1 | /* * * * * * * * * * * * * * * * * * * * * * * * * * * *
|
---|
2 | * *
|
---|
3 | * --<--<-- A fast simulator --<--<-- *
|
---|
4 | * / --<--<-- of particle --<--<-- *
|
---|
5 | * ----HECTOR----< *
|
---|
6 | * \ -->-->-- transport through -->-->-- *
|
---|
7 | * -->-->-- generic beamlines -->-->-- *
|
---|
8 | * *
|
---|
9 | * JINST 2:P09005 (2007) *
|
---|
10 | * X Rouby, J de Favereau, K Piotrzkowski (CP3) *
|
---|
11 | * http://www.fynu.ucl.ac.be/hector.html *
|
---|
12 | * *
|
---|
13 | * Center for Cosmology, Particle Physics and Phenomenology *
|
---|
14 | * Universite catholique de Louvain *
|
---|
15 | * Louvain-la-Neuve, Belgium *
|
---|
16 | * *
|
---|
17 | * * * * * * * * * * * * * * * * * * * * * * * * * * * */
|
---|
18 |
|
---|
19 | /// \file H_Beam.cc
|
---|
20 | /// \brief Describes a set a particles as a beam
|
---|
21 | ///
|
---|
22 |
|
---|
23 | // ROOT #includes
|
---|
24 | #include "TGraph.h"
|
---|
25 | #include "TRandom.h"
|
---|
26 |
|
---|
27 | // local #includes
|
---|
28 | #include "H_Beam.h"
|
---|
29 | using namespace std;
|
---|
30 |
|
---|
31 | H_Beam::H_Beam() {
|
---|
32 | setPosition(PX,PY,TX+CRANG,TY,PS);
|
---|
33 | setE(BE);
|
---|
34 | setDispersion(SX,SY,STX,STY,SS);
|
---|
35 | setDE(SBE);
|
---|
36 | Nparticles=0;
|
---|
37 | }
|
---|
38 |
|
---|
39 | H_Beam::H_Beam(const H_Beam& be) {
|
---|
40 | beamParticles = be.beamParticles;
|
---|
41 | setPosition(be.fx_ini,be.fy_ini,tx_ini,ty_ini,be.fs_ini);
|
---|
42 | setE(be.fe_ini);
|
---|
43 | setDispersion(be.x_disp,be.y_disp,be.tx_disp,be.ty_disp,be.s_disp);
|
---|
44 | setDE(be.e_disp);
|
---|
45 | Nparticles = be.Nparticles;
|
---|
46 | }
|
---|
47 |
|
---|
48 | H_Beam& H_Beam::operator=(const H_Beam& be) {
|
---|
49 | if(this==&be) return *this;
|
---|
50 | beamParticles = be.beamParticles;
|
---|
51 | setPosition(be.fx_ini,be.fy_ini,tx_ini,ty_ini,be.fs_ini);
|
---|
52 | setE(be.fe_ini);
|
---|
53 | setDispersion(be.x_disp,be.y_disp,be.tx_disp,be.ty_disp,be.s_disp);
|
---|
54 | setDE(be.e_disp);
|
---|
55 | Nparticles = be.Nparticles;
|
---|
56 | return *this;
|
---|
57 | }
|
---|
58 |
|
---|
59 | H_Beam::~H_Beam() {
|
---|
60 | beamParticles.clear();
|
---|
61 | return;
|
---|
62 | };
|
---|
63 |
|
---|
64 | void H_Beam::createBeamParticles(const unsigned int Number_of_particles, const double p_mass, const double p_charge, TRandom* r) {
|
---|
65 | beamParticles.clear();
|
---|
66 | Nparticles = (Number_of_particles<1) ? 1 : Number_of_particles;
|
---|
67 | for (unsigned int i=0; i<Nparticles; i++) {
|
---|
68 | H_BeamParticle p(p_mass,p_charge);
|
---|
69 | p.setPosition(fx_ini,fy_ini,tx_ini,ty_ini,fs_ini);
|
---|
70 | p.setE(fe_ini);
|
---|
71 | p.smearPos(x_disp,y_disp,r);
