1 | /*
|
---|
2 | ---- Hector the simulator ----
|
---|
3 | A fast simulator of particles through generic beamlines.
|
---|
4 | J. de Favereau, X. Rouby ~~~ hector_devel@cp3.phys.ucl.ac.be
|
---|
5 |
|
---|
6 | http://www.fynu.ucl.ac.be/hector.html
|
---|
7 |
|
---|
8 | Centre de Physique des Particules et de Phénoménologie (CP3)
|
---|
9 | Université Catholique de Louvain (UCL)
|
---|
10 | */
|
---|
11 |
|
---|
12 | /// \file H_Beam.cc
|
---|
13 | /// \brief Describes a set a particles as a beam
|
---|
14 | ///
|
---|
15 |
|
---|
16 | // ROOT #includes
|
---|
17 | #include "TGraph.h"
|
---|
18 | #include "TRandom.h"
|
---|
19 |
|
---|
20 | // local #includes
|
---|
21 | #include "H_Beam.h"
|
---|
22 | using namespace std;
|
---|
23 |
|
---|
24 | H_Beam::H_Beam() {
|
---|
25 | setPosition(PX,PY,TX+CRANG,TY,PS);
|
---|
26 | setE(BE);
|
---|
27 | setDispersion(SX,SY,STX,STY,SS);
|
---|
28 | setDE(SBE);
|
---|
29 | Nparticles=0;
|
---|
30 | }
|
---|
31 |
|
---|
32 | H_Beam::H_Beam(const H_Beam& be) {
|
---|
33 | beamParticles = be.beamParticles;
|
---|
34 | setPosition(be.fx_ini,be.fy_ini,tx_ini,ty_ini,be.fs_ini);
|
---|
35 | setE(be.fe_ini);
|
---|
36 | setDispersion(be.x_disp,be.y_disp,be.tx_disp,be.ty_disp,be.s_disp);
|
---|
37 | setDE(be.e_disp);
|
---|
38 | Nparticles = be.Nparticles;
|
---|
39 | }
|
---|
40 |
|
---|
41 | H_Beam& H_Beam::operator=(const H_Beam& be) {
|
---|
42 | if(this==&be) return *this;
|
---|
43 | beamParticles = be.beamParticles;
|
---|
44 | setPosition(be.fx_ini,be.fy_ini,tx_ini,ty_ini,be.fs_ini);
|
---|
45 | setE(be.fe_ini);
|
---|
46 | setDispersion(be.x_disp,be.y_disp,be.tx_disp,be.ty_disp,be.s_disp);
|
---|
47 | setDE(be.e_disp);
|
---|
48 | Nparticles = be.Nparticles;
|
---|
49 | return *this;
|
---|
50 | }
|
---|
51 |
|
---|
52 | H_Beam::~H_Beam() {
|
---|
53 | beamParticles.clear();
|
---|
54 | return;
|
---|
55 | };
|
---|
56 |
|
---|
57 | void H_Beam::createBeamParticles(const unsigned int Number_of_particles) {
|
---|
58 | createBeamParticles(Number_of_particles,MP,QP);
|
---|
59 | }
|
---|
60 |
|
---|
61 | void H_Beam::createBeamParticles(const unsigned int Number_of_particles, const double p_mass, const double p_charge) {
|
---|
62 | beamParticles.clear();
|
---|
63 | Nparticles = (Number_of_particles<1) ? 1 : Number_of_particles;
|
---|
64 | for (unsigned int i=0; i<Nparticles; i++) {
|
---|
65 | H_BeamParticle p(p_mass,p_charge);
|
---|
66 | p.setPosition(fx_ini,fy_ini,tx_ini,ty_ini,fs_ini);
|
---|
67 | p.setE(fe_ini);
|
---|
68 | p.smearPos(x_disp,y_disp);
|
---|
69 | p.smearAng(tx_disp,ty_disp);
|
---|
70 | p.smearE(e_disp);
|
---|
71 | p.smearS(s_disp);
|
---|
72 | if (VERBOSE) {if (i==0) cout << " x_ini , tx_ini " << p.getX() << " " << p.getTX() << endl;}
|
---|
73 | beamParticles.push_back(p);
|
---|
74 | }
