Fork me on GitHub

source: svn/trunk/external/fastjet/internal/SearchTree.hh@ 1110

Last change on this file since 1110 was 859, checked in by Pavel Demin, 12 years ago

update fastjet to version 3.0.3

File size: 25.2 KB
Line 
1//STARTHEADER
2// $Id: SearchTree.hh 2577 2011-09-13 15:11:38Z salam $
3//
4// Copyright (c) 2005-2011, Matteo Cacciari, Gavin P. Salam and Gregory Soyez
5//
6//----------------------------------------------------------------------
7// This file is part of FastJet.
8//
9// FastJet is free software; you can redistribute it and/or modify
10// it under the terms of the GNU General Public License as published by
11// the Free Software Foundation; either version 2 of the License, or
12// (at your option) any later version.
13//
14// The algorithms that underlie FastJet have required considerable
15// development and are described in hep-ph/0512210. If you use
16// FastJet as part of work towards a scientific publication, please
17// include a citation to the FastJet paper.
18//
19// FastJet is distributed in the hope that it will be useful,
20// but WITHOUT ANY WARRANTY; without even the implied warranty of
21// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22// GNU General Public License for more details.
23//
24// You should have received a copy of the GNU General Public License
25// along with FastJet. If not, see <http://www.gnu.org/licenses/>.
26//----------------------------------------------------------------------
27//ENDHEADER
28
29
30#ifndef __FASTJET_SEARCHTREE_HH__
31#define __FASTJET_SEARCHTREE_HH__
32
33#include<vector>
34#include<cassert>
35#include<cstddef>
36#include "fastjet/internal/base.hh"
37
38FASTJET_BEGIN_NAMESPACE // defined in fastjet/internal/base.hh
39
40
41//======================================================================
42/// \if internal_doc
43/// @ingroup internal
44/// \class SearchTree
45/// Efficient class for a search tree
46///
47/// This is the class for a search tree designed to be especially efficient
48/// when looking for successors and predecessors (to be used in Chan's
49/// CP algorithm). It has the requirement that the maximum size of the
50/// search tree must be known in advance.
51/// \endif
52template<class T> class SearchTree {
53public:
54
55 class Node;
56 class circulator;
57 class const_circulator;
58
59 /// constructor for a search tree from an ordered vector
60 SearchTree(const std::vector<T> & init);
61
62 /// constructor for a search tree from an ordered vector allowing
63 /// for future growth beyond the current size, up to max_size
64 SearchTree(const std::vector<T> & init, unsigned int max_size);
65
66 /// remove the node corresponding to node_index from the search tree
67 void remove(unsigned node_index);
68 void remove(typename SearchTree::Node * node);
69 void remove(typename SearchTree::circulator & circ);
70
71 /// insert the supplied value into the tree and return a pointer to
72 /// the relevant SearchTreeNode.
73 //Node * insert(const T & value);
74 circulator insert(const T & value);
75
76 const Node & operator[](int i) const {return _nodes[i];};
77
78 /// return the number of elements currently in the search tree
79 unsigned int size() const {return _nodes.size() - _available_nodes.size();}
80
81 /// check that the structure we've obtained makes sense...
82 void verify_structure();
83 void verify_structure_linear() const;
84 void verify_structure_recursive(const Node * , const Node * , const Node * ) const;
85
86 /// print out all elements...
87 void print_elements();
88
89 // tracking the depth may have some speed overhead -- so leave it
90 // out for the time being...
91#ifdef TRACK_DEPTH
92 /// the max depth the tree has ever reached
93 inline unsigned int max_depth() const {return _max_depth;};
94#else
95 inline unsigned int max_depth() const {return 0;};
96#endif
97
98 int loc(const Node * node) const ;
99
100 /// return predecessor by walking through the tree
101 Node * _find_predecessor(const Node *);
102 /// return successor by walking through the tree
103 Node * _find_successor(const Node *);
104
105 const Node & operator[](unsigned int i) const {return _nodes[i];};
106
107 /// return a circulator to some place in the tree (with a circulator
108 /// you don't care where...)
