Fork me on GitHub

source: svn/trunk/interface/SmearUtil.h@ 525

Last change on this file since 525 was 494, checked in by Xavier Rouby, 15 years ago

new: calorimeter endcaps

File size: 13.6 KB
RevLine 
[2]1#ifndef _SMEARUTIL_H_
2#define _SMEARUTIL_H_
3
[260]4/***********************************************************************
5** **
6** /----------------------------------------------\ **
7** | Delphes, a framework for the fast simulation | **
8** | of a generic collider experiment | **
[443]9** \------------- arXiv:0903.2225v1 ------------/ **
[260]10** **
11** **
12** This package uses: **
13** ------------------ **
[443]14** ROOT: Nucl. Inst. & Meth. in Phys. Res. A389 (1997) 81-86 **
15** FastJet algorithm: Phys. Lett. B641 (2006) [hep-ph/0512210] **
16** Hector: JINST 2:P09005 (2007) [physics.acc-ph:0707.1198v2] **
[260]17** FROG: [hep-ex/0901.2718v1] **
[443]18** HepMC: Comput. Phys. Commun.134 (2001) 41 **
[260]19** **
20** ------------------------------------------------------------------ **
21** **
22** Main authors: **
23** ------------- **
24** **
[443]25** Severine Ovyn Xavier Rouby **
26** severine.ovyn@uclouvain.be xavier.rouby@cern **
[260]27** **
[443]28** Center for Particle Physics and Phenomenology (CP3) **
29** Universite catholique de Louvain (UCL) **
30** Louvain-la-Neuve, Belgium **
31** **
[260]32** Copyright (C) 2008-2009, **
[443]33** All rights reserved. **
[260]34** **
35***********************************************************************/
[2]36
37/// \file SmearUtil.h
38/// \brief RESOLution class, and some generic definitions
39
40
41#include <vector>
[465]42#include <string>
[2]43#include "TLorentzVector.h"
44
[264]45#include "D_Constants.h"
46#include "CaloUtil.h"
[223]47#include "BlockClasses.h"
48#include "TSimpleArray.h"
49#include "PhysicsTower.hh"
[380]50#include "PdgParticle.h"
[2]51
52using namespace std;
53
[398]54// forward declaration instead of 'include' statement
55class TStopwatch;
56
[264]57class D_Particle {
[73]58
59 public:
[264]60 D_Particle(const TLorentzVector & p, const int pid, const float etacalo, const float phicalo) :
61 _fourmomentum(p), _pid(pid), _etaCalo(etacalo), _phiCalo(phicalo) {}
62 //D_Particle(const float e, const float eta, const float phi, const float pt, const int pid) :
63 // _pid(pid), _etaCalo(UNDEFINED), _phiCalo(UNDEFINED) { TLorentzVector p; p.SetPtEtaPhiE(pt,eta,phi,e); _fourmomentum = p; }
64 D_Particle(const float px, const float py, const float pz, const float e, const int pid) :
65 _fourmomentum(px,py,pz,e), _pid(pid), _etaCalo(UNDEFINED), _phiCalo(UNDEFINED) {}
[73]66
[264]67 const float E() const {return _fourmomentum.E();} // particle energy [GeV]
68 const float Px() const {return _fourmomentum.Px();} // horizontal coordinate of momentum [GeV]
69 const float Py() const {return _fourmomentum.Py();} // vertical coordinate of momentum [GeV]
70 const float Pz() const {return _fourmomentum.Pz();} // longitudinal coordinate of momentum [GeV]