|
---|
75 | }
|
---|
76 |
|
---|
77 | //void H_Beam::particleGun(const unsigned int Number_of_particles, const float E_min=BE, const float E_max=BE, const float fs_min=0, const float fs_max=0, const float fx_min=0, const float fx_max=0, const float fy_min=0, const float fy_max=0, const float tx_min=-PI/2., const float tx_max=PI/2., const float ty_min=-PI/2., const float ty_max=PI/2., const float p_mass=MP, const double p_charge=QP) {
|
---|
78 | void H_Beam::particleGun(const unsigned int Number_of_particles, const float E_min, const float E_max, const float fs_min, const float fs_max, const float fx_min, const float fx_max, const float fy_min, const float fy_max, const float tx_min, const float tx_max, const float ty_min, const float ty_max, const float p_mass, const double p_charge, const bool flat) {
|
---|
79 | beamParticles.clear();
|
---|
80 | Nparticles = (Number_of_particles<2) ? 2 : Number_of_particles;
|
---|
81 | float gx,gy,gs,gtx,gty,gE;
|
---|
82 | for (unsigned int i=0; i<Nparticles; i++) {
|
---|
83 | H_BeamParticle p(p_mass,p_charge);
|
---|
84 | if (flat) {
|
---|
85 | gx = gRandom->Uniform(fx_min,fx_max);
|
---|
86 | gy = gRandom->Uniform(fy_min,fy_max);
|
---|
87 | gs = gRandom->Uniform(fs_min,fs_max);
|
---|
88 | gtx = gRandom->Uniform(tx_min,tx_max);
|
---|
89 | gty = gRandom->Uniform(ty_min,ty_max);
|
---|
90 | gE = gRandom->Uniform(E_min,E_max);
|
---|
91 | } else {
|
---|
92 | gx = gRandom->Gaus((fx_min+fx_max)/2,(-fx_min+fx_max)/2);
|
---|
93 | gy = gRandom->Gaus((fy_min+fy_max)/2,(-fy_min+fy_max)/2);
|
---|
94 | gs = gRandom->Gaus((fs_min+fs_max)/2,(-fs_min+fs_max)/2);
|
---|
95 | gtx = gRandom->Gaus((tx_min+tx_max)/2,(-tx_min+tx_max)/2);
|
---|
96 | gty = gRandom->Gaus((ty_min+ty_max)/2,(-ty_min+ty_max)/2);
|
---|
97 | gE = gRandom->Gaus ((E_min+E_max)/2,(-E_min+E_max)/2);
|
---|
98 | }
|
---|
99 | p.setPosition(gx,gy,gtx,gty,gs);
|
---|
100 | p.setE(gE);
|
---|
101 | beamParticles.push_back(p);
|
---|
102 | }
|
---|
103 | return;
|
---|
104 | }
|
---|
105 |
|
---|
106 |
|
---|
107 | void H_Beam::createXScanningBeamParticles(const unsigned int Number_of_particles, const float fx_max) {
|
---|
108 | beamParticles.clear();
|
---|
109 | Nparticles = (Number_of_particles<2) ? 2 : Number_of_particles;
|
---|
110 | for (unsigned int i=0; i<Nparticles; i++) {
|
---|
111 | H_BeamParticle p;
|
---|
112 | float fx = fx_ini + i/(float)(Nparticles-1) * (fx_max-fx_ini);
|
---|
113 | p.setPosition(fx,fy_ini,0,0,fs_ini);
|
---|
114 | p.setE(fe_ini);
|
---|
115 | beamParticles.push_back(p);
|
---|
116 | }
|
---|
117 | }
|
---|
118 |
|
---|
119 | void H_Beam::createYScanningBeamParticles(const unsigned int Number_of_particles, const float fy_max) {
|
---|
120 |
|
---|
121 | beamParticles.clear();
|
---|