|
---|
72 | p.smearAng(tx_disp,ty_disp,r);
|
---|
73 | p.smearE(e_disp,r);
|
---|
74 | p.smearS(s_disp,r);
|
---|
75 | if (VERBOSE) {if (i==0) cout << " x_ini , tx_ini " << p.getX() << " " << p.getTX() << endl;}
|
---|
76 | beamParticles.push_back(p);
|
---|
77 | }
|
---|
78 | }
|
---|
79 |
|
---|
80 | //void H_Beam::particleGun(const unsigned int Number_of_particles, const float E_min=BE, const float E_max=BE, const float fs_min=0, const float fs_max=0, const float fx_min=0, const float fx_max=0, const float fy_min=0, const float fy_max=0, const float tx_min=-PI/2., const float tx_max=PI/2., const float ty_min=-PI/2., const float ty_max=PI/2., const float p_mass=MP, const double p_charge=QP) {
|
---|
81 | void H_Beam::particleGun(const unsigned int Number_of_particles, const float E_min, const float E_max, const float fs_min, const float fs_max, const float fx_min, const float fx_max, const float fy_min, const float fy_max, const float tx_min, const float tx_max, const float ty_min, const float ty_max, const float p_mass, const double p_charge, const bool flat, TRandom* r) {
|
---|
82 | beamParticles.clear();
|
---|
83 | Nparticles = (Number_of_particles<2) ? 2 : Number_of_particles;
|
---|
84 | float gx,gy,gs,gtx,gty,gE;
|
---|
85 | for (unsigned int i=0; i<Nparticles; i++) {
|
---|
86 | H_BeamParticle p(p_mass,p_charge);
|
---|
87 | if (flat) {
|
---|
88 | gx = r->Uniform(fx_min,fx_max);
|
---|
89 | gy = r->Uniform(fy_min,fy_max);
|
---|
90 | gs = r->Uniform(fs_min,fs_max);
|
---|
91 | gtx = r->Uniform(tx_min,tx_max);
|
---|
92 | gty = r->Uniform(ty_min,ty_max);
|
---|
93 | gE = r->Uniform(E_min,E_max);
|
---|
94 | } else {
|
---|
95 | gx = r->Gaus((fx_min+fx_max)/2,(-fx_min+fx_max)/2);
|
---|
96 | gy = r->Gaus((fy_min+fy_max)/2,(-fy_min+fy_max)/2);
|
---|
97 | gs = r->Gaus((fs_min+fs_max)/2,(-fs_min+fs_max)/2);
|
---|
98 | gtx = r->Gaus((tx_min+tx_max)/2,(-tx_min+tx_max)/2);
|
---|
99 | gty = r->Gaus((ty_min+ty_max)/2,(-ty_min+ty_max)/2);
|
---|
100 | gE = r->Gaus ((E_min+E_max)/2,(-E_min+E_max)/2);
|
---|
101 | }
|
---|
102 | p.setPosition(gx,gy,gtx,gty,gs);
|
---|
103 | p.setE(gE);
|
---|
104 | beamParticles.push_back(p);
|
---|
105 | }
|
---|
106 | return;
|
---|
107 | }
|
---|
108 |
|
---|
109 |
|
---|
110 | void H_Beam::createXScanningBeamParticles(const unsigned int Number_of_particles, const float fx_max) {
|
---|
111 | beamParticles.clear();
|
---|
112 | Nparticles = (Number_of_particles<2) ? 2 : Number_of_particles;
|
---|
113 | for (unsigned int i=0; i<Nparticles; i++) {
|
---|
114 | H_BeamParticle p;
|
---|
115 | float fx = fx_ini + i/(float)(Nparticles-1) * (fx_max-fx_ini);
|
---|
116 | p.setPosition(fx,fy_ini,0,0,fs_ini);
|
---|
117 | p.setE(fe_ini);