71 const float Pt() const {return _fourmomentum.Pt();} // transverse momentum [GeV]
72 const float EtaCalo() const {return _etaCalo;} // pseudorapidity
73 const float Eta() const {return _fourmomentum.Eta();} // pseudorapidity
74 const float PhiCalo() const {return _phiCalo;} // azimuthal angle
75 const float Phi() const {return _fourmomentum.Phi();} // azimuthal angle
76 const int PID() const {return _pid;} // particle energy in [GeV]
77 const TLorentzVector& getFourMomentum() const {return _fourmomentum;}
[73]78
79 private:
[264]80 TLorentzVector _fourmomentum;
[223]81 int _pid;
[264]82 float _etaCalo, _phiCalo;
[73]83};
84
[2]85class RESOLution
86{
87 public:
88 /// Constructor
89 RESOLution();
[223]90 RESOLution(const RESOLution & DET);
91 RESOLution& operator=(const RESOLution& DET);
92 ~RESOLution() { delete [] TOWER_eta_edges; delete [] TOWER_dphi;};
93
[494]94 // Detector coverage for the central detector
[94]95 float CEN_max_tracker; // tracker pseudorapidity coverage
96 float CEN_max_calo_cen; // central calorimeter pseudorapidity coverage
[494]97 float CEN_max_calo_ec; // calorimeter endcap pseudorapidity coverage
[94]98 float CEN_max_calo_fwd; // forward calorimeter pseudorapidity coverage
99 float CEN_max_mu; // muon chambers pseudorapidity coverage
[2]100
[494]101 float VFD_min_calo_vfd; // very forward calorimeter pseudorapidity coverage
102 float VFD_max_calo_vfd; // very forward calorimeter pseudorapidity coverage
[94]103 float VFD_min_zdc; // coverage for Zero Degree Calorimeter, for photons and neutrons
[494]104 float VFD_s_zdc; // distance of the Zero Degree Calorimeter, from the Interaction poin, in [m]
[2]105
[494]106 float RP_220_s; // distance of the RP to the IP, in meters
107 float RP_220_x; // distance of the RP to the beam, in meters
108 float RP_420_s; // distance of the RP to the IP, in meters
109 float RP_420_x; // distance of the RP to the beam, in meters
110 string RP_beam1Card; // optics file for beam 1
111 string RP_beam2Card; // optics file for beam 2
112 string RP_IP_name; // label for IP in the optics file ("IP1" or "IP5")
113 float RP_offsetEl_s; // distance from IP (in meter) where both beams separate
114 float RP_offsetEl_x; // distance of separation in horizontal plane, in meter
115 float RP_offsetEl_y; // distance of separation in vertical plane, in meter
116 float RP_cross_x; // IP offset in horizontal plane, in micrometer
117 float RP_cross_y; // IP offset in vertical plane, in micrometer
118 float RP_cross_ang_x; // half crossing angle, in microradian, horizontal plane
119 float RP_cross_ang_y; // half crossing angle, in microradian, vertical plane
[62]120
[94]121
[2]122 //energy resolution for electron/photon
123 // \sigma/E = C + N/E + S/\sqrt{E}
124 float ELG_Scen; // S term for central ECAL
125 float ELG_Ncen; // N term for central ECAL
126 float ELG_Ccen; // C term for central ECAL
[494]127 float ELG_Sec ; // S term for central ECAL endcap
128 float ELG_Nec ; // N term for central ECAL endcap