122 | Nparticles = (Number_of_particles<2) ? 2 : Number_of_particles;
|
---|
123 | for (unsigned int i=0; i<Nparticles; i++) {
|
---|
124 | H_BeamParticle p;
|
---|
125 | float fy = fy_ini + i/(float)(Nparticles-1) * (fy_max-fy_ini);
|
---|
126 | p.setPosition(fx_ini,fy,0,0,fs_ini);
|
---|
127 | p.setE(fe_ini);
|
---|
128 | beamParticles.push_back(p);
|
---|
129 | }
|
---|
130 | }
|
---|
131 |
|
---|
132 | void H_Beam::createTXScanningBeamParticles(const unsigned int Number_of_particles, const float tx_max) {
|
---|
133 | beamParticles.clear();
|
---|
134 | Nparticles = (Number_of_particles<2) ? 2 : Number_of_particles;
|
---|
135 | for (unsigned int i=0; i<Nparticles; i++) {
|
---|
136 | H_BeamParticle p;
|
---|
137 | float tx = tx_ini + i/(float)(Nparticles-1) * (tx_max-tx_ini);
|
---|
138 | p.setPosition(fx_ini,fy_ini,tx,ty_ini,fs_ini);
|
---|
139 | p.setE(fe_ini);
|
---|
140 | beamParticles.push_back(p);
|
---|
141 | }
|
---|
142 | }
|
---|
143 |
|
---|
144 | void H_Beam::createTYScanningBeamParticles(const unsigned int Number_of_particles, const float ty_max) {
|
---|
145 | beamParticles.clear();
|
---|
146 | Nparticles = (Number_of_particles<2) ? 2 : Number_of_particles;
|
---|
147 | for (unsigned int i=0; i<Nparticles; i++) {
|
---|
148 | H_BeamParticle p;
|
---|
149 | float ty = ty_ini + i/(float)(Nparticles-1) * (ty_max-ty_ini);
|
---|
150 | p.setPosition(fx_ini,fy_ini,tx_ini,ty,fs_ini);
|
---|
151 | p.setE(fe_ini);
|
---|
152 | beamParticles.push_back(p);
|
---|
153 | }
|
---|
154 | }
|
---|
155 |
|
---|
156 | const H_BeamParticle * H_Beam::getBeamParticle(const unsigned int particle_index) const {
|
---|
157 | // const int N = (particle_index<0)?0:(( particle_index>Nparticles)?Nparticles:particle_index);
|
---|
158 | const int N = (particle_index>Nparticles)?Nparticles:particle_index;
|
---|
159 | return &(*(beamParticles.begin()+N));// same as "return &beamParticles[N];" but more efficient
|
---|
160 | }
|
---|
161 |
|
---|
162 | H_BeamParticle * H_Beam::getBeamParticle(const unsigned int particle_index) {
|
---|
163 | // const int N = (particle_index<0)?0:(( particle_index>Nparticles)?Nparticles:particle_index);
|
---|
164 | const int N = (particle_index>Nparticles)?Nparticles:particle_index;
|
---|
165 | return &(*(beamParticles.begin()+N));// same as "return &beamParticles[N];" but more efficient
|
---|
166 | }
|
---|
167 |
|
---|
168 | void H_Beam::add(const H_BeamParticle &p) {
|
---|
169 | beamParticles.push_back(p);
|
---|
170 | Nparticles++;
|
---|
171 | }
|
---|
172 |
|
---|
173 | void H_Beam::computePath(const H_AbstractBeamLine * beamline, const bool NonLinear) {
|
---|
174 | vector<H_BeamParticle>::iterator particle_i;
|
---|
175 |
|
---|
176 | for (particle_i = beamParticles.begin(); particle_i < beamParticles.end(); particle_i++) {
|
---|
