1 | ///////////////////////////////////////////////////////////////////////////////
|
---|
2 | // File: quadtree.cpp //
|
---|
3 | // Description: source file for quadtree management (Cquadtree class) //
|
---|
4 | // This file is part of the SISCone project. //
|
---|
5 | // For more details, see http://projects.hepforge.org/siscone //
|
---|
6 | // //
|
---|
7 | // Copyright (c) 2006 Gavin Salam and Gregory Soyez //
|
---|
8 | // //
|
---|
9 | // This program is free software; you can redistribute it and/or modify //
|
---|
10 | // it under the terms of the GNU General Public License as published by //
|
---|
11 | // the Free Software Foundation; either version 2 of the License, or //
|
---|
12 | // (at your option) any later version. //
|
---|
13 | // //
|
---|
14 | // This program is distributed in the hope that it will be useful, //
|
---|
15 | // but WITHOUT ANY WARRANTY; without even the implied warranty of //
|
---|
16 | // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the //
|
---|
17 | // GNU General Public License for more details. //
|
---|
18 | // //
|
---|
19 | // You should have received a copy of the GNU General Public License //
|
---|
20 | // along with this program; if not, write to the Free Software //
|
---|
21 | // Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA //
|
---|
22 | // //
|
---|
23 | // $Revision:: 859 $//
|
---|
24 | // $Date:: 2012-11-28 01:49:23 +0000 (Wed, 28 Nov 2012) $//
|
---|
25 | ///////////////////////////////////////////////////////////////////////////////
|
---|
26 |
|
---|
27 | #include "quadtree.h"
|
---|
28 | #include <math.h>
|
---|
29 | #include <stdio.h>
|
---|
30 | #include <iostream>
|
---|
31 |
|
---|
32 | namespace siscone{
|
---|
33 |
|
---|
34 | using namespace std;
|
---|
35 |
|
---|
36 | /*******************************************************************
|
---|
37 | * Cquadtree implementation *
|
---|
38 | * Implementation of a 2D quadtree. *
|
---|
39 | * This class implements the traditional two-dimensional quadtree. *
|
---|
40 | * The elements at each node are of 'Cmomentum' type. *
|
---|
41 | *******************************************************************/
|
---|
42 |
|
---|
43 | // default ctor
|
---|
44 | //--------------
|
---|
45 | Cquadtree::Cquadtree(){
|
---|
46 | v = NULL;
|
---|
47 |
|
---|
48 | children[0][0] = children[0][1] = children[1][0] = children[1][1] = NULL;
|
---|
49 | has_child = false;
|
---|
50 | }
|
---|
51 |
|
---|
52 |
|
---|
53 | // ctor with initialisation (see init for details)
|
---|
54 | //--------------------------
|
---|
55 | Cquadtree::Cquadtree(double _x, double _y, double _half_size_x, double _half_size_y){
|
---|
56 | v = NULL;
|
---|
57 |
|
---|
58 | children[0][0] = children[0][1] = children[1][0] = children[1][1] = NULL;
|
---|
59 | has_child = false;
|
---|
60 |
|
---|
61 | init(_x, _y, _half_size_x, _half_size_y);
|
---|
62 | }
|
---|
63 |
|
---|
64 |
|
---|
65 | // default destructor
|
---|
66 | // at destruction, everything is destroyed except
|
---|
67 | // physical values at the leaves
|
---|
68 | //------------------------------------------------
|
---|
69 | Cquadtree::~Cquadtree(){
|
---|
70 | if (has_child){
|
---|
71 | if (v!=NULL) delete v;
|
---|
72 | delete children[0][0];
|
---|
73 | delete children[0][1];
|
---|
74 | delete children[1][0];
|
---|
75 | delete children[1][1];
|
---|
76 | }
|
---|
77 | }
|
---|
78 |
|
---|
79 |
|
---|
80 | /*
|
---|
81 | * init the tree.
|
---|
82 | * By initializing the tree, we mean setting the cell parameters
|
---|
83 | * and preparing the object to act as a seed for a new tree.
|
---|
84 | * - _x x-position of the center
|
---|
85 | * - _y y-position of the center
|
---|
86 | * - half_size_x half x-size of the cell
|
---|
87 | * - half_size_y half y-size of the cell
|
---|
88 | * return 0 on success, 1 on error. Note that if the cell
|
---|
89 | * is already filled, we return an error.
|
---|
90 | ******************************************************************/
|
---|
91 | int Cquadtree::init(double _x, double _y, double _half_size_x, double _half_size_y){
|
---|
92 | if (v!=NULL)
|
---|
93 | return 1;
|
---|
94 |
|
---|
95 | centre_x = _x;
|
---|
96 | centre_y = _y;
|
---|
97 | half_size_x = _half_size_x;
|
---|
98 | half_size_y = _half_size_y;
|
---|
99 |
|
---|
100 | return 0;
|
---|
101 | }
|
---|
102 |
|
---|
103 |
|
---|
104 | /*
|
---|
105 | * adding a particle to the tree.