109 const_circulator somewhere() const;
110 circulator somewhere();
111
112private:
113
114 void _initialize(const std::vector<T> & init);
115
116 std::vector<Node> _nodes;
117 std::vector<Node *> _available_nodes;
118 Node * _top_node;
119 unsigned int _n_removes;
120
121
122 /// recursive routine for doing the initial connections assuming things
123 /// are ordered. Assumes this_one's parent is labelled, and was
124 /// generated at a scale "scale" -- connections will be carried out
125 /// including left edge and excluding right edge
126 void _do_initial_connections(unsigned int this_one, unsigned int scale,
127 unsigned int left_edge, unsigned int right_edge,
128 unsigned int depth);
129
130
131#ifdef TRACK_DEPTH
132 unsigned int _max_depth;
133#endif
134
135};
136
137
138//======================================================================
139/// \if internal_doc
140/// @ingroup internal
141/// \class SearchTree::Node
142/// A node in the search tree
143/// \endif
144template<class T> class SearchTree<T>::Node{
145public:
146 Node() {}; /// default constructor
147
148
149 /// returns tree if all the tree-related links are set to null for this node
150 bool treelinks_null() const {
151 return ((parent==0) && (left==0) && (right==0));};
152
153 /// set all the tree-related links are set to null for this node
154 inline void nullify_treelinks() {
155 parent = NULL;
156 left = NULL;
157 right = NULL;
158 };
159
160 /// if my parent exists, determine whether I am it's left or right
161 /// node and set the relevant link equal to XX.
162 void reset_parents_link_to_me(Node * XX);
163
164 T value;
165 Node * left;
166 Node * right;
167 Node * parent;
168 Node * successor;
169 Node * predecessor;
170};
171
172//----------------------------------------------------------------------
173template<class T> void SearchTree<T>::Node::reset_parents_link_to_me(typename SearchTree<T>::Node * XX) {
174 if (parent == NULL) {return;}
175 if (parent->right == this) {parent->right = XX;}
176 else {parent->left = XX;}
177}
178
179
180
181//======================================================================
182/// \if internal_doc
183/// @ingroup internal
184/// \class SearchTree::circulator
185/// circulator for the search tree
186/// \endif
187template<class T> class SearchTree<T>::circulator{
188public:
189
190 // so that it can access out _node object;
191 friend class SearchTree<T>::const_circulator;
192 friend class SearchTree<T>;
193
194 circulator() : _node(NULL) {}
195
196 circulator(Node * node) : _node(node) {}
197
198 const T * operator->() const {return &(_node->value);}
199 T * operator->() {return &(_node->value);}
200 const T & operator*() const {return _node->value;}
201 T & operator*() {return _node->value;}
202
203 /// prefix increment (structure copied from stl_bvector.h)
204 circulator & operator++() {
205 _node = _node->successor;
206 return *this;}
207
208 /// postfix increment ["int" argument tells compiler it's postfix]
209 /// (structure copied from stl_bvector.h)
210 circulator operator++(int) {
211 circulator tmp = *this;
212 _node = _node->successor;
213 return tmp;}
214
215 /// prefix decrement (structure copied from stl_bvector.h)
216 circulator & operator--() {
217 _node = _node->predecessor;
218 return *this;}
219
220 /// postfix decrement ["int" argument tells compiler it's postfix]
221 /// (structure copied from stl_bvector.h)
222 circulator operator--(int) {
223 circulator tmp = *this;
224 _node = _node->predecessor;
225 return tmp;}
226
227 /// return a circulator referring to the next node
228 circulator next() const {
229 return circulator(_node->successor);}
230
231 /// return a circulator referring to the previous node
232 circulator previous() const {
233 return circulator(_node->predecessor);}
234
235 bool operator!=(const circulator & other) const {return other._node != _node;}
236 bool operator==(const circulator & other) const {return other._node == _node;}
237
238private:
239 Node * _node;
240};
241
242
243//======================================================================
244/// \if internal_doc
245/// @ingroup internal
246/// \class SearchTree::const_circulator
247/// A const_circulator for the search tree
248/// \endif
249template<class T> class SearchTree<T>::const_circulator{
250public:
251
252 const_circulator() : _node(NULL) {}
253
254 const_circulator(const Node * node) : _node(node) {}
255 const_circulator(const circulator & circ) :_node(circ._node) {}
256
257 const T * operator->() {return &(_node->value);}
258 const T & operator*() const {return _node->value;}
259
260 /// prefix increment (structure copied from stl_bvector.h)
261 const_circulator & operator++() {
262 _node = _node->successor;
263 return *this;}
264
265 /// postfix increment ["int" argument tells compiler it's postfix]
266 /// (structure copied from stl_bvector.h)
267 const_circulator operator++(int) {
268 const_circulator tmp = *this;
269 _node = _node->successor;
270 return tmp;}
271
272
273 /// prefix decrement (structure copied from stl_bvector.h)
274 const_circulator & operator--() {
275 _node = _node->predecessor;
276 return *this;}
277
278 /// postfix decrement ["int" argument tells compiler it's postfix]
279 /// (structure copied from stl_bvector.h)
280 const_circulator operator--(int) {
281 const_circulator tmp = *this;
282 _node = _node->predecessor;
283 return tmp;}
284
285 /// return a circulator referring to the next node
286 const_circulator next() const {
287 return const_circulator(_node->successor);}
288
289 /// return a circulator referring to the previous node
290 const_circulator previous() const {
291 return const_circulator(_node->predecessor);}
292
293
294
295 bool operator!=(const const_circulator & other) const {return other._node != _node;}
296 bool operator==(const const_circulator & other) const {return other._node == _node;}
297
298private:
299 const Node * _node;
300};
301
302
303
304
305//----------------------------------------------------------------------
306/// initialise from a sorted initial array allowing for a larger
307/// maximum size of the array...