|
---|
118 | beamParticles.push_back(p);
|
---|
119 | }
|
---|
120 | }
|
---|
121 |
|
---|
122 | void H_Beam::createYScanningBeamParticles(const unsigned int Number_of_particles, const float fy_max) {
|
---|
123 |
|
---|
124 | beamParticles.clear();
|
---|
125 | Nparticles = (Number_of_particles<2) ? 2 : Number_of_particles;
|
---|
126 | for (unsigned int i=0; i<Nparticles; i++) {
|
---|
127 | H_BeamParticle p;
|
---|
128 | float fy = fy_ini + i/(float)(Nparticles-1) * (fy_max-fy_ini);
|
---|
129 | p.setPosition(fx_ini,fy,0,0,fs_ini);
|
---|
130 | p.setE(fe_ini);
|
---|
131 | beamParticles.push_back(p);
|
---|
132 | }
|
---|
133 | }
|
---|
134 |
|
---|
135 | void H_Beam::createTXScanningBeamParticles(const unsigned int Number_of_particles, const float tx_max) {
|
---|
136 | beamParticles.clear();
|
---|
137 | Nparticles = (Number_of_particles<2) ? 2 : Number_of_particles;
|
---|
138 | for (unsigned int i=0; i<Nparticles; i++) {
|
---|
139 | H_BeamParticle p;
|
---|
140 | float tx = tx_ini + i/(float)(Nparticles-1) * (tx_max-tx_ini);
|
---|
141 | p.setPosition(fx_ini,fy_ini,tx,ty_ini,fs_ini);
|
---|
142 | p.setE(fe_ini);
|
---|
143 | beamParticles.push_back(p);
|
---|
144 | }
|
---|
145 | }
|
---|
146 |
|
---|
147 | void H_Beam::createTYScanningBeamParticles(const unsigned int Number_of_particles, const float ty_max) {
|
---|
148 | beamParticles.clear();
|
---|
149 | Nparticles = (Number_of_particles<2) ? 2 : Number_of_particles;
|
---|
150 | for (unsigned int i=0; i<Nparticles; i++) {
|
---|
151 | H_BeamParticle p;
|
---|
152 | float ty = ty_ini + i/(float)(Nparticles-1) * (ty_max-ty_ini);
|
---|
153 | p.setPosition(fx_ini,fy_ini,tx_ini,ty,fs_ini);
|
---|
154 | p.setE(fe_ini);
|
---|
155 | beamParticles.push_back(p);
|
---|
156 | }
|
---|
157 | }
|
---|
158 |
|
---|
159 | const H_BeamParticle * H_Beam::getBeamParticle(const unsigned int particle_index) const {
|
---|
160 | // const int N = (particle_index<0)?0:(( particle_index>Nparticles)?Nparticles:particle_index);
|
---|
161 | const int N = (particle_index>Nparticles)?Nparticles:particle_index;
|
---|
162 | return &(*(beamParticles.begin()+N));// same as "return &beamParticles[N];" but more efficient
|
---|
163 | }
|
---|
164 |
|
---|
165 | H_BeamParticle * H_Beam::getBeamParticle(const unsigned int particle_index) {
|
---|
166 | // const int N = (particle_index<0)?0:(( particle_index>Nparticles)?Nparticles:particle_index);
|
---|
167 | const int N = (particle_index>Nparticles)?Nparticles:particle_index;
|
---|
168 | return &(*(beamParticles.begin()+N));// same as "return &beamParticles[N];" but more efficient
|
---|
169 | }
|
---|
170 |
|
---|
171 | void H_Beam::add(const H_BeamParticle &p) {
|
---|
