1 | // -*- C++ -*-
|
---|
2 | ///////////////////////////////////////////////////////////////////////////////
|
---|
3 | // File: area.h //
|
---|
4 | // Description: header file for the computation of jet area //
|
---|
5 | // This file is part of the SISCone project. //
|
---|
6 | // For more details, see http://projects.hepforge.org/siscone //
|
---|
7 | // //
|
---|
8 | // Copyright (c) 2006 Gavin Salam and Gregory Soyez //
|
---|
9 | // //
|
---|
10 | // This program is free software; you can redistribute it and/or modify //
|
---|
11 | // it under the terms of the GNU General Public License as published by //
|
---|
12 | // the Free Software Foundation; either version 2 of the License, or //
|
---|
13 | // (at your option) any later version. //
|
---|
14 | // //
|
---|
15 | // This program is distributed in the hope that it will be useful, //
|
---|
16 | // but WITHOUT ANY WARRANTY; without even the implied warranty of //
|
---|
17 | // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the //
|
---|
18 | // GNU General Public License for more details. //
|
---|
19 | // //
|
---|
20 | // You should have received a copy of the GNU General Public License //
|
---|
21 | // along with this program; if not, write to the Free Software //
|
---|
22 | // Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA //
|
---|
23 | // //
|
---|
24 | // $Revision: 1.1 $//
|
---|
25 | // $Date: 2008-11-06 14:32:12 $//
|
---|
26 | ///////////////////////////////////////////////////////////////////////////////
|
---|
27 |
|
---|
28 | #include "../interface/area.h"
|
---|
29 | #include "../interface/momentum.h"
|
---|
30 | #include <stdlib.h>
|
---|
31 | #include <iostream>
|
---|
32 |
|
---|
33 | namespace siscone{
|
---|
34 | using namespace std;
|
---|
35 |
|
---|
36 | /*******************************************************
|
---|
37 | * Cjet_area implementation *
|
---|
38 | * real Jet information, including its area(s) *
|
---|
39 | * *
|
---|
40 | * This class contains information for one single jet. *
|
---|
41 | * That is, first, its momentum carrying information *
|
---|
42 | * about its centre and pT, and second, its particle *
|
---|
43 | * contents (from CJeT). *
|
---|
44 | * Compared to the Cjet class, it also includes the *
|
---|
45 | * passive and active areas of the jet computed using *
|
---|
46 | * the Carea class. *
|
---|
47 | *******************************************************/
|
---|
48 |
|
---|
49 | // default ctor
|
---|
50 | //--------------
|
---|
51 | Cjet_area::Cjet_area(){
|
---|
52 | active_area = passive_area = 0.0;
|
---|
53 | }
|
---|
54 |
|
---|
55 | // jet-initiated ctor
|
---|
56 | //-------------------
|
---|
57 | Cjet_area::Cjet_area(Cjet &j){
|
---|
58 | v = j.v;
|
---|
59 | n = j.n;
|
---|
60 | contents = j.contents;
|
---|
61 |
|
---|
62 | pass = j.pass;
|
---|
63 |
|
---|
64 | pt_tilde = j.pt_tilde;
|
---|
65 | sm_var2 = j.sm_var2;
|
---|
66 |
|
---|
67 | active_area = passive_area = 0.0;
|
---|
68 | }
|
---|
69 |
|
---|
70 | // default dtor
|
---|
71 | //--------------
|
---|
72 | Cjet_area::~Cjet_area(){
|
---|
73 |
|
---|
74 | }
|
---|
75 |
|
---|
76 |
|
---|
77 | /******************************************************************
|
---|
78 | * Csiscone_area implementation *
|
---|
79 | * class for the computation of jet areas. *
|
---|
80 | * *
|
---|
81 | * This is the class user should use whenever you want to compute *
|
---|
82 | * the jet area (passive and active). *
|
---|
83 | * It uses the SISCone algorithm to perform the jet analysis. *
|
---|
84 | ******************************************************************/
|
---|
85 |
|
---|
86 | // default ctor
|
---|
87 | //-------------
|
---|
88 | Carea::Carea(){
|
---|
89 | grid_size = 60; // 3600 particles added
|
---|
90 | grid_eta_max = 6.0; // maybe having twice more points in eta than in phi should be nice
|
---|
91 | grid_shift = 0.5; // 50% "shacking"
|
---|
92 |
|
---|
93 | pt_soft = 1e-100;
|
---|
94 | pt_shift = 0.05;
|
---|
95 | pt_soft_min = 1e-90;
|
---|
96 | }
|
---|
97 |
|
---|
98 | // default dtor
|
---|
99 | //-------------
|
---|
100 | Carea::~Carea(){
|
---|
101 |
|
---|
102 | }
|
---|
103 |
|
---|
104 | /*
|
---|
105 | * compute the jet areas from a given particle set.
