1 | /*
|
---|
2 | ---- Hector the simulator ----
|
---|
3 | A fast simulator of particles through generic beamlines.
|
---|
4 | J. de Favereau, X. Rouby ~~~ hector_devel@cp3.phys.ucl.ac.be
|
---|
5 |
|
---|
6 | http://www.fynu.ucl.ac.be/hector.html
|
---|
7 |
|
---|
8 | Centre de Physique des Particules et de Phénoménologie (CP3)
|
---|
9 | Université Catholique de Louvain (UCL)
|
---|
10 | */
|
---|
11 |
|
---|
12 |
|
---|
13 | /// \file H_RecRPObject.cc
|
---|
14 | /// \brief Class performing the reconstruction based on forward detector measurements
|
---|
15 | ///
|
---|
16 | /// Units : angles [rad], distances [m], energies [GeV], c=[1].
|
---|
17 |
|
---|
18 | // local #includes
|
---|
19 | #include "H_RecRPObject.h"
|
---|
20 | #include "H_RomanPot.h"
|
---|
21 | #include "H_BeamParticle.h"
|
---|
22 | using namespace std;
|
---|
23 |
|
---|
24 | // reconstruction class for forward detectors.
|
---|
25 | // Featuring the brand-new reco method from the
|
---|
26 | // louvain group !
|
---|
27 |
|
---|
28 | #define MEGA 1000000.
|
---|
29 |
|
---|
30 | H_RecRPObject::H_RecRPObject(): emin(0), emax(-1), x1(0), x2(0), y1(0), y2(0), s1(0), s2(0),
|
---|
31 | txip(NOT_YET_COMPUTED), tyip(NOT_YET_COMPUTED), energy(NOT_YET_COMPUTED), q2(NOT_YET_COMPUTED), pt(NOT_YET_COMPUTED),
|
---|
32 | thebeam(new H_AbstractBeamLine()),
|
---|
33 | f_1(new TF1("f_1","[0] + [1]*x + [2]*x*x ",emin,emax)),
|
---|
34 | f_2(new TF1("f_2","[0] + [1]*x + [2]*x*x ",emin,emax)),
|
---|
35 | g_1(new TF1("g_1","[0] + [1]*x + [2]*x*x ",emin,emax)),
|
---|
36 | g_2(new TF1("g_2","[0] + [1]*x + [2]*x*x ",emin,emax)),
|
---|
37 | d_1(new TF1("d_1","[0] + [1]*x + [2]*x*x ",emin,emax)),
|
---|
38 | d_2(new TF1("d_2","[0] + [1]*x + [2]*x*x ",emin,emax)),
|
---|
39 | k_1(new TF1("k_1","[0] + [1]*x + [2]*x*x ",emin,emax)),
|
---|
40 | k_2(new TF1("k_2","[0] + [1]*x + [2]*x*x ",emin,emax)),
|
---|
41 | l_1(new TF1("l_1","[0] + [1]*x + [2]*x*x ",emin,emax)),
|
---|
42 | l_2(new TF1("l_2","[0] + [1]*x + [2]*x*x ",emin,emax))
|
---|
43 | {
|
---|
44 | // emax = -1; /* GeV */
|
---|
45 | }
|
---|
46 |
|
---|
47 | H_RecRPObject::H_RecRPObject(float ss1, float ss2, H_AbstractBeamLine* beam) : emin(0), emax(-1), x1(0), x2(0), y1(0), y2(0), s1(ss1), s2(ss2),
|
---|
48 | txip(NOT_YET_COMPUTED), tyip(NOT_YET_COMPUTED), energy(NOT_YET_COMPUTED), q2(NOT_YET_COMPUTED), pt(NOT_YET_COMPUTED),
|
---|
49 | thebeam(beam),
|
---|
50 | f_1(new TF1("f_1","[0] + [1]*x + [2]*x*x ",emin,emax)),