172 | beamParticles.push_back(p);
|
---|
173 | Nparticles++;
|
---|
174 | }
|
---|
175 |
|
---|
176 | void H_Beam::computePath(const H_AbstractBeamLine * beamline, const bool NonLinear) {
|
---|
177 | vector<H_BeamParticle>::iterator particle_i;
|
---|
178 |
|
---|
179 | for (particle_i = beamParticles.begin(); particle_i < beamParticles.end(); particle_i++) {
|
---|
180 | particle_i->computePath(beamline,NonLinear);
|
---|
181 | }
|
---|
182 | }
|
---|
183 |
|
---|
184 | /// Propagates the beam until a given s
|
---|
185 | void H_Beam::propagate(const float position) {
|
---|
186 | vector<H_BeamParticle>::iterator particle_i;
|
---|
187 | for (particle_i = beamParticles.begin(); particle_i < beamParticles.end(); particle_i++) {
|
---|
188 | particle_i->propagate(position);
|
---|
189 | }
|
---|
190 | }
|
---|
191 |
|
---|
192 | void H_Beam::emitGamma(const double gee, const double gq2, const double phimin, const double phimax) {
|
---|
193 | /// @param gee = \f$ E_{\gamma} \f$ is the photon energy
|
---|
194 | /// @param gq2 = \f$ Q^2 < 0 \f$ is virtuality of photon \f$ Q^{2} = E^{2}-\vec{k}^{2} \f$
|
---|
195 | /// @param phimin : lower bound for \f$ \phi \f$
|
---|
196 | /// @param phimax : higher bound for \f$ \phi \f$
|
---|
197 | vector<H_BeamParticle>::iterator particle_i;
|
---|
198 | for (particle_i = beamParticles.begin(); particle_i < beamParticles.end(); particle_i++)
|
---|
199 | particle_i->emitGamma(gee,gq2,phimin,phimax);
|
---|
200 | }
|
---|
201 |
|
---|
202 | float H_Beam::getBetaX(const float s, float& error_on_betax) {
|
---|
203 | /// @param s is the position [m] to propagate to
|
---|
204 | /// @param error_on_betax : getBetaX(...) returns its error in this variable
|
---|
205 | /// not a const method because does a propagate to s!
|
---|
206 | vector<H_BeamParticle>::iterator particle_i;
|
---|
207 | float EX2=0,dummy, mean=getX(s,dummy), temp;
|
---|
208 |
|
---|
209 | for (particle_i = beamParticles.begin(); particle_i < beamParticles.end(); particle_i++) {
|
---|
210 | particle_i->propagate(s);
|
---|
211 | temp = particle_i->getX()-mean;
|
---|
212 | EX2 += temp*temp;
|
---|
213 | }
|
---|
214 | EX2 /= (float)Nparticles;
|
---|
215 | float emitx = getEmittanceX();
|
---|
216 | EX2 = (emitx==0)?0:(float) (EX2 /(float) (emitx*URAD))/URAD;
|
---|
217 | error_on_betax = EX2 / (float) sqrt((double)2*Nparticles);
|
---|
218 | return EX2;
|
---|
219 | }
|
---|
220 |
|
---|
221 | float H_Beam::getBetaY(const float s, float& error_on_betay) {
|
---|
222 | /// @param s is the position [m] to propagate to
|
---|
223 | /// @param error_on_betay : getBetaY(...) returns its error in this variable
|
---|
224 | /// not a const method because does a propagate to s!