177 | particle_i->computePath(beamline,NonLinear);
|
---|
178 | }
|
---|
179 | }
|
---|
180 |
|
---|
181 | void H_Beam::computePath(const H_AbstractBeamLine * beamline) {
|
---|
182 | computePath(beamline,false);
|
---|
183 | }
|
---|
184 |
|
---|
185 | /// Propagates the beam until a given s
|
---|
186 | void H_Beam::propagate(const float position) {
|
---|
187 | vector<H_BeamParticle>::iterator particle_i;
|
---|
188 | for (particle_i = beamParticles.begin(); particle_i < beamParticles.end(); particle_i++) {
|
---|
189 | particle_i->propagate(position);
|
---|
190 | }
|
---|
191 | }
|
---|
192 |
|
---|
193 | void H_Beam::emitGamma(const double gee, const double gq2) {
|
---|
194 | /// @param gee = \f$ E_{\gamma} \f$ is the photon energy
|
---|
195 | /// @param gq2 = \f$ Q^2 < 0 \f$ is virtuality of photon \f$ Q^{2} = E^{2}-\vec{k}^{2} \f$
|
---|
196 | emitGamma(gee,gq2,0,2*PI);
|
---|
197 | }
|
---|
198 |
|
---|
199 | void H_Beam::emitGamma(const double gee, const double gq2, const double phimin, const double phimax) {
|
---|
200 | /// @param gee = \f$ E_{\gamma} \f$ is the photon energy
|
---|
201 | /// @param gq2 = \f$ Q^2 < 0 \f$ is virtuality of photon \f$ Q^{2} = E^{2}-\vec{k}^{2} \f$
|
---|
202 | /// @param phimin : lower bound for \f$ \phi \f$
|
---|
203 | /// @param phimax : higher bound for \f$ \phi \f$
|
---|
204 | vector<H_BeamParticle>::iterator particle_i;
|
---|
205 | for (particle_i = beamParticles.begin(); particle_i < beamParticles.end(); particle_i++)
|
---|
206 | particle_i->emitGamma(gee,gq2,phimin,phimax);
|
---|
207 | }
|
---|
208 |
|
---|
209 | float H_Beam::getBetaX(const float s, float& error_on_betax) {
|
---|
210 | /// @param s is the position [m] to propagate to
|
---|
211 | /// @param error_on_betax : getBetaX(...) returns its error in this variable
|
---|
212 | /// not a const method because does a propagate to s!
|
---|
213 | vector<H_BeamParticle>::iterator particle_i;
|
---|
214 | float EX2=0,dummy, mean=getX(s,dummy), temp;
|
---|
215 |
|
---|
216 | for (particle_i = beamParticles.begin(); particle_i < beamParticles.end(); particle_i++) {
|
---|
217 | particle_i->propagate(s);
|
---|
218 | temp = particle_i->getX()-mean;
|
---|
219 | EX2 += temp*temp;
|
---|
220 | }
|
---|
221 | EX2 /= (float)Nparticles;
|
---|
222 | float emitx = getEmittanceX();
|
---|
223 | EX2 = (emitx==0)?0:(float) (EX2 /(float) (emitx*URAD))/URAD;
|
---|
224 | error_on_betax = EX2 / (float) sqrt((double)2*Nparticles);
|
---|
225 | return EX2;
|
---|
226 | }
|
---|
227 |
|
---|
228 | float H_Beam::getBetaY(const float s, float& error_on_betay) {
|
---|
229 | /// @param s is the position [m] to propagate to
|
---|
230 | /// @param error_on_betay : getBetaY(...) returns its error in this variable
|
---|
231 | /// not a const method because does a propagate to s!