308template<class T> SearchTree<T>::SearchTree(const std::vector<T> & init,
309 unsigned int max_size) :
310 _nodes(max_size) {
311
312 _available_nodes.reserve(max_size);
313 _available_nodes.resize(max_size - init.size());
314 for (unsigned int i = init.size(); i < max_size; i++) {
315 _available_nodes[i-init.size()] = &(_nodes[i]);
316 }
317
318 _initialize(init);
319}
320
321//----------------------------------------------------------------------
322/// initialise from a sorted initial array
323template<class T> SearchTree<T>::SearchTree(const std::vector<T> & init) :
324 _nodes(init.size()), _available_nodes(0) {
325
326 // reserve space for the list of available nodes
327 _available_nodes.reserve(init.size());
328 _initialize(init);
329}
330
331//----------------------------------------------------------------------
332/// do the actual hard work of initialization
333template<class T> void SearchTree<T>::_initialize(const std::vector<T> & init) {
334
335 _n_removes = 0;
336 unsigned n = init.size();
337 assert(n>=1);
338
339 // reserve space for the list of available nodes
340 //_available_nodes.reserve();
341
342#ifdef TRACK_DEPTH
343 _max_depth = 0;
344#endif
345
346
347 // validate the input
348 for (unsigned int i = 1; i<n; i++) {
349 assert(!(init[i] < init[i-1]));
350 }
351
352 // now initialise the vector; link neighbours in the sequence
353 for(unsigned int i = 0; i < n; i++) {
354 _nodes[i].value = init[i];
355 _nodes[i].predecessor = (& (_nodes[i])) - 1;
356 _nodes[i].successor = (& (_nodes[i])) + 1;
357 _nodes[i].nullify_treelinks();
358 }
359 // make a loop structure so that we can circulate...
360 _nodes[0].predecessor = (& (_nodes[n-1]));
361 _nodes[n-1].successor = (& (_nodes[0]));
362
363 // now label the rest of the nodes
364 unsigned int scale = (n+1)/2;
365 unsigned int top = std::min(n-1,scale);
366 _nodes[top].parent = NULL;
367 _top_node = &(_nodes[top]);
368 _do_initial_connections(top, scale, 0, n, 0);
369
370 // make sure things are sensible...
371 //verify_structure();
372}
373
374
375
376//----------------------------------------------------------------------
377template<class T> inline int SearchTree<T>::loc(const Node * node) const {return node == NULL?
378 -999 : node - &(_nodes[0]);}
379
380
381//----------------------------------------------------------------------
382/// Recursive creation of connections, assuming the _nodes vector is
383/// completely filled and ordered
384template<class T> void SearchTree<T>::_do_initial_connections(
385 unsigned int this_one,
386 unsigned int scale,
387 unsigned int left_edge,
388 unsigned int right_edge,
389 unsigned int depth
390 ) {
391
392#ifdef TRACK_DEPTH
393 // keep track of tree depth for checking things stay reasonable...
394 _max_depth = max(depth, _max_depth);
395#endif
396
397 //std::cout << this_one << " "<< scale<< std::endl;
398 unsigned int ref_new_scale = (scale+1)/2;
399
400 // work through children to our left
401 unsigned new_scale = ref_new_scale;
402 bool did_child = false;
403 while(true) {
404 int left = this_one - new_scale; // be careful here to use signed int...