|
---|
225 | vector<H_BeamParticle>::iterator particle_i;
|
---|
226 | float EY2 =0, dummy, mean=getY(s,dummy), temp;
|
---|
227 |
|
---|
228 | for (particle_i = beamParticles.begin(); particle_i < beamParticles.end(); particle_i++) {
|
---|
229 | particle_i->propagate(s);
|
---|
230 | temp = particle_i->getY() - mean;
|
---|
231 | EY2 += temp*temp;
|
---|
232 | }
|
---|
233 | EY2 /= (float)Nparticles;
|
---|
234 | float emity = getEmittanceY();
|
---|
235 | EY2 = (emity==0)?0:(float) (EY2 / (float) (emity*URAD))/URAD;
|
---|
236 | error_on_betay = EY2 / (float) sqrt((double)2*Nparticles);
|
---|
237 | return EY2;
|
---|
238 | }
|
---|
239 |
|
---|
240 | TGraphErrors * H_Beam::getBetaX(const float length, const unsigned int number_of_points) {
|
---|
241 | /// @param length [m]
|
---|
242 | /// @number_of_points in the graph (typ. 200)
|
---|
243 | const unsigned int N = number_of_points;
|
---|
244 | float * s = new float[N], * b = new float[N], * es = new float[N], * eb = new float[N];
|
---|
245 | for (unsigned int i=0; i<N; i++) {
|
---|
246 | s[i] = (float) fs_ini + i/(float)(N-1) *length;
|
---|
247 | b[i] = getBetaX(s[i],eb[i]);
|
---|
248 | es[i] = 0;
|
---|
249 | }
|
---|
250 | TGraphErrors * betax = new TGraphErrors(N,s,b,es,eb);
|
---|
251 | betax->SetLineColor(kBlack);
|
---|
252 | betax->SetFillColor(kYellow);
|
---|
253 | delete [] s;
|
---|
254 | delete [] b;
|
---|
255 | delete [] es;
|
---|
256 | delete [] eb;
|
---|
257 | return betax;
|
---|
258 | }
|
---|
259 |
|
---|
260 | TGraphErrors * H_Beam::getBetaY(const float length, const unsigned int number_of_points) {
|
---|
261 | /// @param length [m]
|
---|
262 | /// @number_of_points in the graph (typ. 200)
|
---|
263 | const unsigned int N = number_of_points;
|
---|
264 | float * s = new float[N], * b = new float[N], * es = new float[N], *eb = new float[N];
|
---|
265 | for (unsigned int i=0; i<N; i++) {
|
---|
266 | s[i] = (float) fs_ini + i/(float)(N-1) *length;
|
---|
267 | b[i] = getBetaY(s[i],eb[i]);
|
---|
268 | es[i]=0;
|
---|
269 | }
|
---|
270 | TGraphErrors * betay = new TGraphErrors(N,s,b,es,eb);
|
---|
271 | betay->SetLineColor(kRed);
|
---|
272 | betay->SetFillColor(kYellow);
|
---|
273 | delete [] s;
|
---|
274 | delete [] b;
|
---|
275 | delete [] es;
|
---|
276 | delete [] eb;
|
---|
277 | return betay;
|
---|
278 | }
|
---|
279 |
|
---|
280 | float H_Beam::getX(const float s, float& error_on_posx) {
|
---|
281 | vector<H_BeamParticle>::iterator particle_i;
|
---|
282 | float mean=0;
|
---|
283 |
|
---|
284 | for (particle_i = beamParticles.begin(); particle_i < beamParticles.end(); particle_i++) {
|
---|
285 | particle_i->propagate(s);
|
---|
286 | mean += particle_i->getX();
|
---|
287 | }
|
---|
288 | mean = mean / (float) Nparticles;
|
---|
289 | error_on_posx = mean / (float) sqrt((double)Nparticles);
|
---|
290 | return mean;
|
---|
291 | }
|
---|
292 |
|
---|
293 | float H_Beam::getY(const float s, float& error_on_posy) {
|
---|
294 | vector<H_BeamParticle>::iterator particle_i;
|
---|
295 | float mean=0;
|
---|
296 |
|
---|
297 | for (particle_i = beamParticles.begin(); particle_i < beamParticles.end(); particle_i++) {
|
---|
298 | particle_i->propagate(s);
|
---|
299 | mean += particle_i->getY();
|
---|
300 | }
|
---|
301 | mean = mean / (float) Nparticles;