|
---|
106 | * The parameters of this method are the ones which control the jet clustering alghorithm.
|
---|
107 | * Note that the pt_min is not allowed here soince the jet-area determination involves soft
|
---|
108 | * particles/jets and thus is used internally.
|
---|
109 | * - _particles list of particles
|
---|
110 | * - _radius cone radius
|
---|
111 | * - _f shared energy threshold for splitting&merging
|
---|
112 | * - _n_pass_max maximum number of passes (0=full search, the default)
|
---|
113 | * - _split_merge_scale the scale choice for the split-merge procedure
|
---|
114 | * NOTE: SM_pt leads to IR unsafety for some events with momentum conservation.
|
---|
115 | * SM_Et is IR safe but not boost invariant and not implemented(!)
|
---|
116 | * SM_mt is IR safe for hadronic events, but not for decays of two
|
---|
117 | * back-to-back particles of identical mass
|
---|
118 | * SM_pttilde
|
---|
119 | * is always IR safe, and also boost invariant (default)
|
---|
120 | * - _hard_only when this is set on, only hard jets are computed
|
---|
121 | * and not the purely ghosted jets (default: false)
|
---|
122 | * return the jets together with their areas
|
---|
123 | ********************************************************************************************/
|
---|
124 | int Carea::compute_areas(std::vector<Cmomentum> &_particles, double _radius, double _f,
|
---|
125 | int _n_pass_max, Esplit_merge_scale _split_merge_scale,
|
---|
126 | bool _hard_only){
|
---|
127 |
|
---|
128 | vector<Cmomentum> all_particles;
|
---|
129 |
|
---|
130 | // put "hardest cut-off" if needed
|
---|
131 | // this avoids computation of ghosted jets when not required and
|
---|
132 | // significantly shortens the SM.
|
---|
133 | if (_hard_only){
|
---|
134 | SM_var2_hardest_cut_off = pt_soft_min*pt_soft_min;
|
---|
135 | }
|
---|
136 |
|
---|
137 | // clear potential previous runs
|
---|
138 | jet_areas.clear();
|
---|
139 |
|
---|
140 | // put initial set of particles in the list
|
---|
141 | int n_hard = _particles.size();
|
---|
142 | all_particles = _particles;
|
---|
143 |
|
---|
144 | // build the set of ghost particles and add them to the particle list
|
---|
145 | int i,j;
|
---|
146 | double eta,phi,pt;
|
---|
147 |
|
---|
148 | for (i=0;i<grid_size;i++){
|
---|
149 | for (j=0;j<grid_size;j++){
|
---|
150 | eta = grid_eta_max*(-1.0+2.0*(i+0.5+grid_shift*(-1.0+2.0*(rand()/(RAND_MAX+1.0))))/grid_size);
|
---|
151 | phi = M_PI *(-1.0+2.0*(j+0.5+grid_shift*(-1.0+2.0*(rand()/(RAND_MAX+1.0))))/grid_size);
|
---|
152 | pt = pt_soft*(1.0+pt_shift*(-1.0+2.0*(rand()/(RAND_MAX+1.0))));
|
---|
153 | all_particles.push_back(Cmomentum(pt*cos(phi),pt*sin(phi),pt*sinh(eta),pt*cosh(eta)));
|
---|
154 | }
|
---|
155 | }
|
---|
156 |
|
---|
157 | // run clustering with all particles.
|
---|
158 | // the split-merge here dynamically accounts for the purely soft jets.
|
---|
159 | // we therefore end up with the active area for the jets
|
---|
160 | compute_jets(all_particles, _radius, _f, _n_pass_max, 0.0, _split_merge_scale);
|
---|
161 |
|
---|
162 | // save jets in the Cjet_area structure
|
---|
163 | // and determine their size
|
---|
164 | // jet contents is ordered by increasing index of the initial
|
---|
165 | // particles. Hence, we look for the first particle with index >= n_hard
|
---|
166 | // and deduce the number of ghosts in the jet, hence the area.
|
---|
167 | double area_factor = (2.0*grid_eta_max/grid_size)*(twopi/grid_size);
|
---|
168 |
|
---|
169 | for (i=0;i<(int) jets.size();i++){
|
---|
170 | jet_areas.push_back(jets[i]);
|
---|
171 | j=0;
|
---|
172 | while ((j<jets[i].n) && (jets[i].contents[j]<n_hard)) j++;
|
---|
173 | jet_areas[i].active_area = (jets[i].n-j)*area_factor;
|
---|
174 | }
|
---|
175 |
|
---|
176 | // determine passive jet area
|
---|
177 | // for that onem we use the pt_min cut in order to remove purely
|
---|
178 | // soft jets from the SM procedure
|
---|
179 | recompute_jets(_f, pt_soft_min);
|
---|
180 |
|
---|
181 | // for the area computation, we assume the jete order is the same!