|
---|
232 | vector<H_BeamParticle>::iterator particle_i;
|
---|
233 | float EY2 =0, dummy, mean=getY(s,dummy), temp;
|
---|
234 |
|
---|
235 | for (particle_i = beamParticles.begin(); particle_i < beamParticles.end(); particle_i++) {
|
---|
236 | particle_i->propagate(s);
|
---|
237 | temp = particle_i->getY() - mean;
|
---|
238 | EY2 += temp*temp;
|
---|
239 | }
|
---|
240 | EY2 /= (float)Nparticles;
|
---|
241 | float emity = getEmittanceY();
|
---|
242 | EY2 = (emity==0)?0:(float) (EY2 / (float) (emity*URAD))/URAD;
|
---|
243 | error_on_betay = EY2 / (float) sqrt((double)2*Nparticles);
|
---|
244 | return EY2;
|
---|
245 | }
|
---|
246 |
|
---|
247 | TGraphErrors * H_Beam::getBetaX(const float length, const unsigned int number_of_points) {
|
---|
248 | /// @param length [m]
|
---|
249 | /// @number_of_points in the graph (typ. 200)
|
---|
250 | const unsigned int N = number_of_points;
|
---|
251 | float * s = new float[N], * b = new float[N], * es = new float[N], * eb = new float[N];
|
---|
252 | for (unsigned int i=0; i<N; i++) {
|
---|
253 | s[i] = (float) fs_ini + i/(float)(N-1) *length;
|
---|
254 | b[i] = getBetaX(s[i],eb[i]);
|
---|
255 | es[i] = 0;
|
---|
256 | }
|
---|
257 | TGraphErrors * betax = new TGraphErrors(N,s,b,es,eb);
|
---|
258 | betax->SetLineColor(kBlack);
|
---|
259 | betax->SetFillColor(kYellow);
|
---|
260 | delete [] s;
|
---|
261 | delete [] b;
|
---|
262 | delete [] es;
|
---|
263 | delete [] eb;
|
---|
264 | return betax;
|
---|
265 | }
|
---|
266 |
|
---|
267 | TGraphErrors * H_Beam::getBetaY(const float length, const unsigned int number_of_points) {
|
---|
268 | /// @param length [m]
|
---|
269 | /// @number_of_points in the graph (typ. 200)
|
---|
270 | const unsigned int N = number_of_points;
|
---|
271 | float * s = new float[N], * b = new float[N], * es = new float[N], *eb = new float[N];
|
---|
272 | for (unsigned int i=0; i<N; i++) {
|
---|
273 | s[i] = (float) fs_ini + i/(float)(N-1) *length;
|
---|
274 | b[i] = getBetaY(s[i],eb[i]);
|
---|
275 | es[i]=0;
|
---|
276 | }
|
---|
277 | TGraphErrors * betay = new TGraphErrors(N,s,b,es,eb);
|
---|
278 | betay->SetLineColor(kRed);
|
---|
279 | betay->SetFillColor(kYellow);
|
---|
280 | delete [] s;
|
---|
281 | delete [] b;
|
---|
282 | delete [] es;
|
---|
283 | delete [] eb;
|
---|
284 | return betay;
|
---|
285 | }
|
---|
286 |
|
---|
287 | float H_Beam::getX(const float s, float& error_on_posx) {
|
---|
288 | vector<H_BeamParticle>::iterator particle_i;
|
---|
289 | float mean=0;
|
---|
290 |
|
---|
291 | for (particle_i = beamParticles.begin(); particle_i < beamParticles.end(); particle_i++) {
|
---|
292 | particle_i->propagate(s);
|
---|
293 | mean += particle_i->getX();
|
---|
294 | }
|
---|
295 | mean = mean / (float) Nparticles;
|
---|
296 | error_on_posx = mean / (float) sqrt((double)Nparticles);
|
---|
297 | return mean;
|
---|
298 | }
|
---|
299 |
|
---|
300 | float H_Beam::getY(const float s, float& error_on_posy) {
|
---|
301 | vector<H_BeamParticle>::iterator particle_i;
|
---|
302 | float mean=0;
|
---|
303 |
|
---|
304 | for (particle_i = beamParticles.begin(); particle_i < beamParticles.end(); particle_i++) {
|
---|
305 | particle_i->propagate(s);
|
---|
306 | mean += particle_i->getY();
|
---|
307 | }
|
---|