|
---|
302 | error_on_posy = mean / (float) sqrt((double)Nparticles);
|
---|
303 | return mean;
|
---|
304 | }
|
---|
305 |
|
---|
306 | unsigned int H_Beam::getStoppedNumber(const H_AbstractBeamLine * beamline) {
|
---|
307 | int number =0;
|
---|
308 | vector<H_BeamParticle>::iterator particle_i;
|
---|
309 | for (particle_i = beamParticles.begin(); particle_i < beamParticles.end(); particle_i++) {
|
---|
310 | if(particle_i->stopped(beamline)) number++;
|
---|
311 | }
|
---|
312 | return number;
|
---|
313 | }
|
---|
314 |
|
---|
315 | vector<TVectorD> H_Beam::getStoppingElements(const H_AbstractBeamLine * beamline, vector<H_OpticalElement>& list, vector<int>& numb) {
|
---|
316 |
|
---|
317 | vector<TVectorD> stop_positions;
|
---|
318 | vector<H_BeamParticle>::iterator particle_i;
|
---|
319 | vector<H_OpticalElement>::iterator element_i;
|
---|
320 | H_OpticalElement temp_el;
|
---|
321 | vector<int>::iterator n_i;
|
---|
322 | int number =0;
|
---|
323 | bool found;
|
---|
324 |
|
---|
325 | list.clear();
|
---|
326 | numb.clear();
|
---|
327 |
|
---|
328 | // creates a list of elements where beamParticles have stopped
|
---|
329 | for (particle_i = beamParticles.begin(); particle_i < beamParticles.end(); particle_i++) {
|
---|
330 | found = false;
|
---|
331 | if(particle_i->stopped(beamline)) {
|
---|
332 | temp_el = *(particle_i->getStoppingElement());
|
---|
333 | stop_positions.push_back(*(particle_i->getStopPosition()));
|
---|
334 | if(list.size()==0) {
|
---|
335 | number=1;
|
---|
336 | list.push_back(temp_el);
|
---|
337 | numb.push_back(number);
|
---|
338 |
|
---|
339 | } else {
|
---|
340 | for (element_i = list.begin(), n_i = numb.begin(); element_i < list.end(); element_i++, n_i++) {
|
---|
341 | string el_i_name = element_i->getName();
|
---|
342 | string temp_el_name = temp_el.getName();
|
---|
343 | if(el_i_name == temp_el_name) {
|
---|
344 | number = *n_i;
|
---|
345 | number++;
|
---|
346 | *n_i = number;
|
---|
347 | found = true;
|
---|
348 | }
|
---|
349 | }
|
---|
350 | if(!found) {
|
---|
351 | number=1;
|
---|
352 | list.push_back(temp_el);
|
---|
353 | numb.push_back(number);
|
---|
354 | }
|
---|
355 | }
|
---|
356 | } // if particle_i->stopped
|
---|
357 | }// for particle_i
|
---|
358 | return stop_positions;
|
---|
359 | } // H_Beam::getStoppingElements
|
---|
360 |
|
---|
361 | void H_Beam::printInitialState() const {
|
---|
362 | cout << "Initial parameters of the beam" << endl;
|
---|
363 | cout << "(x,y,s) = (" << fx_ini << "," << fy_ini << "," << fs_ini << ") ";
|
---|
364 | cout << "(theta_x, theta_y) = (" << tx_ini << "," << ty_ini << ") ";
|
---|
365 | cout << "energy = " << fe_ini << endl;
|
---|
366 | cout << endl;
|
---|
367 | cout << "Dispersion on these values : " << endl;
|
---|
368 | cout << "(dx,dy,ds) = (" << x_disp << "," << y_disp << "," << s_disp << ") ";
|
---|
369 | cout << "(dtheta_x, dtheta_y) = (" << tx_disp << "," << ty_disp << ") ";
|
---|
370 | cout << "de = " << e_disp << endl << endl;
|
---|
371 |
|
---|
372 | float mean_ini =0;
|
---|
373 | vector<H_BeamParticle>::const_iterator particle_i;
|
---|
374 | for (particle_i = beamParticles.begin(); particle_i < beamParticles.end(); particle_i++) {
|
---|
375 | mean_ini += particle_i->getX();
|
---|
376 | }
|
---|
