Fork me on GitHub

source: svn/trunk/modules/Calorimeter.cc@ 1311

Last change on this file since 1311 was 1280, checked in by Pavel Demin, 11 years ago

revert to log-normal distribution for calorimeter smearing

  • Property svn:keywords set to Id Revision Date
File size: 13.8 KB
RevLine 
[608]1
[814]2/** \class Calorimeter
3 *
[894]4 * Fills calorimeter towers, performs calorimeter resolution smearing,
5 * preselects towers hit by photons and creates energy flow objects.
[814]6 *
7 * $Date: 2013-09-04 15:20:22 +0000 (Wed, 04 Sep 2013) $
8 * $Revision: 1280 $
9 *
10 *
11 * \author P. Demin - UCL, Louvain-la-Neuve
12 *
13 */
14
[608]15#include "modules/Calorimeter.h"
16
[687]17#include "classes/DelphesClasses.h"
18#include "classes/DelphesFactory.h"
[766]19#include "classes/DelphesFormula.h"
[608]20
[703]21#include "ExRootAnalysis/ExRootResult.h"
22#include "ExRootAnalysis/ExRootFilter.h"
23#include "ExRootAnalysis/ExRootClassifier.h"
24
[608]25#include "TMath.h"
26#include "TString.h"
[629]27#include "TFormula.h"
[703]28#include "TRandom3.h"
29#include "TObjArray.h"
30#include "TDatabasePDG.h"
31#include "TLorentzVector.h"
[608]32
[935]33#include <algorithm>
[703]34#include <stdexcept>
[608]35#include <iostream>
[703]36#include <sstream>
[608]37
38using namespace std;
39
40//------------------------------------------------------------------------------
41
42Calorimeter::Calorimeter() :
[886]43 fECalResolutionFormula(0), fHCalResolutionFormula(0),
44 fItParticleInputArray(0), fItTrackInputArray(0),
[1273]45 fTowerTrackArray(0), fItTowerTrackArray(0)
[608]46{
[766]47 fECalResolutionFormula = new DelphesFormula;
48 fHCalResolutionFormula = new DelphesFormula;
[1233]49
[1235]50 fTowerTrackArray = new TObjArray;
51 fItTowerTrackArray = fTowerTrackArray->MakeIterator();
[608]52}
53
54//------------------------------------------------------------------------------
55
56Calorimeter::~Calorimeter()
57{
[766]58 if(fECalResolutionFormula) delete fECalResolutionFormula;
59 if(fHCalResolutionFormula) delete fHCalResolutionFormula;
[608]60
[1235]61 if(fTowerTrackArray) delete fTowerTrackArray;
62 if(fItTowerTrackArray) delete fItTowerTrackArray;
[1273]63}
[1233]64
[608]65//------------------------------------------------------------------------------
66
67void Calorimeter::Init()
68{
[704]69 ExRootConfParam param, paramEtaBins, paramPhiBins, paramFractions;
70 Long_t i, j, k, size, sizeEtaBins, sizePhiBins, sizeFractions;
[608]71 Double_t ecalFraction, hcalFraction;
[622]72 TBinMap::iterator itEtaBin;
[659]73 set< Double_t >::iterator itPhiBin;
74 vector< Double_t > *phiBins;
[608]75
[613]76 // read eta and phi bins
[646]77 param = GetParam("EtaPhiBins");
[608]78 size = param.GetSize();
[622]79 fBinMap.clear();
[663]80 fEtaBins.clear();
81 fPhiBins.clear();
[613]82 for(i = 0; i < size/2; ++i)
[608]83 {
[646]84 paramEtaBins = param[i*2];
85 sizeEtaBins = paramEtaBins.GetSize();
[613]86 paramPhiBins = param[i*2 + 1];
87 sizePhiBins = paramPhiBins.GetSize();
[646]88
89 for(j = 0; j < sizeEtaBins; ++j)
[613]90 {
[646]91 for(k = 0; k < sizePhiBins; ++k)
92 {
[659]93 fBinMap[paramEtaBins[j].GetDouble()].insert(paramPhiBins[k].GetDouble());
[646]94 }
[613]95 }
[608]96 }
97
[661]98 // for better performance we transform map of sets to parallel vectors:
[659]99 // vector< double > and vector< vector< double >* >
[622]100 for(itEtaBin = fBinMap.begin(); itEtaBin != fBinMap.end(); ++itEtaBin)
[813]101 {
[659]102 fEtaBins.push_back(itEtaBin->first);
103 phiBins = new vector< double >(itEtaBin->second.size());
104 fPhiBins.push_back(phiBins);
[666]105 phiBins->clear();
[659]106 for(itPhiBin = itEtaBin->second.begin(); itPhiBin != itEtaBin->second.end(); ++itPhiBin)
[622]107 {
[659]108 phiBins->push_back(*itPhiBin);
[622]109 }
110 }
[935]111
[608]112 // read energy fractions for different particles
113 param = GetParam("EnergyFraction");
114 size = param.GetSize();
[935]115
[608]116 // set default energy fractions values
117 fFractionMap.clear();
118 fFractionMap[0] = make_pair(0.0, 1.0);
[935]119
[608]120 for(i = 0; i < size/2; ++i)
121 {
[703]122 paramFractions = param[i*2 + 1];
[608]123 sizeFractions = paramFractions.GetSize();
[935]124
[608]125 ecalFraction = paramFractions[0].GetDouble();
126 hcalFraction = paramFractions[1].GetDouble();
127
[703]128 fFractionMap[param[i*2].GetInt()] = make_pair(ecalFraction, hcalFraction);
[608]129 }
[629]130/*
[626]131 TFractionMap::iterator itFractionMap;
132 for(itFractionMap = fFractionMap.begin(); itFractionMap != fFractionMap.end(); ++itFractionMap)
133 {
134 cout << itFractionMap->first << " " << itFractionMap->second.first << " " << itFractionMap->second.second << endl;
135 }
[629]136*/
[935]137 // read resolution formulas
[766]138 fECalResolutionFormula->Compile(GetString("ECalResolutionFormula", "0"));
139 fHCalResolutionFormula->Compile(GetString("HCalResolutionFormula", "0"));
140
[608]141 // import array with output from other modules
[886]142 fParticleInputArray = ImportArray(GetString("ParticleInputArray", "ParticlePropagator/particles"));
143 fItParticleInputArray = fParticleInputArray->MakeIterator();
[608]144
[886]145 fTrackInputArray = ImportArray(GetString("TrackInputArray", "ParticlePropagator/tracks"));
146 fItTrackInputArray = fTrackInputArray->MakeIterator();
147
[766]148 // create output arrays
[629]149 fTowerOutputArray = ExportArray(GetString("TowerOutputArray", "towers"));
150 fPhotonOutputArray = ExportArray(GetString("PhotonOutputArray", "photons"));
[938]151
152 fEFlowTrackOutputArray = ExportArray(GetString("EFlowTrackOutputArray", "eflowTracks"));
153 fEFlowTowerOutputArray = ExportArray(GetString("EFlowTowerOutputArray", "eflowTowers"));
[608]154}
155
156//------------------------------------------------------------------------------
157
158void Calorimeter::Finish()
159{
[1273]160 vector< vector< Double_t >* >::iterator itPhiBin;
[886]161 if(fItParticleInputArray) delete fItParticleInputArray;
[938]162 if(fItTrackInputArray) delete fItTrackInputArray;
[660]163 for(itPhiBin = fPhiBins.begin(); itPhiBin != fPhiBins.end(); ++itPhiBin)
164 {
165 delete *itPhiBin;
166 }
[608]167}
168
169//------------------------------------------------------------------------------
170
171void Calorimeter::Process()
172{
[886]173 Candidate *particle, *track;
[680]174 TLorentzVector position, momentum;
[1002]175 Short_t etaBin, phiBin, flags;
176 Int_t number;
[745]177 Long64_t towerHit, towerEtaPhi, hitEtaPhi;
[730]178 Double_t ecalFraction, hcalFraction;
[735]179 Double_t ecalEnergy, hcalEnergy;
[608]180 Int_t pdgCode;
181
182 TFractionMap::iterator itFractionMap;
183