|
---|
182 | for (i=0;i<(int) jets.size();i++){
|
---|
183 | j=0;
|
---|
184 | while ((j<jets[i].n) && (jets[i].contents[j]<n_hard)) j++;
|
---|
185 | jet_areas[i].passive_area = (jets[i].n-j)*area_factor;
|
---|
186 | }
|
---|
187 |
|
---|
188 | // Note:
|
---|
189 | // there surely remain purely soft je at the end
|
---|
190 | // their active area is 0 by default (see ctor)
|
---|
191 |
|
---|
192 | jets.clear();
|
---|
193 |
|
---|
194 | return 0;
|
---|
195 | }
|
---|
196 |
|
---|
197 | /*
|
---|
198 | * compute the passive jet areas from a given particle set.
|
---|
199 | * The parameters of this method are the ones which control the jet clustering alghorithm.
|
---|
200 | * Note that the pt_min is not allowed here soince the jet-area determination involves soft
|
---|
201 | * particles/jets and thus is used internally.
|
---|
202 | * - _particles list of particles
|
---|
203 | * - _radius cone radius
|
---|
204 | * - _f shared energy threshold for splitting&merging
|
---|
205 | * - _n_pass_max maximum number of passes (0=full search, the default)
|
---|
206 | * - _split_merge_scale the scale choice for the split-merge procedure
|
---|
207 | * NOTE: SM_pt leads to IR unsafety for some events with momentum conservation.
|
---|
208 | * SM_Et is IR safe but not boost invariant and not implemented(!)
|
---|
209 | * SM_mt is IR safe for hadronic events, but not for decays of two
|
---|
210 | * back-to-back particles of identical mass
|
---|
211 | * SM_pttilde
|
---|
212 | * is always IR safe, and also boost invariant (default)
|
---|
213 | * return the jets together with their passive areas
|
---|
214 | ********************************************************************************************/
|
---|
215 | int Carea::compute_passive_areas(std::vector<Cmomentum> &_particles, double _radius, double _f,
|
---|
216 | int _n_pass_max, Esplit_merge_scale _split_merge_scale){
|
---|
217 |
|
---|
218 | vector<Cmomentum> all_particles;
|
---|
219 |
|
---|
220 | // clear potential previous runs
|
---|
221 | jet_areas.clear();
|
---|
222 |
|
---|
223 | // put initial set of particles in the list
|
---|
224 | int n_hard = _particles.size();
|
---|
225 | all_particles = _particles;
|
---|
226 |
|
---|
227 | // build the set of ghost particles and add them to the particle list
|
---|
228 | int i,j;
|
---|
229 | double eta,phi,pt;
|
---|
230 |
|
---|
231 | for (i=0;i<grid_size;i++){
|
---|
232 | for (j=0;j<grid_size;j++){
|
---|
233 | eta = grid_eta_max*(-1.0+2.0*(i+0.5+grid_shift*(-1.0+2.0*(rand()/(RAND_MAX+1.0))))/grid_size);
|
---|
234 | phi = M_PI *(-1.0+2.0*(j+0.5+grid_shift*(-1.0+2.0*(rand()/(RAND_MAX+1.0))))/grid_size);
|
---|
235 | pt = pt_soft*(1.0+pt_shift*(-1.0+2.0*(rand()/(RAND_MAX+1.0))));
|
---|
236 | all_particles.push_back(Cmomentum(pt*cos(phi),pt*sin(phi),pt*sinh(eta),pt*cosh(eta)));
|
---|
237 | }
|
---|
238 | }
|
---|
239 |
|
---|
240 | // determine passive jet area
|
---|
241 | // for that onem we use the pt_min cut in order to remove purely
|
---|
242 | // soft jets from the SM procedure
|
---|
243 | compute_jets(all_particles, _radius, _f, _n_pass_max, pt_soft_min, _split_merge_scale);
|
---|
244 |
|
---|
245 | // save jets in the Cjet_area structure
|
---|
246 | // and determine their size
|
---|
247 | // jet contents is ordered by increasing index of the initial
|
---|
248 | // particles. Hence, we look for the first particle with index >= n_hard
|
---|
249 | // and deduce the number of ghosts in the jet, hence the area.
|
---|
250 | double area_factor = (2.0*grid_eta_max/grid_size)*(twopi/grid_size);
|
---|
251 | for (i=0;i<(int) jets.size();i++){
|
---|
252 | j=0;
|
---|
253 | while ((j<jets[i].n) && (jets[i].contents[j]<n_hard)) j++;
|
---|
254 | jet_areas[i].passive_area = (jets[i].n-j)*area_factor;
|
---|
255 | }
|
---|
256 |
|
---|
257 | jets.clear();
|
---|
258 |
|
---|
259 | return 0;
|
---|
260 | }
|
---|
261 |
|
---|
262 | /*
|
---|
263 | * compute the active jet areas from a given particle set.
