1 |
|
---|
2 | //STARTHEADER
|
---|
3 | // $Id: ClusterSequenceAreaBase.cc,v 1.1 2008-11-06 14:32:14 ovyn Exp $
|
---|
4 | //
|
---|
5 | // Copyright (c) 2005-2006, Matteo Cacciari and Gavin Salam
|
---|
6 | //
|
---|
7 | //----------------------------------------------------------------------
|
---|
8 | // This file is part of FastJet.
|
---|
9 | //
|
---|
10 | // FastJet is free software; you can redistribute it and/or modify
|
---|
11 | // it under the terms of the GNU General Public License as published by
|
---|
12 | // the Free Software Foundation; either version 2 of the License, or
|
---|
13 | // (at your option) any later version.
|
---|
14 | //
|
---|
15 | // The algorithms that underlie FastJet have required considerable
|
---|
16 | // development and are described in hep-ph/0512210. If you use
|
---|
17 | // FastJet as part of work towards a scientific publication, please
|
---|
18 | // include a citation to the FastJet paper.
|
---|
19 | //
|
---|
20 | // FastJet is distributed in the hope that it will be useful,
|
---|
21 | // but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
22 | // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
23 | // GNU General Public License for more details.
|
---|
24 | //
|
---|
25 | // You should have received a copy of the GNU General Public License
|
---|
26 | // along with FastJet; if not, write to the Free Software
|
---|
27 | // Foundation, Inc.:
|
---|
28 | // 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
|
---|
29 | //----------------------------------------------------------------------
|
---|
30 | //ENDHEADER
|
---|
31 |
|
---|
32 |
|
---|
33 |
|
---|
34 |
|
---|
35 | #include "../include/fastjet/ClusterSequenceAreaBase.hh"
|
---|
36 | #include <algorithm>
|
---|
37 |
|
---|
38 | FASTJET_BEGIN_NAMESPACE
|
---|
39 |
|
---|
40 | using namespace std;
|
---|
41 |
|
---|
42 |
|
---|
43 | /// allow for warnings
|
---|
44 | LimitedWarning ClusterSequenceAreaBase::_warnings;
|
---|
45 |
|
---|
46 | //----------------------------------------------------------------------
|
---|
47 | /// return the total area, within range, that is free of jets.
|
---|
48 | ///
|
---|
49 | /// Calculate this as (range area) - \sum_{i in range} A_i
|
---|
50 | ///
|
---|
51 | double ClusterSequenceAreaBase::empty_area(const RangeDefinition & range) const {
|
---|
52 | double empty = range.area();
|
---|
53 | vector<PseudoJet> incl_jets(inclusive_jets(0.0));
|
---|
54 | for (unsigned i = 0; i < incl_jets.size(); i++) {
|
---|
55 | if (range.is_in_range(incl_jets[i])) empty -= area(incl_jets[i]);
|
---|
56 | }
|
---|
57 | return empty;
|
---|
58 | }
|
---|
59 |
|
---|
60 | double ClusterSequenceAreaBase::median_pt_per_unit_area(const RangeDefinition & range) const {
|
---|
61 | return median_pt_per_unit_something(range,false);
|
---|
62 | }
|
---|
63 |
|
---|
64 | double ClusterSequenceAreaBase::median_pt_per_unit_area_4vector(const RangeDefinition & range) const {
|
---|
65 | return median_pt_per_unit_something(range,true);
|
---|
66 | }
|
---|
67 |
|
---|
68 |
|
---|
69 | //----------------------------------------------------------------------
|
---|
70 | /// the median of (pt/area) for jets contained within range, counting
|
---|
71 | /// the empty area as if it were made up of a collection of empty
|
---|
72 | /// jets each of area (0.55 * pi R^2).
|
---|
73 | double ClusterSequenceAreaBase::median_pt_per_unit_something(
|
---|
74 | const RangeDefinition & range, bool use_area_4vector) const {
|
---|
75 |
|
---|
76 | double median, sigma, mean_area;
|
---|
77 | get_median_rho_and_sigma(range, use_area_4vector, median, sigma, mean_area);
|
---|
78 | return median;
|
---|
79 |
|
---|
80 | }
|
---|
81 |
|
---|
82 |
|
---|
83 | //----------------------------------------------------------------------
|
---|
84 | /// fits a form pt_per_unit_area(y) = a + b*y^2 for jets in range.