129 float ELG_Cec ; // C term for central ECAL endcap
[2]130 float ELG_Sfwd; // S term for forward ECAL
131 float ELG_Cfwd; // C term for forward ECAL
[374]132 float ELG_Nfwd; // N term for forward ECAL
133 float ELG_Szdc; // S term for zdc-em sections
134 float ELG_Czdc; // C term for zdc-em sections
135 float ELG_Nzdc; // N term for zdc-em sections
[2]136
[494]137 //energy resolution for hadrons in ecal/hcal/fwd
[2]138 // \sigma/E = C + N/E + S/\sqrt{E}
[494]139 float HAD_Scen; // S term for central HCAL // hadronic calorimeter -- previously HAD_Shcal
140 float HAD_Ncen; // N term for central HCAL -- previously HAD_Nhcal
141 float HAD_Ccen; // C term for central HCAL -- previously HAD_Chcal
142 float HAD_Sec ; // S term for central HCAL endcap
143 float HAD_Nec ; // N term for central HCAL endcap
144 float HAD_Cec ; // C term for central HCAL endcap
145 float HAD_Sfwd; // S term for central FCAL // forward calorimeter -- previously HAD_Shf
146 float HAD_Nfwd; // N term for central FCAL -- previously HAD_Nhf
147 float HAD_Cfwd; // C term for central FCAL -- previously HAD_Chf
148 float HAD_Szdc; // S term for zdc-had sections
149 float HAD_Czdc; // C term for zdc-had sections
150 float HAD_Nzdc; // N term for zdc-had sections
[374]151
[2]152 // muon smearing
153 float MU_SmearPt;
[374]154
155 // time resolution
156 float ZDC_T_resolution;
157 float RP220_T_resolution;
158 float RP420_T_resolution;
[2]159
[94]160 //Magnetic Field information
161 int TRACK_radius; //radius of the BField coverage
162 int TRACK_length; //length of the BField coverage
163 float TRACK_bfield_x;
164 float TRACK_bfield_y;
165 float TRACK_bfield_z;
166 float TRACK_ptmin; // minimal pt needed to reach the calorimeter, in GeV
167 int TRACK_eff; // in percent, should be an integer
[2]168
[72]169
[94]170 //Define Calorimetric towers
171 unsigned int TOWER_number;
172 float * TOWER_eta_edges;
173 float * TOWER_dphi;
[43]174
[94]175 //thresholds for reconstructed objetcs
176 float PTCUT_elec;
177 float PTCUT_muon;
178 float PTCUT_jet;
179 float PTCUT_gamma;
180 float PTCUT_taujet;
[305]181
[374]182 float ZDC_gamma_E; // minimal energy of photons for reconstruction in ZDC
183 float ZDC_n_E; // minimal energy of neutrons for reconstruction in ZDC
184
[305]185 float ISOL_PT; //minimal pt of tracks for isolation criteria
186 float ISOL_Cone; //Cone for isolation criteria
[321]187 float ISOL_Calo_ET; //minimal tower energy for isolation criteria
188 unsigned int ISOL_Calo_Grid; //Grid size (N x N) for calorimetric isolation
[374]189
[94]190
[43]191 //General jet variable
[94]192 double JET_coneradius;
193 int JET_jetalgo;
194 double JET_seed;
195 double JET_overlap;
196
[2]197 // MidPoint algorithm definition
[94]198 double JET_M_coneareafraction;
199 int JET_M_maxpairsize;
200 int JET_M_maxiterations;
[2]201 // Define Cone algorithm.
[94]202 int JET_C_adjacencycut;
203 int JET_C_maxiterations;
204 int JET_C_iratch;
[44]205 //Define SISCone algorithm.