|
---|
51 | f_2(new TF1("f_2","[0] + [1]*x + [2]*x*x ",emin,emax)),
|
---|
52 | g_1(new TF1("g_1","[0] + [1]*x + [2]*x*x ",emin,emax)),
|
---|
53 | g_2(new TF1("g_2","[0] + [1]*x + [2]*x*x ",emin,emax)),
|
---|
54 | d_1(new TF1("d_1","[0] + [1]*x + [2]*x*x ",emin,emax)),
|
---|
55 | d_2(new TF1("d_2","[0] + [1]*x + [2]*x*x ",emin,emax)),
|
---|
56 | k_1(new TF1("k_1","[0] + [1]*x + [2]*x*x ",emin,emax)),
|
---|
57 | k_2(new TF1("k_2","[0] + [1]*x + [2]*x*x ",emin,emax)),
|
---|
58 | l_1(new TF1("l_1","[0] + [1]*x + [2]*x*x ",emin,emax)),
|
---|
59 | l_2(new TF1("l_2","[0] + [1]*x + [2]*x*x ",emin,emax))
|
---|
60 | {
|
---|
61 | if(ss1==ss2) cout<<"<H_RecRPObject> WARNING : detectors are on same position"<<endl;
|
---|
62 | // emax = -1; /* GeV */
|
---|
63 | }
|
---|
64 |
|
---|
65 | void H_RecRPObject::initialize() {
|
---|
66 | // this method sets the functions that will be used for reco later
|
---|
67 | // it should be used only once per beamline after the energy range was fixed.
|
---|
68 | // copying beamline and adding detectors
|
---|
69 |
|
---|
70 | if(emax<0) {
|
---|
71 | cout<<"<H_RecRPObject> ERROR : energy range has to be set first !"<<endl;
|
---|
72 | cout<<"<H_RecRPObject> Please run setERange() or computeERange()"<<endl;
|
---|
73 | cout<<"<H_RecRPObject> initialization aborted"<<endl;
|
---|
74 | return;
|
---|
75 | }
|
---|
76 |
|
---|
77 | if(emax<emin) {
|
---|
78 | cout<<"<H_RecRPObject> ERROR : maximum energy lower than minimum !"<<endl;
|
---|
79 | cout<<"<H_RecRPObject> Please (re-)do setERange()"<<endl;
|
---|
80 | cout<<"<H_RecRPObject> initialization aborted"<<endl;
|
---|
81 | return;
|
---|
82 | }
|
---|
83 |
|
---|
84 | H_AbstractBeamLine * b1 = thebeam->clone();
|
---|
85 | H_RomanPot * rp1 = new H_RomanPot("rp1",s1,0);
|
---|
86 | H_RomanPot * rp2 = new H_RomanPot("rp2",s2,0);
|
---|
87 | b1->add(rp1);
|
---|
88 | b1->add(rp2);
|
---|
89 |
|
---|
90 | // fitting parameters
|
---|
91 | const int N = 20;
|
---|
92 | double e_i[N];
|
---|
93 | double f_1i[N], f_2i[N], g_1i[N], g_2i[N], d_1i[N], d_2i[N];
|
---|
94 | double k_1i[N], k_2i[N], l_1i[N], l_2i[N];
|
---|
95 | for(int i = 0; i < N; i++) {
|
---|
96 | e_i[i] = emin + i * (emax - emin)/((double)N-1);
|
---|
97 | //
|
---|
98 | // the bug seems to be linked to the delete operator of the TMatrixT class in root.
|
---|
99 | // valgrind shows memory problems at that point.
|
---|
100 | // for unknwown reasons, copying the matrix gets around this bug.
