1 | /*
|
---|
2 | ---- Hector the simulator ----
|
---|
3 | A fast simulator of particles through generic beamlines.
|
---|
4 | J. de Favereau, X. Rouby ~~~ hector_devel@cp3.phys.ucl.ac.be
|
---|
5 |
|
---|
6 | http://www.fynu.ucl.ac.be/hector.html
|
---|
7 |
|
---|
8 | Centre de Physique des Particules et de Phénoménologie (CP3)
|
---|
9 | Université Catholique de Louvain (UCL)
|
---|
10 | */
|
---|
11 |
|
---|
12 | /// \file H_RectEllipticAperture.cc
|
---|
13 | /// \brief Defines the Rect-Elliptic aperture of beamline elements.
|
---|
14 |
|
---|
15 | // C++ #includes
|
---|
16 | #include <iostream>
|
---|
17 |
|
---|
18 | // C #includes
|
---|
19 | #include <cmath> // needed for fabs
|
---|
20 |
|
---|
21 | // ROOT #includes
|
---|
22 | #include "TPolyLine.h"
|
---|
23 |
|
---|
24 | // local #includes
|
---|
25 | #include "H_RectEllipticAperture.h"
|
---|
26 | using namespace std;
|
---|
27 |
|
---|
28 | H_RectEllipticAperture::H_RectEllipticAperture(const float l, const float h, const float L, const float H, const float posx, const float posy) :H_Aperture(RECTELLIPSE,((l==0)?L:l),((h==0)?H:h),L,H,posx,posy) {
|
---|
29 | /// @param l, h, L, H are the geometrical parameters of the rect-ellipse shape
|
---|
30 | /// @param posx, posy defines the (x,y) of the center of the shape
|
---|
31 | type= RECTELLIPSE;
|
---|
32 | }
|
---|
33 |
|
---|
34 | H_RectEllipticAperture* H_RectEllipticAperture::clone() const {
|
---|
35 | return new H_RectEllipticAperture(x1,x2,x3,x4,fx,fy);
|
---|
36 | }
|
---|
37 |
|
---|
38 |
|
---|
39 | TPolyLine * rectellipse(const float a_e = 2, const float b_e = 1, const float a_r = 1, const float b_r = 2, const float center_x = 0, const float center_y =0) {
|
---|
40 | const int n = 20; // number of points per segment
|
---|
41 | const int N = 4*n; // there are 4 segments
|
---|
42 | float x[N+1], y[N+1];
|
---|
43 |
|
---|
44 | if(a_e>a_r) {
|
---|
45 | // a rectellipse has 4 segments
|
---|
46 | // 1) upper one
|
---|
47 | for (int i=0; i<n; i++) {
|
---|
48 | x[i] = -a_r + i*(2*a_r)/(float)n;
|
---|
49 | y[i] = b_e * sqrt(1-pow(x[i]/a_e,2));
|
---|
50 | }
|
---|
51 |
|
---|
52 | // 2) right vertical segment
|
---|
53 | // upper right corner
|
---|
54 | const float y2 = b_e * sqrt(1-pow(a_r/a_e,2));
|
---|
55 | // lower right corner
|
---|
56 | const float y3 = -b_e * sqrt(1-pow(a_r/a_e,2));
|
---|
57 | for (int i=n; i<2*n; i++) {
|
---|
58 | x[i] = a_r;
|
---|
59 | y[i] = y2 - (i-n)*(2*y2)/(float)n;
|
---|
60 | }
|
---|
61 |
|
---|
62 | // 3) lower side
|
---|
63 | for (int i=2*n; i<3*n; i++) {
|
---|
64 | x[i] = a_r - (i-2*n)*(2*a_r)/(float)n;
|
---|
65 | y[i] = -b_e * sqrt(1-pow(x[i]/a_e,2));
|
---|
66 | }
|
---|
67 |
|
---|
68 | // 4) left vertical segment
|
---|
69 | // lower left corner
|
---|
70 | const float y4 = y3;
|
---|
71 | for (int i=3*n; i<4*n; i++) {
|
---|
72 | x[i] = -a_r;
|
---|
73 | y[i] = y4 + (i-3*n)*(2*y2)/(float)n;
|
---|
74 | }
|
---|
75 | } else {
|
---|
76 | // 1) upper one : flat
|
---|
77 | const float x1 = -a_e * sqrt(1-pow(b_r/b_e,2));
|
---|
78 | const float x2 = -x1;
|
---|
79 | for (int i=0; i<n; i++) {
|
---|
80 | y[i] = b_r;
|
---|
81 | x[i] = x1 + i * (x2-x1)/(float)n;
|
---|
82 | }
|
---|
83 |
|
---|
84 | // 2) right curved border
|
---|
85 | for (int i=n; i<2*n; i++) {
|
---|
86 | y[i] = b_r - (i-n) * (2*b_r)/(float)n;
|
---|
87 | x[i] = a_e * sqrt(1-pow(y[i]/b_e,2));
|
---|
88 | }
|
---|
89 |
|
---|
90 | // 3) lower side : flat
|
---|
91 | for (int i=2*n; i<3*n; i++) {
|
---|
92 | y[i] = -b_r;
|
---|
93 | x[i] = x2 - (i-2*n) * (2*x2)/(float)n;
|
---|
94 | }
|
---|
95 |
|
---|
96 | // 4) left curved border
|
---|
97 | for (int i=3*n; i<4*n; i++) {
|
---|
98 | y[i] = -b_r + (i-3*n) * (2*b_r)/(float)n;
|
---|
99 | x[i] = -a_e * sqrt(1-pow(y[i]/b_e,2));
|
---|
100 | }
|
---|
101 | }
|
---|
102 |
|
---|
103 | // closing the polyline
|
---|
104 | x[N] = x[0];
|
---|
105 | y[N] = y[0];
|
---|
106 |
|
---|
107 | // shifting the center
|
---|
108 | for (int i=0; i<N+1; i++) {
|
---|
109 | x[i] += center_x;
|
---|
110 | y[i] += center_y;
|
---|
111 | }
|
---|
112 |
|
---|
113 | return new TPolyLine(N+1,x,y);
|
---|
114 | }
|
---|
115 |
|
---|
116 |
|
---|
117 | void H_RectEllipticAperture::draw(const float scale) const {
|
---|
118 | TPolyLine * re = rectellipse(x3*scale, x4*scale, x1*scale, x2*scale, fx*scale, fy*scale);
|
---|
119 | re->SetLineColor(39);
|
---|
120 | re->SetLineWidth(2);
|
---|
121 | re->Draw("l");
|
---|
122 | return;
|
---|
123 | }
|
---|
124 |
|
---|
125 | bool H_RectEllipticAperture::isInside(const float x, const float y) const {
|
---|
126 | return((fabs(fx-x)<x1)&&(fabs(fy-y)<x2)&&(((x-fx)/x3)*((x-fx)/x3)+((y-fy)/x4)*((y-fy)/x4)<1));
|
---|
127 | }
|
---|
128 |
|
---|
129 | void H_RectEllipticAperture::printProperties() const {
|
---|
130 | cout << "Aperture shape:" << getTypeString() << ", parameters " <<x1<<", "<<x2<<", "<<x3<<", "<<x4<< endl;
|
---|
131 | cout << " \t Center : "<<fx<<", "<<fy<<endl;
|
---|
132 | return;
|
---|
133 | }
|
---|