Fork me on GitHub

source: svn/trunk/interface/SmearUtil.h@ 547

Last change on this file since 547 was 531, checked in by Xavier Rouby, 15 years ago

track efficiencies can be floating numbers

File size: 13.7 KB
RevLine 
[2]1#ifndef _SMEARUTIL_H_
2#define _SMEARUTIL_H_
3
[260]4/***********************************************************************
5** **
6** /----------------------------------------------\ **
7** | Delphes, a framework for the fast simulation | **
8** | of a generic collider experiment | **
[443]9** \------------- arXiv:0903.2225v1 ------------/ **
[260]10** **
11** **
12** This package uses: **
13** ------------------ **
[443]14** ROOT: Nucl. Inst. & Meth. in Phys. Res. A389 (1997) 81-86 **
15** FastJet algorithm: Phys. Lett. B641 (2006) [hep-ph/0512210] **
16** Hector: JINST 2:P09005 (2007) [physics.acc-ph:0707.1198v2] **
[260]17** FROG: [hep-ex/0901.2718v1] **
[443]18** HepMC: Comput. Phys. Commun.134 (2001) 41 **
[260]19** **
20** ------------------------------------------------------------------ **
21** **
22** Main authors: **
23** ------------- **
24** **
[443]25** Severine Ovyn Xavier Rouby **
26** severine.ovyn@uclouvain.be xavier.rouby@cern **
[260]27** **
[443]28** Center for Particle Physics and Phenomenology (CP3) **
29** Universite catholique de Louvain (UCL) **
30** Louvain-la-Neuve, Belgium **
31** **
[260]32** Copyright (C) 2008-2009, **
[443]33** All rights reserved. **
[260]34** **
35***********************************************************************/
[2]36
37/// \file SmearUtil.h
38/// \brief RESOLution class, and some generic definitions
39
40
41#include <vector>
[465]42#include <string>
[2]43#include "TLorentzVector.h"
[526]44#include "TRandom3.h"
[2]45
[264]46#include "D_Constants.h"
47#include "CaloUtil.h"
[223]48#include "BlockClasses.h"
49#include "TSimpleArray.h"
50#include "PhysicsTower.hh"
[380]51#include "PdgParticle.h"
[2]52
53using namespace std;
54
[398]55// forward declaration instead of 'include' statement
56class TStopwatch;
57
[264]58class D_Particle {
[73]59
60 public:
[264]61 D_Particle(const TLorentzVector & p, const int pid, const float etacalo, const float phicalo) :
62 _fourmomentum(p), _pid(pid), _etaCalo(etacalo), _phiCalo(phicalo) {}
63 //D_Particle(const float e, const float eta, const float phi, const float pt, const int pid) :
64 // _pid(pid), _etaCalo(UNDEFINED), _phiCalo(UNDEFINED) { TLorentzVector p; p.SetPtEtaPhiE(pt,eta,phi,e); _fourmomentum = p; }
65 D_Particle(const float px, const float py, const float pz, const float e, const int pid) :
66 _fourmomentum(px,py,pz,e), _pid(pid), _etaCalo(UNDEFINED), _phiCalo(UNDEFINED) {}
[73]67
[264]68 const float E() const {return _fourmomentum.E();} // particle energy [GeV]
69 const float Px() const {return _fourmomentum.Px();} // horizontal coordinate of momentum [GeV]
70 const float Py() const {return _fourmomentum.Py();} // vertical coordinate of momentum [GeV]
71 const float Pz() const {return _fourmomentum.Pz();} // longitudinal coordinate of momentum [GeV]