|
---|
101 | // valgrind (related) ouptut :
|
---|
102 | //
|
---|
103 | // ==13029== Invalid read of size 4
|
---|
104 | // ==13029== at 0x5E75DB6: H_RecRPObject::initialize() (in /home/jdf/GGamma/Hector/lib/libHector.so)
|
---|
105 | // ==13029== by 0x804A2D8: intelligentreco_rpo(double, double, double, double, std::string, int) (H_IntelligentReco.cpp:314)
|
---|
106 | // ==13029== by 0x804A937: main (H_IntelligentReco.cpp:542)
|
---|
107 | // ==13029== Address 0x64AC740 is 80 bytes inside a block of size 144 free'd
|
---|
108 | // ==13029== at 0x4021D18: operator delete[](void*) (vg_replace_malloc.c:256)
|
---|
109 | // ==13029== by 0x5651F57: TMatrixT<float>::Delete_m(int, float*&) (in /home/jdf/root/5.12/lib/libMatrix.so)
|
---|
110 | // ==13029== by 0x565CC5D: TMatrixT<float>::~TMatrixT() (in /home/jdf/root/5.12/lib/libMatrix.so)
|
---|
111 | // ==13029== by 0x5E75D25: H_RecRPObject::initialize() (in /home/jdf/GGamma/Hector/lib/libHector.so)
|
---|
112 | //
|
---|
113 | //
|
---|
114 | TMatrix el_mattt(b1->getPartialMatrix("rp1",e_i[i],MP,QP));
|
---|
115 | const float *el_mat1 = el_mattt.GetMatrixArray();
|
---|
116 | //
|
---|
117 | // conclusion : first line of el_mat1 is completely messed-up if it is taken directly from
|
---|
118 | // the return of getpartialmatrix like this :
|
---|
119 | // const float *el_mat1 = (b1->getPartialMatrix("rp1",e_i[i],MP,QP)).GetMatrixArray()
|
---|
120 | //
|
---|
121 | // long-term solution (apart noticing root staff) : replacing el_mat1[i] by the equivalent el_mattt(j,k)
|
---|
122 | // which is anyway more transparent for the reader.
|
---|
123 | //
|
---|
124 | f_1i[i] = el_mat1[0];
|
---|
125 | g_1i[i] = el_mat1[1*MDIM];
|
---|
126 | d_1i[i] = MEGA*el_mat1[4*MDIM];
|
---|
127 | k_1i[i] = el_mat1[2*MDIM+2];
|
---|
128 | l_1i[i] = el_mat1[3*MDIM+2];
|
---|
129 | const float* el_mat2 = (b1->getPartialMatrix("rp2",e_i[i],MP,QP).GetMatrixArray());
|
---|
130 | f_2i[i] = el_mat2[0];
|
---|
131 | g_2i[i] = el_mat2[1*MDIM];
|
---|
132 | d_2i[i] = MEGA*el_mat2[4*MDIM];
|
---|
133 | k_2i[i] = el_mat2[2*MDIM+2];
|
---|
134 | l_2i[i] = el_mat2[3*MDIM+2];
|
---|
135 | }
|
---|
136 | TGraph gf_1(N,e_i,f_1i);
|
---|
137 | TGraph gg_1(N,e_i,g_1i);
|
---|
138 | TGraph gd_1(N,e_i,d_1i);
|
---|
139 | TGraph gf_2(N,e_i,f_2i);
|
---|
140 | TGraph gg_2(N,e_i,g_2i);
|
---|
141 | TGraph gd_2(N,e_i,d_2i);
|
---|
142 | TGraph gk_1(N,e_i,k_1i);
|
---|
143 | TGraph gl_1(N,e_i,l_1i);
|
---|
144 | TGraph gk_2(N,e_i,k_2i);
|
---|
145 | TGraph gl_2(N,e_i,l_2i);
|
---|
146 |
|
---|
147 | // functions get their final shape
|
---|
148 | gf_1.Fit("f_1","Q");
|
---|
149 | gg_1.Fit("g_1","Q");
|
---|
150 | gd_1.Fit("d_1","Q");
|
---|
151 | gf_2.Fit("f_2","Q");
|
---|
152 | gg_2.Fit("g_2","Q");
|
---|
153 | gd_2.Fit("d_2","Q");
|
---|
154 | gk_1.Fit("k_1","Q");
|
---|
155 | gl_1.Fit("l_1","Q");
|
---|
156 | gk_2.Fit("k_2","Q");
|
---|
157 | gl_2.Fit("l_2","Q");
|
---|
158 |
|
---|
159 | // cleaning the rest