377 | mean_ini /= (float) beamParticles.size();
|
---|
378 | cout << "Mean ini x = " << mean_ini << endl;
|
---|
379 | }
|
---|
380 |
|
---|
381 | std::ostream& operator<< (std::ostream& os, const H_Beam& be) {
|
---|
382 | vector<H_BeamParticle>::const_iterator particle_i;
|
---|
383 | cout << "There are " << be.Nparticles << " in the beam." << endl;
|
---|
384 | for (particle_i = be.beamParticles.begin(); particle_i < be.beamParticles.end(); particle_i++) {
|
---|
385 | cout << *particle_i;
|
---|
386 | }
|
---|
387 | return os;
|
---|
388 | }
|
---|
389 |
|
---|
390 | void H_Beam::printStoppingElements(const vector<H_OpticalElement>& list, const vector<int>& numb) const{
|
---|
391 | /// see also H_Beam::getStoppingElements
|
---|
392 | vector<H_OpticalElement>::const_iterator element_i;
|
---|
393 | vector<int>::const_iterator n_i;
|
---|
394 |
|
---|
395 | // prints the list
|
---|
396 | for (element_i=list.begin(), n_i = numb.begin(); element_i < list.end(); element_i++, n_i++) {
|
---|
397 | cout << *n_i << " particules in " << element_i->getName();
|
---|
398 | cout << " (" << element_i->getTypeString() << ") at " << element_i->getS() << "m" << endl;
|
---|
399 | element_i->getAperture()->printProperties();
|
---|
400 | }
|
---|
401 | } // H_Beam::printStoppingElements
|
---|
402 |
|
---|
403 | TH2F * H_Beam::drawAngleProfile(const float s) {
|
---|
404 | /// not a const method because does a propagate to s!
|
---|
405 | char title[50];
|
---|
406 | sprintf(title,"Beam profile at %.2f m",s);
|
---|
407 | vector<H_BeamParticle>::iterator particle_i;
|
---|
408 | float xmax, xmin, ymax, ymin;
|
---|
409 | float xx, yy, xborder, yborder;
|
---|
410 |
|
---|
411 | particle_i=beamParticles.begin();
|
---|
412 | xmin = particle_i->getTX();
|
---|
413 | xmax = particle_i->getTX();
|
---|
414 | ymin = particle_i->getTY();
|
---|
415 | ymax = particle_i->getTY();
|
---|
416 |
|
---|
417 | for (particle_i = beamParticles.begin(); particle_i < beamParticles.end(); particle_i++) {
|
---|
418 | particle_i->propagate(s);
|
---|
419 | xx = particle_i->getTX();
|
---|
420 | yy = particle_i->getTY();
|
---|
421 |
|
---|
422 | xmax = xx>xmax ? xx : xmax;
|
---|
423 | ymax = yy>ymax ? yy : ymax;
|
---|
424 | xmin = xx<xmin ? xx : xmin;
|
---|
425 | ymin = yy<ymin ? yy : ymin;
|
---|
426 | }
|
---|
427 |
|
---|
428 | // in order to avoid some drawing problems, when the beam divergence is null
|
---|
429 | if(!(xmax || xmin)) xmax +=0.1;
|
---|
430 | if(!(ymax || ymin)) xmax +=0.1;
|
---|
431 |
|
---|
432 | if(xmax == xmin) xmax *= 1.1;
|
---|
433 | if(ymax == ymin) ymax *= 1.1;
|
---|
434 |
|
---|
435 | xborder = (xmax-xmin)*0.2;
|
---|
436 | yborder = (ymax-ymin)*0.2;
|
---|
437 |
|
---|
438 | xmax += xborder;
|
---|
439 | xmin -= xborder;
|
---|
440 | ymax += yborder;
|
---|
441 | ymin -= yborder;
|
---|
442 |
|
---|
443 | TH2F * profile = new TH2F("profile",title,10000,xmin,xmax,1000,ymin,ymax);
|
---|
444 | for (particle_i = beamParticles.begin(); particle_i < beamParticles.end(); particle_i++) {
|
---|
445 | profile->Fill(particle_i->getTX(), particle_i->getTY());
|
---|
446 | }
|
---|
447 | return profile;
|
---|
448 | }
|
---|
449 |
|
---|
450 |
|
---|
451 | TH2F * H_Beam::drawProfile(const float s) {
|
---|
452 | /// not a const method because does a propagate to s!