|
---|
85 | /// exclude_above allows one to exclude large values of pt/area from fit.
|
---|
86 | /// use_area_4vector = true uses the 4vector areas.
|
---|
87 | void ClusterSequenceAreaBase::parabolic_pt_per_unit_area(
|
---|
88 | double & a, double & b, const RangeDefinition & range,
|
---|
89 | double exclude_above, bool use_area_4vector) const {
|
---|
90 |
|
---|
91 | int n=0;
|
---|
92 | int n_excluded = 0;
|
---|
93 | double mean_f=0, mean_x2=0, mean_x4=0, mean_fx2=0;
|
---|
94 |
|
---|
95 | vector<PseudoJet> incl_jets = inclusive_jets();
|
---|
96 |
|
---|
97 | for (unsigned i = 0; i < incl_jets.size(); i++) {
|
---|
98 | if (range.is_in_range(incl_jets[i])) {
|
---|
99 | double this_area;
|
---|
100 | if ( use_area_4vector ) {
|
---|
101 | this_area = area_4vector(incl_jets[i]).perp();
|
---|
102 | } else {
|
---|
103 | this_area = area(incl_jets[i]);
|
---|
104 | }
|
---|
105 | double f = incl_jets[i].perp()/this_area;
|
---|
106 | if (exclude_above <= 0.0 || f < exclude_above) {
|
---|
107 | double x = incl_jets[i].rap(); double x2 = x*x;
|
---|
108 | mean_f += f;
|
---|
109 | mean_x2 += x2;
|
---|
110 | mean_x4 += x2*x2;
|
---|
111 | mean_fx2 += f*x2;
|
---|
112 | n++;
|
---|
113 | } else {
|
---|
114 | n_excluded++;
|
---|
115 | }
|
---|
116 | }
|
---|
117 | }
|
---|
118 |
|
---|
119 | if (n <= 1) {
|
---|
120 | // meaningful results require at least two jets inside the
|
---|
121 | // area -- mind you if there are empty jets we should be in
|
---|
122 | // any case doing something special...
|
---|
123 | a = 0.0;
|
---|
124 | b = 0.0;
|
---|
125 | } else {
|
---|
126 | mean_f /= n;
|
---|
127 | mean_x2 /= n;
|
---|
128 | mean_x4 /= n;
|
---|
129 | mean_fx2 /= n;
|
---|
130 |
|
---|
131 | b = (mean_f*mean_x2 - mean_fx2)/(mean_x2*mean_x2 - mean_x4);
|
---|
132 | a = mean_f - b*mean_x2;
|
---|
133 | }
|
---|
134 | //cerr << "n_excluded = "<< n_excluded << endl;
|
---|
135 | }
|
---|
136 |
|
---|
137 |
|
---|
138 |
|
---|
139 |
|
---|
140 | void ClusterSequenceAreaBase::get_median_rho_and_sigma(
|
---|
141 | const RangeDefinition & range, bool use_area_4vector,
|
---|
142 | double & median, double & sigma, double & mean_area) const {
|
---|
143 |
|
---|
144 | _check_jet_alg_good_for_median();
|
---|
145 |
|
---|
146 | vector<double> pt_over_areas;
|
---|
147 | vector<PseudoJet> incl_jets = inclusive_jets();
|
---|
148 | double total_area = 0.0;
|
---|
149 | double total_njets = 0;
|
---|
150 |
|
---|
151 | for (unsigned i = 0; i < incl_jets.size(); i++) {
|
---|
152 | if (range.is_in_range(incl_jets[i])) {
|
---|
153 | double this_area;
|
---|
154 | if (use_area_4vector) {
|
---|
155 | this_area = area_4vector(incl_jets[i]).perp();
|
---|
156 | } else {
|
---|
157 | this_area = area(incl_jets[i]);
|
---|
158 | }
|
---|
159 | pt_over_areas.push_back(incl_jets[i].perp()/this_area);