|
---|
264 | * The parameters of this method are the ones which control the jet clustering alghorithm.
|
---|
265 | * Note that the pt_min is not allowed here soince the jet-area determination involves soft
|
---|
266 | * particles/jets and thus is used internally.
|
---|
267 | * - _particles list of particles
|
---|
268 | * - _radius cone radius
|
---|
269 | * - _f shared energy threshold for splitting&merging
|
---|
270 | * - _n_pass_max maximum number of passes (0=full search, the default)
|
---|
271 | * - _split_merge_scale the scale choice for the split-merge procedure
|
---|
272 | * NOTE: SM_pt leads to IR unsafety for some events with momentum conservation.
|
---|
273 | * SM_Et is IR safe but not boost invariant and not implemented(!)
|
---|
274 | * SM_mt is IR safe for hadronic events, but not for decays of two
|
---|
275 | * back-to-back particles of identical mass
|
---|
276 | * SM_pttilde
|
---|
277 | * is always IR safe, and also boost invariant (default)
|
---|
278 | * - _hard_only when this is set on, only hard jets are computed
|
---|
279 | * and not the purely ghosted jets (default: false)
|
---|
280 | * return the jets together with their active areas
|
---|
281 | ********************************************************************************************/
|
---|
282 | int Carea::compute_active_areas(std::vector<Cmomentum> &_particles, double _radius, double _f,
|
---|
283 | int _n_pass_max, Esplit_merge_scale _split_merge_scale,
|
---|
284 | bool _hard_only){
|
---|
285 |
|
---|
286 | vector<Cmomentum> all_particles;
|
---|
287 |
|
---|
288 | // put "hardest cut-off" if needed
|
---|
289 | // this avoids computation of ghosted jets when not required and
|
---|
290 | // significantly shortens the SM.
|
---|
291 | if (_hard_only){
|
---|
292 | SM_var2_hardest_cut_off = pt_soft_min*pt_soft_min;
|
---|
293 | }
|
---|
294 |
|
---|
295 | // clear potential previous runs
|
---|
296 | jet_areas.clear();
|
---|
297 |
|
---|
298 | // put initial set of particles in the list
|
---|
299 | int n_hard = _particles.size();
|
---|
300 | all_particles = _particles;
|
---|
301 |
|
---|
302 | // build the set of ghost particles and add them to the particle list
|
---|
303 | int i,j;
|
---|
304 | double eta,phi,pt;
|
---|
305 |
|
---|
306 | for (i=0;i<grid_size;i++){
|
---|
307 | for (j=0;j<grid_size;j++){
|
---|
308 | eta = grid_eta_max*(-1.0+2.0*(i+0.5+grid_shift*(-1.0+2.0*(rand()/(RAND_MAX+1.0))))/grid_size);
|
---|
309 | phi = M_PI *(-1.0+2.0*(j+0.5+grid_shift*(-1.0+2.0*(rand()/(RAND_MAX+1.0))))/grid_size);
|
---|
310 | pt = pt_soft*(1.0+pt_shift*(-1.0+2.0*(rand()/(RAND_MAX+1.0))));
|
---|
311 | all_particles.push_back(Cmomentum(pt*cos(phi),pt*sin(phi),pt*sinh(eta),pt*cosh(eta)));
|
---|
312 | }
|
---|
313 | }
|
---|
314 |
|
---|
315 | // run clustering with all particles.
|
---|
316 | // the split-merge here dynamically accounts for the purely soft jets.
|
---|
317 | // we therefore end up with the active area for the jets
|
---|
318 | compute_jets(all_particles, _radius, _f, _n_pass_max, 0.0, _split_merge_scale);
|
---|
319 |
|
---|
320 | // save jets in the Cjet_area structure
|
---|
321 | // and determine their size
|
---|
322 | // jet contents is ordered by increasing index of the initial
|
---|
323 | // particles. Hence, we look for the first particle with index >= n_hard
|
---|
324 | // and deduce the number of ghosts in the jet, hence the area.
|
---|
325 | double area_factor = (2.0*grid_eta_max/grid_size)*(twopi/grid_size);
|
---|
326 |
|
---|
327 | for (i=0;i<(int) jets.size();i++){
|
---|
328 | jet_areas.push_back(jets[i]);
|
---|
329 | j=0;
|
---|
330 | while ((j<jets[i].n) && (jets[i].contents[j]<n_hard)) j++;
|
---|
331 | jet_areas[i].active_area = (jets[i].n-j)*area_factor;
|
---|
332 | }
|
---|
333 |
|
---|
334 | jets.clear();
|
---|
335 |
|
---|
336 | return 0;
|
---|
337 | }
|
---|
338 |
|
---|
339 | }
|
---|