1 | #include "Examples/interface/Analysis_Ex.h"
|
---|
2 |
|
---|
3 | using namespace std;
|
---|
4 |
|
---|
5 | //******************************Debut de l'analyse****************************************
|
---|
6 | //*****************************************************************************************
|
---|
7 |
|
---|
8 | Analysis_Ex::Analysis_Ex(string CardWithCuts,string LogName)
|
---|
9 | {
|
---|
10 | string temp_string;
|
---|
11 | istringstream curstring;
|
---|
12 |
|
---|
13 | ifstream fichier_a_lire(CardWithCuts.c_str());
|
---|
14 | if(!fichier_a_lire.good()) {
|
---|
15 | cout << "DataCardname " << CardWithCuts << " not found, use default values" << endl;
|
---|
16 | return;
|
---|
17 | }
|
---|
18 |
|
---|
19 | while (getline(fichier_a_lire,temp_string)) {
|
---|
20 | curstring.clear(); // needed when using several times istringstream::str(string)
|
---|
21 | curstring.str(temp_string);
|
---|
22 | string varname;
|
---|
23 | float value;
|
---|
24 |
|
---|
25 | if(strstr(temp_string.c_str(),"#")) { }//remove comments
|
---|
26 | else if(strstr(temp_string.c_str(),"PT_ELEC")){curstring >> varname >> value; PT_ELEC = value;}
|
---|
27 | else if(strstr(temp_string.c_str(),"PT_MUON")){curstring >> varname >> value; PT_MUON = value;}
|
---|
28 | else if(strstr(temp_string.c_str(),"INV_MASS_LL")){curstring >> varname >> value; INV_MASS_LL = value;}
|
---|
29 | }
|
---|
30 |
|
---|
31 | ofstream f_out(LogName.c_str(),ofstream::app);
|
---|
32 |
|
---|
33 | f_out<<"*******************************************************************"<<endl;
|
---|
34 | f_out << left << setw(30) <<"Cut values used in the analysis: "<<""
|
---|
35 | << right << setw(37) <<"-------------------------------------"<<"\n";
|
---|
36 | f_out << left <<setw(50) << "Invariant mass of the leptons: "<<""
|
---|
37 | << right <<setw(17) << INV_MASS_LL <<"\n";
|
---|
38 | f_out<<"*******************************************************************"<<endl;
|
---|
39 |
|
---|
40 | }
|
---|
41 |
|
---|
42 | Analysis_Ex::~Analysis_Ex()
|
---|
43 | {
|
---|
44 | }
|
---|
45 |
|
---|
46 | void Analysis_Ex::Run(ExRootTreeReader *treeReaderGen, ExRootTreeReader *treeReaderRec, ExRootTreeReader *treeReaderTrig)
|
---|
47 | {
|
---|
48 | total=0;//initialisation of total number of events
|
---|
49 | cut_trig=0;
|
---|
50 | cut_1=0;//initialisation of counter for cut 1
|
---|
51 | cut_2=0;
|
---|
52 | //access the branches************************
|
---|
53 | //to get the generator level information
|
---|
54 | const TClonesArray *GEN = treeReaderGen->UseBranch("Particle");
|
---|
55 |
|
---|
56 | //to get the reconstructed level information
|
---|
57 | const TClonesArray *JET = treeReaderRec->UseBranch("Jet");
|
---|
58 | const TClonesArray *TAUJET = treeReaderRec->UseBranch("TauJet");
|
---|
59 | const TClonesArray *PHOTO = treeReaderRec->UseBranch("Photon");
|
---|
60 | const TClonesArray *ELEC = treeReaderRec->UseBranch("Electron");
|
---|
61 | const TClonesArray *MUON = treeReaderRec->UseBranch("Muon");
|
---|
62 | const TClonesArray *TRACKS = treeReaderRec->UseBranch("Tracks");
|
---|
63 | const TClonesArray *CALO = treeReaderRec->UseBranch("CaloTower");
|
---|
64 |
|
---|
65 | //to get the VFD reconstructed level information
|
---|
66 | const TClonesArray *ZDC = treeReaderRec->UseBranch("ZDChits");
|
---|
67 | const TClonesArray *RP220 = treeReaderRec->UseBranch("RP220hits");
|
---|
68 | const TClonesArray *FP420 = treeReaderRec->UseBranch("FP420hits");
|
---|
69 |
|
---|
70 | //to get the trigger information
|
---|
71 | const TClonesArray *TRIGGER = treeReaderTrig->UseBranch("TrigResult");
|
---|
72 |
|
---|
73 | //*******************************************
|
---|
74 |
|
---|
75 | //run on the events
|
---|
76 | Long64_t entry, allEntries = treeReaderRec->GetEntries();
|
---|
77 | cout << "** Chain contains " << allEntries << " events" << endl;
|
---|
78 | total=allEntries;
|
---|
79 |
|
---|
80 | //general information
|
---|
81 | float E,Px,Py,Pz;
|
---|
82 | float PT,Eta,Phi;
|
---|
83 |
|
---|
84 | //lepton information
|
---|
85 | bool IsolFlag;
|
---|
86 |
|
---|
87 | //bjet information
|