405 // if there is something unitialised to our left, link to it
406 if (left >= static_cast<int>(left_edge)
407 && _nodes[left].treelinks_null() ) {
408 _nodes[left].parent = &(_nodes[this_one]);
409 _nodes[this_one].left = &(_nodes[left]);
410 // create connections between left_edge and this_one
411 _do_initial_connections(left, new_scale, left_edge, this_one, depth+1);
412 did_child = true;
413 break;
414 }
415 // reduce the scale so as to try again
416 unsigned int old_new_scale = new_scale;
417 new_scale = (old_new_scale + 1)/2;
418 // unless we've reached end of tree
419 if (new_scale == old_new_scale) break;
420 }
421 if (!did_child) {_nodes[this_one].left = NULL;}
422
423
424 // work through children to our right
425 new_scale = ref_new_scale;
426 did_child = false;
427 while(true) {
428 unsigned int right = this_one + new_scale;
429 if (right < right_edge && _nodes[right].treelinks_null()) {
430 _nodes[right].parent = &(_nodes[this_one]);
431 _nodes[this_one].right = &(_nodes[right]);
432 // create connections between this_one+1 and right_edge
433 _do_initial_connections(right, new_scale, this_one+1,right_edge,depth+1);
434 did_child = true;
435 break;
436 }
437 // reduce the scale so as to try again
438 unsigned int old_new_scale = new_scale;
439 new_scale = (old_new_scale + 1)/2;
440 // unless we've reached end of tree
441 if (new_scale == old_new_scale) break;
442 }
443 if (!did_child) {_nodes[this_one].right = NULL;}
444
445}
446
447
448
449//----------------------------------------------------------------------
450template<class T> void SearchTree<T>::remove(unsigned int node_index) {
451 remove(&(_nodes[node_index]));
452}
453
454//----------------------------------------------------------------------
455template<class T> void SearchTree<T>::remove(circulator & circ) {
456 remove(circ._node);
457}
458
459//----------------------------------------------------------------------
460// Useful reference for this:
461// http://en.wikipedia.org/wiki/Binary_search_tree#Deletion
462template<class T> void SearchTree<T>::remove(typename SearchTree<T>::Node * node) {
463
464 // we don't remove things from the tree if we've reached the last
465 // elements... (is this wise?)
466 assert(size() > 1); // switch this to throw...?
467 assert(!node->treelinks_null());
468
469 // deal with relinking predecessor and successor
470 node->predecessor->successor = node->successor;
471 node->successor->predecessor = node->predecessor;
472
473 if (node->left == NULL && node->right == NULL) {
474 // node has no children, so remove it by nullifying the pointer
475 // from the parent
476 node->reset_parents_link_to_me(NULL);
477
478 } else if (node->left != NULL && node->right == NULL){
479 // make parent point to my child
480 node->reset_parents_link_to_me(node->left);
481 // and child to parent
482 node->left->parent = node->parent;
483 // sort out the top node...
484 if (_top_node == node) {_top_node = node->left;}
485
486 } else if (node->left == NULL && node->right != NULL){
487 // make parent point to my child
488 node->reset_parents_link_to_me(node->right);
489 // and child to parent
490 node->right->parent = node->parent;
491 // sort out the top node...
492 if (_top_node == node) {_top_node = node->right;}
493
494 } else {
495 // we have two children; we will put a replacement in our place
496 Node * replacement;
497 //SearchTree<T>::Node * replacements_child;
498 // chose predecessor or successor (one, then other, then first, etc...)
499 bool use_predecessor = (_n_removes % 2 == 1);
500 if (use_predecessor) {
501 // Option 1: put predecessor in our place, and have its parent
502 // point to its left child (as a predecessor it has no right child)
503 replacement = node->predecessor;
504 assert(replacement->right == NULL); // guaranteed if it's our predecessor
505 // we have to be careful of replacing certain links when the
506 // replacement is this node's child
507 if (replacement != node->left) {
508 if (replacement->left != NULL) {
509 replacement->left->parent = replacement->parent;}
510 replacement->reset_parents_link_to_me(replacement->left);
511 replacement->left = node->left;
512 }
513 replacement->parent = node->parent;
514 replacement->right = node->right;
515 } else {
516 // Option 2: put successor in our place, and have its parent
517 // point to its right child (as a successor it has no left child)
518 replacement = node->successor;
519 assert(replacement->left == NULL); // guaranteed if it's our successor
520 if (replacement != node->right) {
521 if (replacement->right != NULL) {
522 replacement->right->parent = replacement->parent;}
523 replacement->reset_parents_link_to_me(replacement->right);
524 replacement->right = node->right;
525 }
526 replacement->parent = node->parent;
527 replacement->left = node->left;
528 }
529 node->reset_parents_link_to_me(replacement);
530
531 // make sure node's original children now point to the replacement
532 if (node->left != replacement) {node->left->parent = replacement;}
533 if (node->right != replacement) {node->right->parent = replacement;}
534
535 // sort out the top node...