|
---|
106 | * This method adds one vector to the quadtree structure which
|
---|
107 | * is updated consequently.
|
---|
108 | * - v vector to add
|
---|
109 | * return 0 on success 1 on error
|
---|
110 | ******************************************************************/
|
---|
111 | int Cquadtree::add(Cmomentum *v_add){
|
---|
112 | // Description of the method:
|
---|
113 | // --------------------------
|
---|
114 | // the addition process goes as follows:
|
---|
115 | // 1. check if the cell is empty, in which case, add the particle
|
---|
116 | // here and leave.
|
---|
117 | // 2. If there is a unique particle already inside,
|
---|
118 | // (a) create children
|
---|
119 | // (b) forward the existing particle to the appropriate child
|
---|
120 | // 3. Add current particle to this cell and forward to the
|
---|
121 | // adequate child
|
---|
122 | // NOTE: we assume in the whole procedure that the particle is
|
---|
123 | // indeed inside the cell !
|
---|
124 |
|
---|
125 | // step 1: the case of empty cells
|
---|
126 | if (v==NULL){
|
---|
127 | v = v_add;
|
---|
128 | return 0;
|
---|
129 | }
|
---|
130 |
|
---|
131 | // step 2: additional work if 1! particle already present
|
---|
132 | // we use the fact that only 1-particle systems have no child
|
---|
133 | if (!has_child){
|
---|
134 | double new_half_size_x = 0.5*half_size_x;
|
---|
135 | double new_half_size_y = 0.5*half_size_y;
|
---|
136 | // create children
|
---|
137 | children[0][0] = new Cquadtree(centre_x-new_half_size_x, centre_y-new_half_size_y,
|
---|
138 | new_half_size_x, new_half_size_y);
|
---|
139 | children[0][1] = new Cquadtree(centre_x-new_half_size_x, centre_y+new_half_size_y,
|
---|
140 | new_half_size_x, new_half_size_y);
|
---|
141 | children[1][0] = new Cquadtree(centre_x+new_half_size_x, centre_y-new_half_size_y,
|
---|
142 | new_half_size_x, new_half_size_y);
|
---|
143 | children[1][1] = new Cquadtree(centre_x+new_half_size_x, centre_y+new_half_size_y,
|
---|
144 | new_half_size_x, new_half_size_y);
|
---|
145 |
|
---|
146 | has_child = true;
|
---|
147 |
|
---|
148 | // forward to child
|
---|
149 | //? The following line assumes 'true'==1 and 'false'==0
|
---|
150 | // Note: v being a single particle, eta and phi are correct
|
---|
151 | children[v->eta>centre_x][v->phi>centre_y]->add(v);
|
---|
152 |
|
---|
153 | // copy physical params
|
---|
154 | v = new Cmomentum(*v);
|
---|
155 | }
|
---|
156 |
|
---|
157 | // step 3: add new particle
|
---|
158 | // Note: v_add being a single particle, eta and phi are correct
|
---|
159 | children[v_add->eta>centre_x][v_add->phi>centre_y]->add(v_add);
|
---|
160 | *v+=*v_add;
|
---|
161 |
|
---|
162 | return 0;
|
---|
163 | }
|
---|
164 |
|
---|
165 |
|
---|
166 | /*
|
---|
167 | * circle intersection.
|
---|
168 | * computes the intersection with a circle of given centre and radius.
|
---|
169 | * The output takes the form of a quadtree with all squares included
|
---|
170 | * in the circle.
|
---|
171 | * - cx circle centre x coordinate
|
---|
172 | * - cy circle centre y coordinate
|
---|
173 | * - cR2 circle radius SQUARED
|
---|
174 | * return the checksum for the intersection
|
---|
175 | ******************************************************************/
|
---|
176 | Creference Cquadtree::circle_intersect(double cx, double cy, double cR2){
|
---|
177 | // Description of the method:
|
---|
178 | // --------------------------
|
---|
179 | // 1. check if cell is empty => no intersection
|
---|
180 | // 2. if cell has 1! particle, check if it is inside the circle.
|
---|
181 | // If yes, add it and return, if not simply return.
|
---|
182 | // 3. check if the circle intersects the square. If not, return.
|
---|
183 | // 4. check if the square is inside the circle.
|
---|
184 | // If yes, add it to qt and return.
|
---|
185 | // 5. check intersections with children.