308 | mean = mean / (float) Nparticles;
|
---|
309 | error_on_posy = mean / (float) sqrt((double)Nparticles);
|
---|
310 | return mean;
|
---|
311 | }
|
---|
312 |
|
---|
313 | unsigned int H_Beam::getStoppedNumber(const H_AbstractBeamLine * beamline) {
|
---|
314 | int number =0;
|
---|
315 | vector<H_BeamParticle>::iterator particle_i;
|
---|
316 | for (particle_i = beamParticles.begin(); particle_i < beamParticles.end(); particle_i++) {
|
---|
317 | if(particle_i->stopped(beamline)) number++;
|
---|
318 | }
|
---|
319 | return number;
|
---|
320 | }
|
---|
321 |
|
---|
322 | vector<TVectorD> H_Beam::getStoppingElements(const H_AbstractBeamLine * beamline, vector<H_OpticalElement>& list, vector<int>& numb) {
|
---|
323 |
|
---|
324 | vector<TVectorD> stop_positions;
|
---|
325 | vector<H_BeamParticle>::iterator particle_i;
|
---|
326 | vector<H_OpticalElement>::iterator element_i;
|
---|
327 | H_OpticalElement temp_el;
|
---|
328 | vector<int>::iterator n_i;
|
---|
329 | int number =0;
|
---|
330 | bool found;
|
---|
331 |
|
---|
332 | list.clear();
|
---|
333 | numb.clear();
|
---|
334 |
|
---|
335 | // creates a list of elements where beamParticles have stopped
|
---|
336 | for (particle_i = beamParticles.begin(); particle_i < beamParticles.end(); particle_i++) {
|
---|
337 | found = false;
|
---|
338 | if(particle_i->stopped(beamline)) {
|
---|
339 | temp_el = *(particle_i->getStoppingElement());
|
---|
340 | stop_positions.push_back(*(particle_i->getStopPosition()));
|
---|
341 | if(list.size()==0) {
|
---|
342 | number=1;
|
---|
343 | list.push_back(temp_el);
|
---|
344 | numb.push_back(number);
|
---|
345 |
|
---|
346 | } else {
|
---|
347 | for (element_i = list.begin(), n_i = numb.begin(); element_i < list.end(); element_i++, n_i++) {
|
---|
348 | string el_i_name = element_i->getName();
|
---|
349 | string temp_el_name = temp_el.getName();
|
---|
350 | if(el_i_name == temp_el_name) {
|
---|
351 | number = *n_i;
|
---|
352 | number++;
|
---|
353 | *n_i = number;
|
---|
354 | found = true;
|
---|
355 | }
|
---|
356 | }
|
---|
357 | if(!found) {
|
---|
358 | number=1;
|
---|
359 | list.push_back(temp_el);
|
---|
360 | numb.push_back(number);
|
---|
361 | }
|
---|
362 | }
|
---|
363 | } // if particle_i->stopped
|
---|
364 | }// for particle_i
|
---|
365 | return stop_positions;
|
---|
366 | } // H_Beam::getStoppingElements
|
---|
367 |
|
---|
368 | void H_Beam::printInitialState() const {
|
---|
369 | cout << "Initial parameters of the beam" << endl;
|
---|
370 | cout << "(x,y,s) = (" << fx_ini << "," << fy_ini << "," << fs_ini << ") ";
|
---|
371 | cout << "(theta_x, theta_y) = (" << tx_ini << "," << ty_ini << ") ";
|
---|
372 | cout << "energy = " << fe_ini << endl;
|
---|
373 | cout << endl;
|
---|
374 | cout << "Dispersion on these values : " << endl;
|
---|
375 | cout << "(dx,dy,ds) = (" << x_disp << "," << y_disp << "," << s_disp << ") ";
|
---|
376 | cout << "(dtheta_x, dtheta_y) = (" << tx_disp << "," << ty_disp << ") ";
|
---|
377 | cout << "de = " << e_disp << endl << endl;
|
---|
378 |
|
---|
379 | float mean_ini =0;
|
---|
380 | vector<H_BeamParticle>::const_iterator particle_i;
|
---|
381 | for (particle_i = beamParticles.begin(); particle_i < beamParticles.end(); particle_i++) {
|
---|
382 | mean_ini += particle_i->getX();
|
---|