[94]206 int JET_S_npass;
207 double JET_S_protojet_ptmin;
208
209 //For Tau-jet definition
210 // R = sqrt (phi^2 + eta^2)
211 float TAU_energy_scone; // radius R of the cone for tau definition, based on energy threshold
212 float TAU_track_scone; // radius R of the cone for tau definition, based on track number
213 float TAU_track_pt; // minimal pt [GeV] for tracks to be considered in tau definition
214 float TAU_energy_frac; // fraction of energy required in the central part of the cone, for tau jets
215
216 //tagging definition
217 int BTAG_b;
218 int BTAG_mistag_c;
219 int BTAG_mistag_l;
220
[44]221
[94]222 //trigger flag
223 int FLAG_trigger; //flag for trigger
224 int FLAG_frog; //flag for frog display
225 int FLAG_bfield; //flag for bfield propagation
226 int FLAG_vfd; //flag for very forward detector
[306]227 int FLAG_RP; //flag for very forward detector
[307]228 int FLAG_lhco; //flag for very forward detector
[94]229
[421]230 int NEvents_Frog; // number of events to be displayed in frog
231 int NEvents; // number of events to be processed
[380]232 float PT_QUARKS_MIN; // minimal pt needed for quarks to reach the tracker, in GeV
[383]233 int JET_Eflow;
[94]234
[380]235 string PdgTableFilename;
236 PdgTable PDGtable;
[454]237 string inputfilelist, detectorcard, triggercard;
[380]238
[74]239 // to sort a vector
[264]240 //void SortedVector(vector<ParticleUtil> &vect);
241 void SortedVector(vector<D_Particle> &vect);
[71]242
[2]243 /// Reads the data card for the initialisation of the parameters
244 void ReadDataCard(const string datacard);
[380]245
246 /// Reads the PDG table
247 void ReadParticleDataGroupTable();
[44]248
249 /// Create the output log file
[223]250 void Logfile(const string& LogName);
[2]251
252 /// Provides the smeared TLorentzVector for the electrons
253 void SmearElectron(TLorentzVector &electron);
254
255 /// Provides the smeared TLorentzVector for the muons
256 void SmearMu(TLorentzVector &muon);
257
258 /// Provides the smeared TLorentzVector for the hadrons
259 void SmearHadron(TLorentzVector &hadron, const float frac);
260
[223]261 /// For electromagnetic collimation in tau jets
[2]262 double EnergySmallCone(const vector<PhysicsTower> &towers, const float eta, const float phi);
263
[223]264 /// Number of tracks in tau jet algo
[287]265 //unsigned int NumTracks(float& charge, const vector<TLorentzVector> &tracks, const float pt_track, const float eta, const float phi);
266 unsigned int NumTracks(float& charge, const vector<TRootTracks> &tracks, const float pt_track, const float eta, const float phi);
[2]267
[223]268 /// b-jets
[350]269 int Bjets(const TSimpleArray<TRootC::GenParticle> &subarray, const float& eta, const float& phi);
[2]270
[223]271 /// b-tag efficiency and misidentification
[350]272 bool Btaggedjet(const TLorentzVector &JET, const TSimpleArray<TRootC::GenParticle> &subarray);
[2]273
[321]274 /// Lepton isolation based on tracking
275 bool Isolation(const D_Particle& part, const vector<TRootTracks> &tracks, const float& pt_second_track, const float& isolCone, float& ptiso);
[31]276
[321]277 /// Lepton isolation based on calorimetry (optional. Default: off)
[392]278 float CaloIsolation(const D_Particle& part, const D_CaloTowerList & towers, const float iPhi, const float iEta);
[321]279
[71]280 //********************* returns a segmented value for eta and phi, for calo towers *****
281 void BinEtaPhi(const float phi, const float eta, float& iPhi, float& iEta);
282
[455]283 void setNames(const string& list, const string& det, const string& trig);
[2]284};
285
286// ** returns the sign (+1 or -1) or an integer
287int sign(const int myint);
288int sign(const float myfloat);
289
290// **************************** Return the Delta Phi****************************
291float DeltaPhi(const float phi1, const float phi2);
292
293// **************************** Returns the Delta R****************************
294float DeltaR(const float phi1, const float eta1, const float phi2, const float eta2);
295
296//************* Returns an array of the quarks sitting within the tracker acceptance ***************
[270]297int ChargeVal(const int pid);
[2]298
[398]299// ********************* prints the time report on screen and in Logfile *********
300void time_report(const TStopwatch& global,const TStopwatch& loop,const TStopwatch& trigger,const TStopwatch& frog,const TStopwatch& lhco, const int flag_frog, const int flag_trigger, const int flag_lhco, const string& LogName, const Long64_t allEntries);
[403]301
302void print_header();
[465]303string get_time_date();
[494]304void warning(const string oldname, const string newname);
[2]305#endif
Note: See TracBrowser for help on using the repository browser.