72 const float Pt() const {return _fourmomentum.Pt();} // transverse momentum [GeV]
73 const float EtaCalo() const {return _etaCalo;} // pseudorapidity
74 const float Eta() const {return _fourmomentum.Eta();} // pseudorapidity
75 const float PhiCalo() const {return _phiCalo;} // azimuthal angle
76 const float Phi() const {return _fourmomentum.Phi();} // azimuthal angle
77 const int PID() const {return _pid;} // particle energy in [GeV]
78 const TLorentzVector& getFourMomentum() const {return _fourmomentum;}
[73]79
80 private:
[264]81 TLorentzVector _fourmomentum;
[223]82 int _pid;
[264]83 float _etaCalo, _phiCalo;
[73]84};
85
[2]86class RESOLution
87{
88 public:
89 /// Constructor
90 RESOLution();
[223]91 RESOLution(const RESOLution & DET);
92 RESOLution& operator=(const RESOLution& DET);
[526]93 ~RESOLution() { delete [] TOWER_eta_edges; delete [] TOWER_dphi; delete grandom;};
[223]94
[494]95 // Detector coverage for the central detector
[94]96 float CEN_max_tracker; // tracker pseudorapidity coverage
97 float CEN_max_calo_cen; // central calorimeter pseudorapidity coverage
[494]98 float CEN_max_calo_ec; // calorimeter endcap pseudorapidity coverage
[94]99 float CEN_max_calo_fwd; // forward calorimeter pseudorapidity coverage
100 float CEN_max_mu; // muon chambers pseudorapidity coverage
[2]101
[494]102 float VFD_min_calo_vfd; // very forward calorimeter pseudorapidity coverage
103 float VFD_max_calo_vfd; // very forward calorimeter pseudorapidity coverage
[94]104 float VFD_min_zdc; // coverage for Zero Degree Calorimeter, for photons and neutrons
[494]105 float VFD_s_zdc; // distance of the Zero Degree Calorimeter, from the Interaction poin, in [m]
[2]106
[494]107 float RP_220_s; // distance of the RP to the IP, in meters
108 float RP_220_x; // distance of the RP to the beam, in meters
109 float RP_420_s; // distance of the RP to the IP, in meters
110 float RP_420_x; // distance of the RP to the beam, in meters
111 string RP_beam1Card; // optics file for beam 1
112 string RP_beam2Card; // optics file for beam 2
113 string RP_IP_name; // label for IP in the optics file ("IP1" or "IP5")
114 float RP_offsetEl_s; // distance from IP (in meter) where both beams separate
115 float RP_offsetEl_x; // distance of separation in horizontal plane, in meter
116 float RP_offsetEl_y; // distance of separation in vertical plane, in meter
117 float RP_cross_x; // IP offset in horizontal plane, in micrometer
118 float RP_cross_y; // IP offset in vertical plane, in micrometer
119 float RP_cross_ang_x; // half crossing angle, in microradian, horizontal plane
120 float RP_cross_ang_y; // half crossing angle, in microradian, vertical plane
[62]121
[94]122
[2]123 //energy resolution for electron/photon
124 // \sigma/E = C + N/E + S/\sqrt{E}
125 float ELG_Scen; // S term for central ECAL
126 float ELG_Ncen; // N term for central ECAL
127 float ELG_Ccen; // C term for central ECAL
[494]128 float ELG_Sec ; // S term for central ECAL endcap