383 | }
|
---|
384 | mean_ini /= (float) beamParticles.size();
|
---|
385 | cout << "Mean ini x = " << mean_ini << endl;
|
---|
386 | }
|
---|
387 |
|
---|
388 | void H_Beam::printProperties() const {
|
---|
389 | vector<H_BeamParticle>::const_iterator particle_i;
|
---|
390 | cout << "There are " << Nparticles << " in the beam." << endl;
|
---|
391 | for (particle_i = beamParticles.begin();particle_i < beamParticles.end(); particle_i++) {
|
---|
392 | particle_i->printProperties();
|
---|
393 | }
|
---|
394 | }
|
---|
395 |
|
---|
396 | void H_Beam::printStoppingElements(const vector<H_OpticalElement>& list, const vector<int>& numb) const{
|
---|
397 | /// see also H_Beam::getStoppingElements
|
---|
398 | vector<H_OpticalElement>::const_iterator element_i;
|
---|
399 | vector<int>::const_iterator n_i;
|
---|
400 |
|
---|
401 | // prints the list
|
---|
402 | for (element_i=list.begin(), n_i = numb.begin(); element_i < list.end(); element_i++, n_i++) {
|
---|
403 | cout << *n_i << " particules in " << element_i->getName();
|
---|
404 | cout << " (" << element_i->getTypeString() << ") at " << element_i->getS() << "m" << endl;
|
---|
405 | element_i->getAperture()->printProperties();
|
---|
406 | }
|
---|
407 | } // H_Beam::printStoppingElements
|
---|
408 |
|
---|
409 | TH2F * H_Beam::drawAngleProfile(const float s) {
|
---|
410 | /// not a const method because does a propagate to s!
|
---|
411 | char title[50];
|
---|
412 | sprintf(title,"Beam profile at %.2f m",s);
|
---|
413 | vector<H_BeamParticle>::iterator particle_i;
|
---|
414 | float xmax, xmin, ymax, ymin;
|
---|
415 | float xx, yy, xborder, yborder;
|
---|
416 |
|
---|
417 | particle_i=beamParticles.begin();
|
---|
418 | xmin = particle_i->getTX();
|
---|
419 | xmax = particle_i->getTX();
|
---|
420 | ymin = particle_i->getTY();
|
---|
421 | ymax = particle_i->getTY();
|
---|
422 |
|
---|
423 | for (particle_i = beamParticles.begin(); particle_i < beamParticles.end(); particle_i++) {
|
---|
424 | particle_i->propagate(s);
|
---|
425 | xx = particle_i->getTX();
|
---|
426 | yy = particle_i->getTY();
|
---|
427 |
|
---|
428 | xmax = xx>xmax ? xx : xmax;
|
---|
429 | ymax = yy>ymax ? yy : ymax;
|
---|
430 | xmin = xx<xmin ? xx : xmin;
|
---|
431 | ymin = yy<ymin ? yy : ymin;
|
---|
432 | }
|
---|
433 |
|
---|
434 | // in order to avoid some drawing problems, when the beam divergence is null
|
---|
435 | if(!(xmax || xmin)) xmax +=0.1;
|
---|
436 | if(!(ymax || ymin)) xmax +=0.1;
|
---|
437 |
|
---|
438 | if(xmax == xmin) xmax *= 1.1;
|
---|
439 | if(ymax == ymin) ymax *= 1.1;
|
---|
440 |
|
---|
441 | xborder = (xmax-xmin)*0.2;
|
---|
442 | yborder = (ymax-ymin)*0.2;
|
---|
443 |
|
---|
444 | xmax += xborder;
|
---|
445 | xmin -= xborder;
|
---|
446 | ymax += yborder;
|
---|
447 | ymin -= yborder;
|
---|
448 |
|
---|
449 | TH2F * profile = new TH2F("profile",title,10000,xmin,xmax,1000,ymin,ymax);
|
---|
450 | for (particle_i = beamParticles.begin(); particle_i < beamParticles.end(); particle_i++) {
|
---|
451 | profile->Fill(particle_i->getTX(), particle_i->getTY());
|
---|
452 | }
|
---|
453 | return profile;
|
---|
454 | }
|
---|
455 |
|
---|
456 |
|
---|
457 | TH2F * H_Beam::drawProfile(const float s) {
|
---|
458 | /// not a const method because does a propagate to s!