|
---|
160 | delete b1;
|
---|
161 |
|
---|
162 | // the end
|
---|
163 | return;
|
---|
164 | }
|
---|
165 |
|
---|
166 | void H_RecRPObject::setDetPos(const float ss1, const float ss2) {
|
---|
167 | energy = NOT_YET_COMPUTED;
|
---|
168 | s1 = ss1;
|
---|
169 | s2 = ss2;
|
---|
170 | if(ss1==ss2) cout<<"<H_RecRPObject> WARNING : detectors are on same position"<<endl;
|
---|
171 | return;
|
---|
172 | }
|
---|
173 |
|
---|
174 | void H_RecRPObject::setPositions(const float xx1, const float xx2, const float yy1, const float yy2) {
|
---|
175 | energy = NOT_YET_COMPUTED;
|
---|
176 | x1 = xx1;
|
---|
177 | x2 = xx2;
|
---|
178 | y1 = yy1;
|
---|
179 | y2 = yy2;
|
---|
180 | return;
|
---|
181 | }
|
---|
182 |
|
---|
183 | void H_RecRPObject::setPosition_det1(const float xx1, const float yy1) {
|
---|
184 | energy = NOT_YET_COMPUTED;
|
---|
185 | x1 = xx1;
|
---|
186 | y1 = yy1;
|
---|
187 | }
|
---|
188 |
|
---|
189 | void H_RecRPObject::setPosition_det2(const float xx2, const float yy2) {
|
---|
190 | energy = NOT_YET_COMPUTED;
|
---|
191 | x2 = xx2;
|
---|
192 | y2 = yy2;
|
---|
193 | }
|
---|
194 |
|
---|
195 | void H_RecRPObject::setERange(const float eemin, const float eemax) {
|
---|
196 | energy = NOT_YET_COMPUTED;
|
---|
197 | emin = eemin;
|
---|
198 | emax = eemax;
|
---|
199 | f_1->SetRange(emin,emax);
|
---|
200 | f_2->SetRange(emin,emax);
|
---|
201 | g_1->SetRange(emin,emax);
|
---|
202 | g_2->SetRange(emin,emax);
|
---|
203 | d_1->SetRange(emin,emax);
|
---|
204 | d_2->SetRange(emin,emax);
|
---|
205 | k_1->SetRange(emin,emax);
|
---|
206 | k_2->SetRange(emin,emax);
|
---|
207 | l_1->SetRange(emin,emax);
|
---|
208 | l_2->SetRange(emin,emax);
|
---|
209 | return;
|
---|
210 | }
|
---|
211 |
|
---|
212 |
|
---|
213 | void H_RecRPObject::computeERange() {
|
---|
214 | // optional method to determine the energy range of the FIRST detector
|
---|
215 | // in order to refine the fits and get maximum precision.
|
---|
216 | energy = NOT_YET_COMPUTED;
|
---|
217 | H_AbstractBeamLine * b1 = thebeam->clone();
|
---|
218 | H_RomanPot * rp1 = new H_RomanPot("rp1",s1,0);
|
---|
219 | b1->add(rp1);
|
---|
220 | float max = 1;
|
---|
221 | // number of energies to check
|
---|
222 | const int N = 1000;
|
---|
223 | for(int i=0; i<N; i++) {
|
---|
224 | H_BeamParticle p;
|
---|
225 | p.setE(BE - (emin + i*(BE-emin)/((float)N)));
|
---|
226 | p.computePath(b1);
|
---|
227 | if(p.stopped(b1)) {
|
---|
228 | if(p.getStoppingElement()->getName()=="rp1") {
|
---|
229 | max = emin + i*(BE-emin)/((float)N);
|
---|
230 | }
|
---|
231 | }
|
---|
232 | }
|
---|
233 | cout<<"<H_RecRPObject> Valid energy losses run from 0 (default) to "<<max+20.<<" GeV"<<endl;
|
---|
234 | setERange(0,max+20.);
|
---|
235 | delete b1;
|
---|
236 | return;
|
---|
237 | }
|
---|
238 |
|
---|
239 | void H_RecRPObject::computeAll() {
|
---|
240 | // The big game :
|
---|
241 | // computing E, tx, ty, Q2 and Pt and filling the variables.