129 float ELG_Nec ; // N term for central ECAL endcap
130 float ELG_Cec ; // C term for central ECAL endcap
[2]131 float ELG_Sfwd; // S term for forward ECAL
132 float ELG_Cfwd; // C term for forward ECAL
[374]133 float ELG_Nfwd; // N term for forward ECAL
134 float ELG_Szdc; // S term for zdc-em sections
135 float ELG_Czdc; // C term for zdc-em sections
136 float ELG_Nzdc; // N term for zdc-em sections
[2]137
[494]138 //energy resolution for hadrons in ecal/hcal/fwd
[2]139 // \sigma/E = C + N/E + S/\sqrt{E}
[494]140 float HAD_Scen; // S term for central HCAL // hadronic calorimeter -- previously HAD_Shcal
141 float HAD_Ncen; // N term for central HCAL -- previously HAD_Nhcal
142 float HAD_Ccen; // C term for central HCAL -- previously HAD_Chcal
143 float HAD_Sec ; // S term for central HCAL endcap
144 float HAD_Nec ; // N term for central HCAL endcap
145 float HAD_Cec ; // C term for central HCAL endcap
146 float HAD_Sfwd; // S term for central FCAL // forward calorimeter -- previously HAD_Shf
147 float HAD_Nfwd; // N term for central FCAL -- previously HAD_Nhf
148 float HAD_Cfwd; // C term for central FCAL -- previously HAD_Chf
149 float HAD_Szdc; // S term for zdc-had sections
150 float HAD_Czdc; // C term for zdc-had sections
151 float HAD_Nzdc; // N term for zdc-had sections
[374]152
[2]153 // muon smearing
154 float MU_SmearPt;
[374]155
156 // time resolution
157 float ZDC_T_resolution;
158 float RP220_T_resolution;
159 float RP420_T_resolution;
[2]160
[94]161 //Magnetic Field information
162 int TRACK_radius; //radius of the BField coverage
163 int TRACK_length; //length of the BField coverage
164 float TRACK_bfield_x;
165 float TRACK_bfield_y;
166 float TRACK_bfield_z;
167 float TRACK_ptmin; // minimal pt needed to reach the calorimeter, in GeV
[531]168 float TRACK_eff; // in percent, should be an integer
[2]169
[72]170
[94]171 //Define Calorimetric towers
172 unsigned int TOWER_number;
173 float * TOWER_eta_edges;
174 float * TOWER_dphi;
[43]175
[94]176 //thresholds for reconstructed objetcs
177 float PTCUT_elec;
178 float PTCUT_muon;
179 float PTCUT_jet;
180 float PTCUT_gamma;
181 float PTCUT_taujet;
[305]182
[374]183 float ZDC_gamma_E; // minimal energy of photons for reconstruction in ZDC
184 float ZDC_n_E; // minimal energy of neutrons for reconstruction in ZDC
185
[305]186 float ISOL_PT; //minimal pt of tracks for isolation criteria
187 float ISOL_Cone; //Cone for isolation criteria
[321]188 float ISOL_Calo_ET; //minimal tower energy for isolation criteria
189 unsigned int ISOL_Calo_Grid; //Grid size (N x N) for calorimetric isolation
[374]190
[94]191
[43]192 //General jet variable
[94]193 double JET_coneradius;
194 int JET_jetalgo;
195 double JET_seed;
196 double JET_overlap;
197
[2]198 // MidPoint algorithm definition
[94]199 double JET_M_coneareafraction;
200 int JET_M_maxpairsize;
201 int JET_M_maxiterations;
[2]202 // Define Cone algorithm.
[94]203 int JET_C_adjacencycut;
204 int JET_C_maxiterations;
205 int JET_C_iratch;
[44]206 //Define SISCone algorithm.