[659]184 vector< Double_t >::iterator itEtaBin;
185 vector< Double_t >::iterator itPhiBin;
186 vector< Double_t > *phiBins;
[622]187
[745]188 vector< Long64_t >::iterator itTowerHits;
[935]189
[687]190 DelphesFactory *factory = GetFactory();
[661]191 fTowerHits.clear();
[1273]192 fTowerECalFractions.clear();
193 fTowerHCalFractions.clear();
194 fTrackECalFractions.clear();
195 fTrackHCalFractions.clear();
[730]196
[608]197 // loop over all particles
[886]198 fItParticleInputArray->Reset();
[666]199 number = -1;
[886]200 while((particle = static_cast<Candidate*>(fItParticleInputArray->Next())))
[608]201 {
[886]202 const TLorentzVector &particlePosition = particle->Position;
[666]203 ++number;
[608]204
[886]205 pdgCode = TMath::Abs(particle->PID);
[626]206
207 itFractionMap = fFractionMap.find(pdgCode);
208 if(itFractionMap == fFractionMap.end())
209 {
210 itFractionMap = fFractionMap.find(0);
211 }
212
213 ecalFraction = itFractionMap->second.first;
214 hcalFraction = itFractionMap->second.second;
[666]215
[1273]216 fTowerECalFractions.push_back(ecalFraction);
217 fTowerHCalFractions.push_back(hcalFraction);
[935]218
[626]219 if(ecalFraction < 1.0E-9 && hcalFraction < 1.0E-9) continue;
[935]220
[730]221 // find eta bin [1, fEtaBins.size - 1]
[886]222 itEtaBin = lower_bound(fEtaBins.begin(), fEtaBins.end(), particlePosition.Eta());
[659]223 if(itEtaBin == fEtaBins.begin() || itEtaBin == fEtaBins.end()) continue;
[730]224 etaBin = distance(fEtaBins.begin(), itEtaBin);
[935]225
[730]226 // phi bins for given eta bin
[659]227 phiBins = fPhiBins[etaBin];
[730]228
229 // find phi bin [1, phiBins.size - 1]
[886]230 itPhiBin = lower_bound(phiBins->begin(), phiBins->end(), particlePosition.Phi());
[659]231 if(itPhiBin == phiBins->begin() || itPhiBin == phiBins->end()) continue;
[666]232 phiBin = distance(phiBins->begin(), itPhiBin);
[608]233
[1233]234 flags = 0;
[1273]235 flags |= (pdgCode == 11 || pdgCode == 22) << 1;
[745]236
[1004]237 // make tower hit {16-bits for eta bin number, 16-bits for phi bin number, 8-bits for flags, 24-bits for particle number}
238 towerHit = (Long64_t(etaBin) << 48) | (Long64_t(phiBin) << 32) | (Long64_t(flags) << 24) | Long64_t(number);
[935]239
[661]240 fTowerHits.push_back(towerHit);
241 }
242
[886]243 // loop over all tracks
244 fItTrackInputArray->Reset();
245 number = -1;
246 while((track = static_cast<Candidate*>(fItTrackInputArray->Next())))
247 {
248 const TLorentzVector &trackPosition = track->Position;
249 ++number;
250
[1233]251 pdgCode = TMath::Abs(track->PID);
252
253 itFractionMap = fFractionMap.find(pdgCode);
254 if(itFractionMap == fFractionMap.end())
255 {
256 itFractionMap = fFractionMap.find(0);
257 }
258
259 ecalFraction = itFractionMap->second.first;
260 hcalFraction = itFractionMap->second.second;
261
[1273]262 fTrackECalFractions.push_back(ecalFraction);
263 fTrackHCalFractions.push_back(hcalFraction);
264
[886]265 // find eta bin [1, fEtaBins.size - 1]
266 itEtaBin = lower_bound(fEtaBins.begin(), fEtaBins.end(), trackPosition.Eta());
267 if(itEtaBin == fEtaBins.begin() || itEtaBin == fEtaBins.end()) continue;
268 etaBin = distance(fEtaBins.begin(), itEtaBin);
[935]269
[886]270 // phi bins for given eta bin
271 phiBins = fPhiBins[etaBin];
272
273 // find phi bin [1, phiBins.size - 1]