|
---|
459 | char title[50];
|
---|
460 | sprintf(title,"Beam profile at %.2f m",s);
|
---|
461 | vector<H_BeamParticle>::iterator particle_i;
|
---|
462 | float xmax, xmin, ymax, ymin;
|
---|
463 | float xx, yy, xborder, yborder;
|
---|
464 |
|
---|
465 | particle_i=beamParticles.begin();
|
---|
466 | xmin = particle_i->getX();
|
---|
467 | xmax = particle_i->getX();
|
---|
468 | ymin = particle_i->getY();
|
---|
469 | ymax = particle_i->getY();
|
---|
470 |
|
---|
471 | for (particle_i = beamParticles.begin(); particle_i < beamParticles.end(); particle_i++) {
|
---|
472 | particle_i->propagate(s);
|
---|
473 | xx = particle_i->getX();
|
---|
474 | yy = particle_i->getY();
|
---|
475 |
|
---|
476 | xmax = xx>xmax ? xx : xmax;
|
---|
477 | ymax = yy>ymax ? yy : ymax;
|
---|
478 | xmin = xx<xmin ? xx : xmin;
|
---|
479 | ymin = yy<ymin ? yy : ymin;
|
---|
480 | }
|
---|
481 |
|
---|
482 | // in order to avoid some drawing problems, when the beam divergence is null
|
---|
483 | if(!(xmax || xmin)) xmax +=0.1;
|
---|
484 | if(!(ymax || ymin)) xmax +=0.1;
|
---|
485 |
|
---|
486 | if(xmax == xmin) xmax += 0.1;
|
---|
487 | if(ymax == ymin) ymax += 0.1;
|
---|
488 |
|
---|
489 | xborder = (xmax-xmin)*0.2;
|
---|
490 | yborder = (ymax-ymin)*0.2;
|
---|
491 |
|
---|
492 | xmax += xborder;
|
---|
493 | xmin -= xborder;
|
---|
494 | ymax += yborder;
|
---|
495 | ymin -= yborder;
|
---|
496 |
|
---|
497 | TH2F * profile = new TH2F("profile",title,10000,xmin,xmax,1000,ymin,ymax);
|
---|
498 | for (particle_i = beamParticles.begin(); particle_i < beamParticles.end(); particle_i++) {
|
---|
499 | profile->Fill(particle_i->getX(), particle_i->getY());
|
---|
500 | }
|
---|
501 | return profile;
|
---|
502 | }
|
---|
503 |
|
---|
504 | TMultiGraph * H_Beam::drawBeamX(const int color) const {
|
---|
505 | int mycolor = color;
|
---|
506 | vector<H_BeamParticle>::const_iterator particle_i;
|
---|
507 | TMultiGraph * beam_profile_x = new TMultiGraph("beam_profile_x","");
|
---|
508 |
|
---|
509 | for (particle_i = beamParticles.begin(); particle_i < beamParticles.end(); particle_i++) {
|
---|
510 | TGraph * ppath_x = particle_i->getPath(0,mycolor);
|
---|
511 | beam_profile_x->Add(ppath_x);
|
---|
512 | }
|
---|
513 | return beam_profile_x;
|
---|
514 | }
|
---|
515 |
|
---|
516 | TMultiGraph * H_Beam::drawBeamY(const int color) const {
|
---|
517 | int mycolor = color;
|
---|
518 | vector<H_BeamParticle>::const_iterator particle_i;
|
---|
519 | TMultiGraph * beam_profile_y = new TMultiGraph("beam_profile_y","");
|
---|
520 |
|
---|
521 | for (particle_i = beamParticles.begin(); particle_i < beamParticles.end(); particle_i++) {
|
---|
522 | TGraph * ppath_y = particle_i->getPath(1,mycolor);
|
---|
523 | beam_profile_y->Add(ppath_y);
|
---|
524 | }
|
---|
525 | return beam_profile_y;
|
---|
526 | }
|
---|