[94]207 int JET_S_npass;
208 double JET_S_protojet_ptmin;
209
210 //For Tau-jet definition
211 // R = sqrt (phi^2 + eta^2)
212 float TAU_energy_scone; // radius R of the cone for tau definition, based on energy threshold
213 float TAU_track_scone; // radius R of the cone for tau definition, based on track number
214 float TAU_track_pt; // minimal pt [GeV] for tracks to be considered in tau definition
215 float TAU_energy_frac; // fraction of energy required in the central part of the cone, for tau jets
216
217 //tagging definition
[526]218 float BTAG_b;
219 float BTAG_mistag_c;
220 float BTAG_mistag_l;
[94]221
[44]222
[94]223 //trigger flag
224 int FLAG_trigger; //flag for trigger
225 int FLAG_frog; //flag for frog display
226 int FLAG_bfield; //flag for bfield propagation
227 int FLAG_vfd; //flag for very forward detector
[306]228 int FLAG_RP; //flag for very forward detector
[307]229 int FLAG_lhco; //flag for very forward detector
[94]230
[421]231 int NEvents_Frog; // number of events to be displayed in frog
232 int NEvents; // number of events to be processed
[380]233 float PT_QUARKS_MIN; // minimal pt needed for quarks to reach the tracker, in GeV
[383]234 int JET_Eflow;
[94]235
[380]236 string PdgTableFilename;
237 PdgTable PDGtable;
[454]238 string inputfilelist, detectorcard, triggercard;
[526]239 TRandom3 * grandom;
[380]240
[74]241 // to sort a vector
[264]242 //void SortedVector(vector<ParticleUtil> &vect);
243 void SortedVector(vector<D_Particle> &vect);
[71]244
[2]245 /// Reads the data card for the initialisation of the parameters
246 void ReadDataCard(const string datacard);
[380]247
248 /// Reads the PDG table
249 void ReadParticleDataGroupTable();
[44]250
251 /// Create the output log file
[223]252 void Logfile(const string& LogName);
[2]253
254 /// Provides the smeared TLorentzVector for the electrons
255 void SmearElectron(TLorentzVector &electron);
256
257 /// Provides the smeared TLorentzVector for the muons
258 void SmearMu(TLorentzVector &muon);
259
260 /// Provides the smeared TLorentzVector for the hadrons
261 void SmearHadron(TLorentzVector &hadron, const float frac);
262
[223]263 /// For electromagnetic collimation in tau jets
[2]264 double EnergySmallCone(const vector<PhysicsTower> &towers, const float eta, const float phi);
265
[223]266 /// Number of tracks in tau jet algo
[287]267 //unsigned int NumTracks(float& charge, const vector<TLorentzVector> &tracks, const float pt_track, const float eta, const float phi);
268 unsigned int NumTracks(float& charge, const vector<TRootTracks> &tracks, const float pt_track, const float eta, const float phi);
[2]269
[223]270 /// b-jets
[350]271 int Bjets(const TSimpleArray<TRootC::GenParticle> &subarray, const float& eta, const float& phi);
[2]272
[223]273 /// b-tag efficiency and misidentification
[350]274 bool Btaggedjet(const TLorentzVector &JET, const TSimpleArray<TRootC::GenParticle> &subarray);
[2]275
[321]276 /// Lepton isolation based on tracking
277 bool Isolation(const D_Particle& part, const vector<TRootTracks> &tracks, const float& pt_second_track, const float& isolCone, float& ptiso);
[31]278
[321]279 /// Lepton isolation based on calorimetry (optional. Default: off)
[392]280 float CaloIsolation(const D_Particle& part, const D_CaloTowerList & towers, const float iPhi, const float iEta);
[321]281
[71]282 //********************* returns a segmented value for eta and phi, for calo towers *****
283 void BinEtaPhi(const float phi, const float eta, float& iPhi, float& iEta);
284
[455]285 void setNames(const string& list, const string& det, const string& trig);
[2]286};
287
288// ** returns the sign (+1 or -1) or an integer
289int sign(const int myint);
290int sign(const float myfloat);
291
292// **************************** Return the Delta Phi****************************
293float DeltaPhi(const float phi1, const float phi2);
294
295// **************************** Returns the Delta R****************************
296float DeltaR(const float phi1, const float eta1, const float phi2, const float eta2);
297
298//************* Returns an array of the quarks sitting within the tracker acceptance ***************
[270]299int ChargeVal(const int pid);
[2]300
[398]301// ********************* prints the time report on screen and in Logfile *********
302void time_report(const TStopwatch& global,const TStopwatch& loop,const TStopwatch& trigger,const TStopwatch& frog,const TStopwatch& lhco, const int flag_frog, const int flag_trigger, const int flag_lhco, const string& LogName, const Long64_t allEntries);
[403]303
304void print_header();
[465]305string get_time_date();
[494]306void warning(const string oldname, const string newname);
[2]307#endif
Note: See TracBrowser for help on using the repository browser.