536 if (_top_node == node) {_top_node = replacement;}
537 }
538
539 // make sure we leave something nice and clean...
540 node->nullify_treelinks();
541 node->predecessor = NULL;
542 node->successor = NULL;
543
544 // for bookkeeping (and choosing whether to use pred. or succ.)
545 _n_removes++;
546 // for when we next need access to a free node...
547 _available_nodes.push_back(node);
548}
549
550
551//----------------------------------------------------------------------
552//template<class T> typename SearchTree<T>::Node * SearchTree<T>::insert(const T & value) {
553
554//----------------------------------------------------------------------
555template<class T> typename SearchTree<T>::circulator SearchTree<T>::insert(const T & value) {
556 // make sure we don't exceed allowed number of nodes...
557 assert(_available_nodes.size() > 0);
558
559 Node * node = _available_nodes.back();
560 _available_nodes.pop_back();
561 node->value = value;
562
563 Node * location = _top_node;
564 Node * old_location = NULL;
565 bool on_left = true; // (init not needed -- but soothes g++4)
566 // work through tree until we reach its end
567#ifdef TRACK_DEPTH
568 unsigned int depth = 0;
569#endif
570 while(location != NULL) {
571#ifdef TRACK_DEPTH
572 depth++;
573#endif
574 old_location = location;
575 on_left = value < location->value;
576 if (on_left) {location = location->left;}
577 else {location = location->right;}
578 }
579#ifdef TRACK_DEPTH
580 _max_depth = max(depth, _max_depth);
581#endif
582 // now create tree links
583 node->parent = old_location;
584 if (on_left) {node->parent->left = node;}
585 else {node->parent->right = node;}
586 node->left = NULL;
587 node->right = NULL;
588 // and create predecessor / successor links
589 node->predecessor = _find_predecessor(node);
590 if (node->predecessor != NULL) {
591 // it exists, so make use of its info (will include a cyclic case,
592 // when successor is round the bend)
593 node->successor = node->predecessor->successor;
594 node->predecessor->successor = node;
595 node->successor->predecessor = node;
596 } else {
597 // deal with case when we are left-most edge of tree (then successor
598 // will exist...)
599 node->successor = _find_successor(node);
600 assert(node->successor != NULL); // can only happen if we're sole element
601 // (but not allowed, since tree size>=1)
602 node->predecessor = node->successor->predecessor;
603 node->successor->predecessor = node;
604 node->predecessor->successor = node;
605 }
606
607 return circulator(node);
608}
609
610
611//----------------------------------------------------------------------
612template<class T> void SearchTree<T>::verify_structure() {
613
614 // do a check running through all elements
615 verify_structure_linear();
616
617 // do a recursive check down tree from top
618
619 // first establish the extremities
620 const Node * left_limit = _top_node;
621 while (left_limit->left != NULL) {left_limit = left_limit->left;}
622 const Node * right_limit = _top_node;
623 while (right_limit->right != NULL) {right_limit = right_limit->right;}
624
625 // then actually do recursion
626 verify_structure_recursive(_top_node, left_limit, right_limit);
627}
628
629
630//----------------------------------------------------------------------
631template<class T> void SearchTree<T>::verify_structure_recursive(
632 const typename SearchTree<T>::Node * element,
633 const typename SearchTree<T>::Node * left_limit,
634 const typename SearchTree<T>::Node * right_limit) const {
635
636 assert(!(element->value < left_limit->value));
637 assert(!(right_limit->value < element->value));
638
639 const Node * left = element->left;
640 if (left != NULL) {
641 assert(!(element->value < left->value));
642 if (left != left_limit) {
643 // recurse down the tree with this element as the right-hand limit
644 verify_structure_recursive(left, left_limit, element);}
645 }
646
647 const Node * right = element->right;
648 if (right != NULL) {
649 assert(!(right->value < element->value));
650 if (right != right_limit) {
651 // recurse down the tree with this element as the left-hand limit
652 verify_structure_recursive(right, element, right_limit);}
653 }
654}
655
656//----------------------------------------------------------------------
657template<class T> void SearchTree<T>::verify_structure_linear() const {
658
659 //print_elements();
660
661 unsigned n_top = 0;
662 unsigned n_null = 0;
663 for(unsigned i = 0; i < _nodes.size(); i++) {
664 const typename SearchTree<T>::Node * node = &(_nodes[i]);
665 // make sure node is defined
666 if (node->treelinks_null()) {n_null++; continue;}
667
668 // make sure of the number of "top" nodes
669 if (node->parent == NULL) {
670 n_top++;
671 //assert(node->left != NULL);
672 //assert(node->right != NULL);
673 } else {
674 // make sure that I am a child of my parent...
