: See TracBrowser for help on using the repository browser.