|
---|
453 | char title[50];
|
---|
454 | sprintf(title,"Beam profile at %.2f m",s);
|
---|
455 | vector<H_BeamParticle>::iterator particle_i;
|
---|
456 | float xmax, xmin, ymax, ymin;
|
---|
457 | float xx, yy, xborder, yborder;
|
---|
458 |
|
---|
459 | particle_i=beamParticles.begin();
|
---|
460 | xmin = particle_i->getX();
|
---|
461 | xmax = particle_i->getX();
|
---|
462 | ymin = particle_i->getY();
|
---|
463 | ymax = particle_i->getY();
|
---|
464 |
|
---|
465 | for (particle_i = beamParticles.begin(); particle_i < beamParticles.end(); particle_i++) {
|
---|
466 | particle_i->propagate(s);
|
---|
467 | xx = particle_i->getX();
|
---|
468 | yy = particle_i->getY();
|
---|
469 |
|
---|
470 | xmax = xx>xmax ? xx : xmax;
|
---|
471 | ymax = yy>ymax ? yy : ymax;
|
---|
472 | xmin = xx<xmin ? xx : xmin;
|
---|
473 | ymin = yy<ymin ? yy : ymin;
|
---|
474 | }
|
---|
475 |
|
---|
476 | // in order to avoid some drawing problems, when the beam divergence is null
|
---|
477 | if(!(xmax || xmin)) xmax +=0.1;
|
---|
478 | if(!(ymax || ymin)) xmax +=0.1;
|
---|
479 |
|
---|
480 | if(xmax == xmin) xmax += 0.1;
|
---|
481 | if(ymax == ymin) ymax += 0.1;
|
---|
482 |
|
---|
483 | xborder = (xmax-xmin)*0.2;
|
---|
484 | yborder = (ymax-ymin)*0.2;
|
---|
485 |
|
---|
486 | xmax += xborder;
|
---|
487 | xmin -= xborder;
|
---|
488 | ymax += yborder;
|
---|
489 | ymin -= yborder;
|
---|
490 |
|
---|
491 | TH2F * profile = new TH2F("profile",title,10000,xmin,xmax,1000,ymin,ymax);
|
---|
492 | for (particle_i = beamParticles.begin(); particle_i < beamParticles.end(); particle_i++) {
|
---|
493 | profile->Fill(particle_i->getX(), particle_i->getY());
|
---|
494 | }
|
---|
495 | return profile;
|
---|
496 | }
|
---|
497 |
|
---|
498 | TMultiGraph * H_Beam::drawBeamX(const int color) const {
|
---|
499 | int mycolor = color;
|
---|
500 | vector<H_BeamParticle>::const_iterator particle_i;
|
---|
501 | TMultiGraph * beam_profile_x = new TMultiGraph("beam_profile_x","");
|
---|
502 |
|
---|
503 | for (particle_i = beamParticles.begin(); particle_i < beamParticles.end(); particle_i++) {
|
---|
504 | TGraph * ppath_x = particle_i->getPath(0,mycolor);
|
---|
505 | beam_profile_x->Add(ppath_x);
|
---|
506 | }
|
---|
507 | return beam_profile_x;
|
---|
508 | }
|
---|
509 |
|
---|
510 | TMultiGraph * H_Beam::drawBeamY(const int color) const {
|
---|
511 | int mycolor = color;
|
---|
512 | vector<H_BeamParticle>::const_iterator particle_i;
|
---|
513 | TMultiGraph * beam_profile_y = new TMultiGraph("beam_profile_y","");
|
---|
514 |
|
---|
515 | for (particle_i = beamParticles.begin(); particle_i < beamParticles.end(); particle_i++) {
|
---|
516 | TGraph * ppath_y = particle_i->getPath(1,mycolor);
|
---|
517 | beam_profile_y->Add(ppath_y);
|
---|
518 | }
|
---|
519 | return beam_profile_y;
|
---|
520 | }
|
---|