|
---|
186 |
|
---|
187 | // step 1: if there is no particle inside te square, no reason to go further
|
---|
188 | if (v==NULL)
|
---|
189 | return Creference();
|
---|
190 |
|
---|
191 | double dx, dy;
|
---|
192 |
|
---|
193 | // step 2: if there is only one particle inside the square, test if it is in
|
---|
194 | // the circle, in which case return associated reference
|
---|
195 | if (!has_child){
|
---|
196 | // compute the distance
|
---|
197 | // Note: v has only one particle => eta and phi are defined
|
---|
198 | dx = cx - v->eta;
|
---|
199 | dy = fabs(cy - v->phi);
|
---|
200 | if (dy>M_PI)
|
---|
201 | dy -= 2.0*M_PI;
|
---|
202 |
|
---|
203 | // test distance
|
---|
204 | if (dx*dx+dy*dy<cR2){
|
---|
205 | return v->ref;
|
---|
206 | }
|
---|
207 |
|
---|
208 | return Creference();
|
---|
209 | }
|
---|
210 |
|
---|
211 | // step 3: check if there is an intersection
|
---|
212 | //double ryp, rym;
|
---|
213 | double dx_c, dy_c;
|
---|
214 |
|
---|
215 | // store distance with the centre of the square
|
---|
216 | dx_c = fabs(cx-centre_x);
|
---|
217 | dy_c = fabs(cy-centre_y);
|
---|
218 | if (dy_c>M_PI) dy_c = 2.0*M_PI-dy_c;
|
---|
219 |
|
---|
220 | // compute (minimal) the distance (pay attention to the periodicity in phi).
|
---|
221 | dx = dx_c-half_size_x;
|
---|
222 | if (dx<0) dx=0;
|
---|
223 | dy = dy_c-half_size_y;
|
---|
224 | if (dy<0) dy=0;
|
---|
225 |
|
---|
226 | // check the distance
|
---|
227 | if (dx*dx+dy*dy>=cR2){
|
---|
228 | // no intersection
|
---|
229 | return Creference();
|
---|
230 | }
|
---|
231 |
|
---|
232 | // step 4: check if included
|
---|
233 |
|
---|
234 | // compute the (maximal) distance
|
---|
235 | dx = dx_c+half_size_x;
|
---|
236 | dy = dy_c+half_size_y;
|
---|
237 | if (dy>M_PI) dy = M_PI;
|
---|
238 |
|
---|
239 | // compute the distance
|
---|
240 | if (dx*dx+dy*dy<cR2){
|
---|
241 | return v->ref;
|
---|
242 | }
|
---|
243 |
|
---|
244 | // step 5: the square is not fully in. Recurse to children
|
---|
245 | return children[0][0]->circle_intersect(cx, cy, cR2)
|
---|
246 | + children[0][1]->circle_intersect(cx, cy, cR2)
|
---|
247 | + children[1][0]->circle_intersect(cx, cy, cR2)
|
---|
248 | + children[1][1]->circle_intersect(cx, cy, cR2);
|
---|
249 | }
|
---|
250 |
|
---|
251 |
|
---|
252 | /*
|
---|
253 | * output a data file for drawing the grid.
|
---|
254 | * This can be used to output a data file containing all the
|
---|
255 | * grid subdivisions. The file contents is as follows:
|
---|
256 | * first and second columns give center of the cell, the third
|
---|
257 | * gives the size.
|
---|
258 | * - flux opened stream to write to
|
---|
259 | * return 0 on success, 1 on error
|
---|
260 | ******************************************************************/
|
---|
261 | int Cquadtree::save(FILE *flux){
|
---|
262 |
|
---|
263 | if (flux==NULL)
|
---|
264 | return 1;
|
---|
265 |
|
---|
266 | if (has_child){
|
---|
267 | fprintf(flux, "%e\t%e\t%e\t%e\n", centre_x, centre_y, half_size_x, half_size_y);
|
---|
268 | children[0][0]->save(flux);
|
---|
269 | children[0][1]->save(flux);
|
---|
270 | children[1][0]->save(flux);
|
---|
271 | children[1][1]->save(flux);
|
---|
272 | }
|
---|
273 |
|
---|
274 | return 0;
|
---|
275 | }
|
---|
276 |
|
---|
277 |
|
---|
278 | /*
|
---|
279 | * output a data file for drawing the tree leaves.
|
---|
280 | * This can be used to output a data file containing all the
|
---|
281 | * tree leaves. The file contents is as follows:
|
---|
282 | * first and second columns give center of the cell, the third
|
---|
283 | * gives the size.
|
---|
284 | * - flux opened stream to write to
|
---|
285 | * return 0 on success, 1 on error
|
---|
286 | ******************************************************************/
|
---|
287 | int Cquadtree::save_leaves(FILE *flux){
|
---|
288 |
|
---|
289 | if (flux==NULL)
|
---|
290 | return 1;
|
---|
291 |
|
---|
292 | if (has_child){
|
---|
293 | if (children[0][0]!=NULL) children[0][0]->save_leaves(flux);
|
---|
294 | if (children[0][1]!=NULL) children[0][1]->save_leaves(flux);
|
---|
295 | if (children[1][0]!=NULL) children[1][0]->save_leaves(flux);
|
---|
296 | if (children[1][1]!=NULL) children[1][1]->save_leaves(flux);
|
---|
297 | } else {
|
---|
298 | fprintf(flux, "%e\t%e\t%e\t%e\n", centre_x, centre_y, half_size_x, half_size_y);
|
---|
299 | }
|
---|
300 |
|
---|
301 | return 0;
|
---|
302 | }
|
---|
303 |
|
---|
304 | }
|
---|