|
---|
160 | total_area += this_area;
|
---|
161 | total_njets += 1.0;
|
---|
162 | }
|
---|
163 | }
|
---|
164 |
|
---|
165 | // there is nothing inside our region, so answer will always be zero
|
---|
166 | if (pt_over_areas.size() == 0) {
|
---|
167 | median = 0.0;
|
---|
168 | sigma = 0.0;
|
---|
169 | mean_area = 0.0;
|
---|
170 | return;
|
---|
171 | }
|
---|
172 |
|
---|
173 | // get median (pt/area) [this is the "old" median definition. It considers
|
---|
174 | // only the "real" jets in calculating the median, i.e. excluding the
|
---|
175 | // only-ghost ones]
|
---|
176 | sort(pt_over_areas.begin(), pt_over_areas.end());
|
---|
177 |
|
---|
178 | // now get the median & error, accounting for empty jets
|
---|
179 | // define the fractions of distribution at median, median-1sigma
|
---|
180 | double posn[2] = {0.5, (1.0-0.6827)/2.0};
|
---|
181 | double res[2];
|
---|
182 |
|
---|
183 | double n_empty = n_empty_jets(range);
|
---|
184 | total_njets += n_empty;
|
---|
185 | total_area += empty_area(range);
|
---|
186 |
|
---|
187 | for (int i = 0; i < 2; i++) {
|
---|
188 | double nj_median_pos =
|
---|
189 | (pt_over_areas.size()-1 + n_empty)*posn[i] - n_empty;
|
---|
190 | double nj_median_ratio;
|
---|
191 | if (nj_median_pos >= 0 && pt_over_areas.size() > 1) {
|
---|
192 | int int_nj_median = int(nj_median_pos);
|
---|
193 | nj_median_ratio =
|
---|
194 | pt_over_areas[int_nj_median] * (int_nj_median+1-nj_median_pos)
|
---|
195 | + pt_over_areas[int_nj_median+1] * (nj_median_pos - int_nj_median);
|
---|
196 | } else {
|
---|
197 | nj_median_ratio = 0.0;
|
---|
198 | }
|
---|
199 | res[i] = nj_median_ratio;
|
---|
200 | }
|
---|
201 | median = res[0];
|
---|
202 | double error = res[0] - res[1];
|
---|
203 | mean_area = total_area / total_njets;
|
---|
204 | sigma = error * sqrt(mean_area);
|
---|
205 | }
|
---|
206 |
|
---|
207 |
|
---|
208 | /// return a vector of all subtracted jets, using area_4vector, given rho.
|
---|
209 | /// Only inclusive_jets above ptmin are subtracted and returned.
|
---|
210 | /// the ordering is the same as that of sorted_by_pt(cs.inclusive_jets()),
|
---|
211 | /// i.e. not necessarily ordered in pt once subtracted
|
---|
212 | vector<PseudoJet> ClusterSequenceAreaBase::subtracted_jets(const double rho,
|
---|
213 | const double ptmin)
|
---|
214 | const {
|
---|
215 | vector<PseudoJet> sub_jets;
|
---|
216 | vector<PseudoJet> jets = sorted_by_pt(inclusive_jets(ptmin));
|
---|
217 | for (unsigned i=0; i<jets.size(); i++) {
|
---|
218 | PseudoJet sub_jet = subtracted_jet(jets[i],rho);
|
---|
219 | sub_jets.push_back(sub_jet);
|
---|
220 | }
|
---|
221 | return sub_jets;
|
---|
222 | }
|
---|
223 |
|
---|
224 | /// return a vector of subtracted jets, using area_4vector.
|
---|
225 | /// Only inclusive_jets above ptmin are subtracted and returned.