|
---|
242 | //
|
---|
243 | // The root TF1 class features nice bugs, which explains the
|
---|
244 | // seemingly-dumb structures happening sometimes here as
|
---|
245 | // workarounds for these bugs. The overall thing works very
|
---|
246 | // well but will be cleaned later anyway.
|
---|
247 |
|
---|
248 | if(energy!=NOT_YET_COMPUTED) {
|
---|
249 | cout<<"<H_RecRPObject> already computed variables, skipping ..."<<endl;
|
---|
250 | return;
|
---|
251 | }
|
---|
252 |
|
---|
253 | TF1 par0("par0","[0]",emin,emax);
|
---|
254 | par0.SetParameter(0,-x1);
|
---|
255 | TF1 par2("par2","[0]",emin,emax);
|
---|
256 | par2.SetParameter(0,-y1);
|
---|
257 | TF1 par1("par1","[0]",emin,emax);
|
---|
258 | par1.SetParameter(0,-x2);
|
---|
259 | TF1 par3("par3","[0]",emin,emax);
|
---|
260 | par3.SetParameter(0,-y2);
|
---|
261 |
|
---|
262 | // angle compensating method :
|
---|
263 | TF1 xx_E("xx_E","(g_2*(par0-d_1*x)-g_1*(par1-d_2*x))/(f_2*g_1-f_1*g_2)",emin,emax);
|
---|
264 | TF1 yy_E("yy_E","(par2*l_2 - par3*l_1) / (k_2*l_1 - k_1*l_2)",emin,emax);
|
---|
265 | TF1 xp_E("xp_E","(f_2*(par0-d_1*x)-f_1*(par1-d_2*x))/(g_2*f_1-g_1*f_2)",emin,emax);
|
---|
266 | TF1 yp_E("yp_E","(par2*k_2-par3*k_1)/(l_2*k_1-l_1*k_2)",emin,emax);
|
---|
267 | // it is possible to refine study using y info, but effect was not tested.
|
---|
268 | // TF1 p_xy_E("p_xy_E","(-xx_E*xx_E-yy_E*yy_E)",emin,emax);
|
---|
269 | TF1 p_xy_E("p_xy_E","(-xx_E*xx_E)",emin,emax);
|
---|
270 |
|
---|
271 | energy = p_xy_E.GetMaximumX(emin,emax);
|
---|
272 | txip = xp_E.Eval(energy);
|
---|
273 | tyip = yp_E.Eval(energy);
|
---|
274 | pt = sqrt(BE*(BE-energy)*(txip*txip+tyip*tyip)/(MEGA*MEGA));
|
---|
275 |
|
---|
276 | return;
|
---|
277 | }
|
---|
278 |
|
---|
279 | float H_RecRPObject::getE(int a) {
|
---|
280 | // put for backward compatibility
|
---|
281 | if(energy==NOT_YET_COMPUTED) { computeAll(); };
|
---|
282 | return energy;
|
---|
283 | } // to be removed !!!!!
|
---|
284 |
|
---|
285 | float H_RecRPObject::getE() {
|
---|
286 | if(energy==NOT_YET_COMPUTED) { computeAll(); };
|
---|
287 | return energy;
|
---|
288 | }
|
---|
289 |
|
---|
290 | float H_RecRPObject::getTX() {
|
---|
291 | if(energy==NOT_YET_COMPUTED) { computeAll(); };
|
---|
292 | return txip;
|
---|
293 | }
|
---|
294 |
|
---|
295 | float H_RecRPObject::getTY() {
|
---|
296 | if(energy==NOT_YET_COMPUTED) { computeAll(); };
|
---|
297 | return tyip;
|
---|
298 | }
|
---|
299 |
|
---|
300 | float H_RecRPObject::getQ2() {
|
---|
301 | if(energy==NOT_YET_COMPUTED) { computeAll(); };
|
---|
302 | cout<<"<H_RecRPObject::getQ2> Not implemented yet"<<endl;
|
---|
303 | return 0;
|
---|
304 | }
|
---|
305 |
|
---|
306 | float H_RecRPObject::getPt() {
|
---|
307 | if(energy==NOT_YET_COMPUTED) { computeAll(); };
|
---|
308 | return pt;
|
---|
309 | }
|
---|