274 itPhiBin = lower_bound(phiBins->begin(), phiBins->end(), trackPosition.Phi());
275 if(itPhiBin == phiBins->begin() || itPhiBin == phiBins->end()) continue;
276 phiBin = distance(phiBins->begin(), itPhiBin);
277
[1233]278 flags = 1;
279
[1004]280 // make tower hit {16-bits for eta bin number, 16-bits for phi bin number, 8-bits for flags, 24-bits for track number}
[1233]281 towerHit = (Long64_t(etaBin) << 48) | (Long64_t(phiBin) << 32) | (Long64_t(flags) << 24) | Long64_t(number);
[935]282
[886]283 fTowerHits.push_back(towerHit);
284 }
285
[894]286 // all hits are sorted first by eta bin number, then by phi bin number,
287 // then by flags and then by particle or track number
[661]288 sort(fTowerHits.begin(), fTowerHits.end());
289
[730]290 // loop over all hits
[661]291 towerEtaPhi = 0;
[732]292 fTower = 0;
[661]293 for(itTowerHits = fTowerHits.begin(); itTowerHits != fTowerHits.end(); ++itTowerHits)
294 {
295 towerHit = (*itTowerHits);
[1004]296 flags = (towerHit >> 24) & 0x00000000000000FFLL;
297 number = (towerHit) & 0x0000000000FFFFFFLL;
298 hitEtaPhi = towerHit >> 32;
[730]299
[661]300 if(towerEtaPhi != hitEtaPhi)
[608]301 {
[730]302 // switch to next tower
[661]303 towerEtaPhi = hitEtaPhi;
[730]304
[661]305 // finalize previous tower
[730]306 FinalizeTower();
[661]307
308 // create new tower
[730]309 fTower = factory->NewCandidate();
[661]310
[1004]311 phiBin = (towerHit >> 32) & 0x000000000000FFFFLL;
312 etaBin = (towerHit >> 48) & 0x000000000000FFFFLL;
[730]313
314 // phi bins for given eta bin
[661]315 phiBins = fPhiBins[etaBin];
[608]316
[730]317 // calculate eta and phi of the tower's center
[731]318 fTowerEta = 0.5*(fEtaBins[etaBin - 1] + fEtaBins[etaBin]);
319 fTowerPhi = 0.5*((*phiBins)[phiBin - 1] + (*phiBins)[phiBin]);
[626]320
[898]321 fTowerEdges[0] = fEtaBins[etaBin - 1];
322 fTowerEdges[1] = fEtaBins[etaBin];
323 fTowerEdges[2] = (*phiBins)[phiBin - 1];
324 fTowerEdges[3] = (*phiBins)[phiBin];
325
[735]326 fTowerECalEnergy = 0.0;
327 fTowerHCalEnergy = 0.0;
328
[1273]329 fTrackECalEnergy = 0.0;
330 fTrackHCalEnergy = 0.0;
331
332 fTowerTrackHits = 0;
[1233]333 fTowerPhotonHits = 0;
[935]334
[1235]335 fTowerTrackArray->Clear();
[661]336 }
337
[886]338 // check for track hits
[1233]339 if(flags & 1)
[886]340 {
[1273]341 ++fTowerTrackHits;
342
[886]343 track = static_cast<Candidate*>(fTrackInputArray->At(number));
[1273]344 momentum = track->Momentum;
[1233]345
[1273]346 ecalEnergy = momentum.E() * fTrackECalFractions[number];
347 hcalEnergy = momentum.E() * fTrackHCalFractions[number];
348
349 fTrackECalEnergy += ecalEnergy;
350 fTrackHCalEnergy += hcalEnergy;
351
[886]352 fTowerTrackArray->Add(track);
[1235]353
[886]354 continue;
355 }
356
[1233]357 // check for photon and electron hits in current tower
[1273]358 if(flags & 2) ++fTowerPhotonHits;
[1233]359
[886]360 particle = static_cast<Candidate*>(fParticleInputArray->At(number));
[888]361 momentum = particle->Momentum;
[886]362
[735]363 // fill current tower
[1273]364 ecalEnergy = momentum.E() * fTowerECalFractions[number];
365 hcalEnergy = momentum.E() * fTowerHCalFractions[number];
[931]366
[735]367 fTowerECalEnergy += ecalEnergy;
368 fTowerHCalEnergy += hcalEnergy;
[1242]369
370 fTower->AddCandidate(particle);
[608]371 }
372
[661]373 // finalize last tower
[730]374 FinalizeTower();
375}
376