|
---|
226 | /// the ordering is the same as that of sorted_by_pt(cs.inclusive_jets()),
|
---|
227 | /// i.e. not necessarily ordered in pt once subtracted
|
---|
228 | vector<PseudoJet> ClusterSequenceAreaBase::subtracted_jets(
|
---|
229 | const RangeDefinition & range,
|
---|
230 | const double ptmin)
|
---|
231 | const {
|
---|
232 | double rho = median_pt_per_unit_area_4vector(range);
|
---|
233 | return subtracted_jets(rho,ptmin);
|
---|
234 | }
|
---|
235 |
|
---|
236 |
|
---|
237 | /// return a subtracted jet, using area_4vector, given rho
|
---|
238 | PseudoJet ClusterSequenceAreaBase::subtracted_jet(const PseudoJet & jet,
|
---|
239 | const double rho) const {
|
---|
240 | PseudoJet area4vect = area_4vector(jet);
|
---|
241 | PseudoJet sub_jet;
|
---|
242 | // sanity check
|
---|
243 | if (rho*area4vect.perp() < jet.perp() ) {
|
---|
244 | sub_jet = jet - rho*area4vect;
|
---|
245 | } else { sub_jet = PseudoJet(0.0,0.0,0.0,0.0); }
|
---|
246 |
|
---|
247 | // make sure the subtracted jet has the same index
|
---|
248 | // (i.e. "looks like") the original jet
|
---|
249 | sub_jet.set_cluster_hist_index(jet.cluster_hist_index());
|
---|
250 |
|
---|
251 | return sub_jet;
|
---|
252 | }
|
---|
253 |
|
---|
254 |
|
---|
255 | /// return a subtracted jet, using area_4vector; note that this is
|
---|
256 | /// potentially inefficient if repeatedly used for many different
|
---|
257 | /// jets, because rho will be recalculated each time around.
|
---|
258 | PseudoJet ClusterSequenceAreaBase::subtracted_jet(const PseudoJet & jet,
|
---|
259 | const RangeDefinition & range) const {
|
---|
260 | double rho = median_pt_per_unit_area_4vector(range);
|
---|
261 | PseudoJet sub_jet = subtracted_jet(jet, rho);
|
---|
262 | return sub_jet;
|
---|
263 | }
|
---|
264 |
|
---|
265 |
|
---|
266 | /// return the subtracted pt, given rho
|
---|
267 | double ClusterSequenceAreaBase::subtracted_pt(const PseudoJet & jet,
|
---|
268 | const double rho,
|
---|
269 | bool use_area_4vector) const {
|
---|
270 | if ( use_area_4vector ) {
|
---|
271 | PseudoJet sub_jet = subtracted_jet(jet,rho);
|
---|
272 | return sub_jet.perp();
|
---|
273 | } else {
|
---|
274 | return jet.perp() - rho*area(jet);
|
---|
275 | }
|
---|
276 | }
|
---|
277 |
|
---|
278 |
|
---|
279 | /// return the subtracted pt; note that this is
|
---|
280 | /// potentially inefficient if repeatedly used for many different
|
---|
281 | /// jets, because rho will be recalculated each time around.
|
---|
282 | double ClusterSequenceAreaBase::subtracted_pt(const PseudoJet & jet,
|
---|
283 | const RangeDefinition & range,
|
---|
284 | bool use_area_4vector) const {
|
---|
285 | if ( use_area_4vector ) {
|
---|
286 | PseudoJet sub_jet = subtracted_jet(jet,range);
|
---|
287 | return sub_jet.perp();
|
---|
288 | } else {
|
---|
289 | double rho = median_pt_per_unit_area(range);
|
---|
290 | return subtracted_pt(jet,rho,false);
|
---|
291 | }
|
---|
292 | }
|
---|
293 |
|
---|
294 |
|
---|
295 | /// check the jet algorithm is suitable (and if not issue a warning)
|
---|
296 | void ClusterSequenceAreaBase::_check_jet_alg_good_for_median() const {
|
---|
297 | if (jet_def().jet_algorithm() != kt_algorithm
|
---|
298 | && jet_def().jet_algorithm() != cambridge_algorithm
|
---|
299 | && jet_def().jet_algorithm() != cambridge_for_passive_algorithm) {
|
---|
300 | _warnings.warn("ClusterSequenceAreaBase: jet_def being used may not be suitable for estimating diffuse backgrounds (good options are kt, cam)");
|
---|
301 | }
|
---|
302 | }
|
---|
303 |
|
---|
304 |
|
---|
305 |
|
---|
306 | FASTJET_END_NAMESPACE
|
---|