675 //assert((node->parent->left == node) || (node->parent->right == node));
676 assert((node->parent->left == node) ^ (node->parent->right == node));
677 }
678
679 // when there is a left child make sure it's value is ordered
680 // (note use of !(b<a), to allow for a<=b while using just the <
681 // operator)
682 if (node->left != NULL) {
683 assert(!(node->value < node->left->value ));}
684
685 // when there is a right child make sure it's value is ordered
686 if (node->right != NULL) {
687 assert(!(node->right->value < node->value ));}
688
689 }
690 assert(n_top == 1 || (n_top == 0 && size() <= 1) );
691 assert(n_null == _available_nodes.size() ||
692 (n_null == _available_nodes.size() + 1 && size() == 1));
693}
694
695
696//----------------------------------------------------------------------
697template<class T> typename SearchTree<T>::Node * SearchTree<T>::_find_predecessor(const typename SearchTree<T>::Node * node) {
698
699 typename SearchTree<T>::Node * newnode;
700 if (node->left != NULL) {
701 // go down left, and then down right as far as possible.
702 newnode = node->left;
703 while(newnode->right != NULL) {newnode = newnode->right;}
704 return newnode;
705 } else {
706 const typename SearchTree<T>::Node * lastnode = node;
707 newnode = node->parent;
708 // go up the tree as long as we're going right (when we go left then
709 // we've found something smaller, so stop)
710 while(newnode != NULL) {
711 if (newnode->right == lastnode) {return newnode;}
712 lastnode = newnode;
713 newnode = newnode->parent;
714 }
715 return newnode;
716 }
717}
718
719
720//----------------------------------------------------------------------
721template<class T> typename SearchTree<T>::Node * SearchTree<T>::_find_successor(const typename SearchTree<T>::Node * node) {
722
723 typename SearchTree<T>::Node * newnode;
724 if (node->right != NULL) {
725 // go down right, and then down left as far as possible.
726 newnode = node->right;
727 while(newnode->left != NULL) {newnode = newnode->left;}
728 return newnode;
729 } else {
730 const typename SearchTree<T>::Node * lastnode = node;
731 newnode = node->parent;
732 // go up the tree as long as we're going left (when we go right then
733 // we've found something larger, so stop)
734 while(newnode != NULL) {
735 if (newnode->left == lastnode) {return newnode;}
736 lastnode = newnode;
737 newnode = newnode->parent;
738 }
739 return newnode;
740 }
741}
742
743
744//----------------------------------------------------------------------
745// print out all the elements for visual checking...
746template<class T> void SearchTree<T>::print_elements() {
747 typename SearchTree<T>::Node * base_node = &(_nodes[0]);
748 typename SearchTree<T>::Node * node = base_node;
749
750 int n = _nodes.size();
751 for(; node - base_node < n ; node++) {
752 printf("%4d parent:%4d left:%4d right:%4d pred:%4d succ:%4d value:%10.6f\n",loc(node), loc(node->parent), loc(node->left), loc(node->right), loc(node->predecessor),loc(node->successor),node->value);
753 }
754}
755
756//----------------------------------------------------------------------
757template<class T> typename SearchTree<T>::circulator SearchTree<T>::somewhere() {
758 return circulator(_top_node);
759}
760
761
762//----------------------------------------------------------------------
763template<class T> typename SearchTree<T>::const_circulator SearchTree<T>::somewhere() const {
764 return const_circulator(_top_node);
765}
766
767
768FASTJET_END_NAMESPACE
769
770#endif // __FASTJET_SEARCHTREE_HH__
Note: See TracBrowser for help on using the repository browser.