377//------------------------------------------------------------------------------
[931]378
[730]379void Calorimeter::FinalizeTower()
380{
[1273]381 Candidate *track, *tower;
[1078]382 Double_t energy, pt, eta, phi;
[735]383 Double_t ecalEnergy, hcalEnergy;
[1275]384 Double_t ecalSigma, hcalSigma;
[1145]385
[734]386 if(!fTower) return;
[733]387
[1275]388 ecalSigma = fECalResolutionFormula->Eval(0.0, fTowerEta, 0.0, fTowerECalEnergy);
389
[1280]390// ecalEnergy = gRandom->Gaus(fTowerECalEnergy, ecalSigma);
391// if(ecalEnergy < 0.0) ecalEnergy = 0.0;
[733]392
[1280]393 ecalEnergy = LogNormal(fTowerECalEnergy, ecalSigma);
[733]394
[1275]395 hcalSigma = fHCalResolutionFormula->Eval(0.0, fTowerEta, 0.0, fTowerHCalEnergy);
396
[1280]397// hcalEnergy = gRandom->Gaus(fTowerHCalEnergy, hcalSigma);
398// if(hcalEnergy < 0.0) hcalEnergy = 0.0;
[1145]399
[1280]400 hcalEnergy = LogNormal(fTowerHCalEnergy, hcalSigma);
[1145]401
[735]402 energy = ecalEnergy + hcalEnergy;
[629]403
[1145]404// eta = fTowerEta;
405// phi = fTowerPhi;
[1078]406
407 eta = gRandom->Uniform(fTowerEdges[0], fTowerEdges[1]);
408 phi = gRandom->Uniform(fTowerEdges[2], fTowerEdges[3]);
409
[1086]410 pt = energy / TMath::CosH(eta);
411
[1078]412 fTower->Position.SetPtEtaPhiE(1.0, eta, phi, 0.0);
413 fTower->Momentum.SetPtEtaPhiE(pt, eta, phi, energy);
[735]414 fTower->Eem = ecalEnergy;
415 fTower->Ehad = hcalEnergy;
[734]416
[898]417 fTower->Edges[0] = fTowerEdges[0];
418 fTower->Edges[1] = fTowerEdges[1];
419 fTower->Edges[2] = fTowerEdges[2];
420 fTower->Edges[3] = fTowerEdges[3];
[886]421
[931]422 // fill calorimeter towers and photon candidates
423 if(energy > 0.0)
424 {
[1273]425 if(fTowerPhotonHits > 0 && fTowerTrackHits == 0)
[935]426 {
[931]427 fPhotonOutputArray->Add(fTower);
428 }
429
430 fTowerOutputArray->Add(fTower);
431 }
[935]432
[931]433 // fill energy flow candidates
[1273]434
435 // save all the tracks as energy flow tracks
436 fItTowerTrackArray->Reset();
437 while((track = static_cast<Candidate*>(fItTowerTrackArray->Next())))
[735]438 {
[1273]439 fEFlowTrackOutputArray->Add(track);
[886]440 }
[1241]441
[1273]442 ecalEnergy -= fTrackECalEnergy;
[1277]443 if(ecalEnergy < 0.0) ecalEnergy = 0.0;
[1241]444
[1273]445 hcalEnergy -= fTrackHCalEnergy;
[1277]446 if(hcalEnergy < 0.0) hcalEnergy = 0.0;
[1241]447
[1273]448 energy = ecalEnergy + hcalEnergy;
[1241]449
[1273]450 // save ECAL and/or HCAL energy excess as an energy flow tower
451 if(energy > 0.0)
452 {
453 // create new tower
454 tower = static_cast<Candidate*>(fTower->Clone());
[1241]455
[1273]456 pt = energy / TMath::CosH(eta);
[1241]457
[1273]458 tower->Momentum.SetPtEtaPhiE(pt, eta, phi, energy);
459 tower->Eem = ecalEnergy;
460 tower->Ehad = hcalEnergy;
[1241]461
[1273]462 fEFlowTowerOutputArray->Add(tower);
[931]463 }
[608]464}
465
466//------------------------------------------------------------------------------
[1142]467
[1145]468Double_t Calorimeter::LogNormal(Double_t mean, Double_t sigma)
469{
470 Double_t a, b;
471
472 if(mean > 0.0)
[1142]473 {
[1145]474 b = TMath::Sqrt(TMath::Log((1.0 + (sigma*sigma)/(mean*mean))));
475 a = TMath::Log(mean) - 0.5*b*b;
476
477 return TMath::Exp(a + b*gRandom->Gaus(0, 1));
[1142]478 }
[1145]479 else
480 {
481 return 0.0;
482 }
483}
Note: See TracBrowser for help on using the repository browser.