---|
88 | bool Btag;
|
---|
89 |
|
---|
90 | //Particle level information
|
---|
91 | int PID, Status, M1,M2,D1,D2;
|
---|
92 | float Charge, T, X, Y, Z, M;
|
---|
93 |
|
---|
94 | //VFD information
|
---|
95 | float S,q2,Tx,Ty;
|
---|
96 | int side;
|
---|
97 |
|
---|
98 | for(entry = 0; entry < allEntries; ++entry)
|
---|
99 | {
|
---|
100 | treeReaderGen->ReadEntry(entry);//access information of generated information
|
---|
101 | treeReaderRec->ReadEntry(entry);//access information of reconstructed information
|
---|
102 | treeReaderTrig->ReadEntry(entry);//access information of Trigger information
|
---|
103 |
|
---|
104 | //*****************************************************
|
---|
105 | //Example how to run on the generator level information
|
---|
106 | //*****************************************************
|
---|
107 | TIter itGen((TCollection*)GEN);
|
---|
108 | TRootGenParticle *gen;
|
---|
109 | itGen.Reset();
|
---|
110 | while( (gen = (TRootGenParticle*) itGen.Next()) )
|
---|
111 | {
|
---|
112 | PID = gen->PID; // particle HEP ID number
|
---|
113 | Status = gen->Status; // particle status
|
---|
114 | M1 = gen->M1; // particle 1st mother
|
---|
115 | M2 = gen->M2; // particle 2nd mother
|
---|
116 | D1 = gen->D1; // particle 1st daughter
|
---|
117 | D2 = gen->D2; // particle 2nd daughter
|
---|
118 | Charge = gen->Charge; // electrical charge
|
---|
119 |
|
---|
120 | T = gen->T; // particle vertex position (t component)
|
---|
121 | X = gen->X; // particle vertex position (x component)
|
---|
122 | Y = gen->Y; // particle vertex position (y component)
|
---|
123 | Z = gen->Z; // particle vertex position (z component)
|
---|
124 | M = gen->M; // particle mass
|
---|
125 | }
|
---|
126 |
|
---|
127 |
|
---|
128 | //***********************************************
|
---|
129 | //Example how to run on the reconstructed objects
|
---|
130 | //***********************************************
|
---|
131 |
|
---|
132 | //access the Electron branch
|
---|
133 | TIter itElec((TCollection*)ELEC);
|
---|
134 | TRootElectron *elec;
|
---|
135 | itElec.Reset();
|
---|
136 | while( (elec = (TRootElectron*) itElec.Next()) )
|
---|
137 | {
|
---|
138 | E = elec->E; // particle energy in GeV
|
---|
139 | Px = elec->Px; // particle momentum vector (x component) in GeV
|
---|
140 | Py = elec->Py; // particle momentum vector (y component) in GeV
|
---|
141 | Pz = elec->Pz; // particle momentum vector (z component) in GeV
|
---|
142 |
|
---|
143 | PT = elec->PT; // particle transverse momentum in GeV
|
---|
144 | Eta = elec->Eta; // particle pseudorapidity
|
---|
145 | Phi = elec->Phi; // particle azimuthal angle in rad
|
---|
146 | IsolFlag = elec->IsolFlag; // is the particule isolated?
|
---|
147 | }
|
---|
148 | //Running on the muon branch is identical:
|
---|
149 | TIter itMuon((TCollection*)MUON);
|
---|
150 | TRootMuon *muon;
|
---|
151 | itMuon.Reset();
|
---|
152 | while( (muon = (TRootMuon*) itMuon.Next()) ){}
|
---|
153 |
|
---|
154 | //access the Photon branch
|
---|
155 | TIter itGam((TCollection*)PHOTO);
|
---|
156 | TRootPhoton *gam;
|
---|
157 | itGam.Reset();
|
---|
158 | while( (gam = (TRootPhoton*) itGam.Next()) )
|
---|
159 | {
|
---|
160 | E = gam->E; // particle energy in GeV
|
---|
161 | Px = gam->Px; // particle momentum vector (x component) in GeV
|
---|
162 | Py = gam->Py; // particle momentum vector (y component) in GeV
|
---|
163 | Pz = gam->Pz; // particle momentum vector (z component) in GeV
|
---|
164 |
|
---|
165 | PT = gam->PT; // particle transverse momentum in GeV
|
---|
166 | Eta = gam->Eta; // particle pseudorapidity
|
---|
167 | Phi = gam->Phi; // particle azimuthal angle in rad
|
---|
168 | }
|
---|
169 |
|
---|
170 | //access the jet branch
|
---|
171 | TIter itJet((TCollection*)JET);
|
---|
172 | TRootJet *jet;
|
---|
173 | itJet.Reset();
|
---|
174 | while( (jet = (TRootJet*) itJet.Next()) )
|
---|
175 | {
|
---|
176 | E = jet->E; // particle energy in GeV
|
---|
177 | Px = jet->Px; // particle momentum vector (x component) in GeV
|
---|
178 | Py = jet->Py; // particle momentum vector (y component) in GeV
|
---|
179 | Pz = jet->Pz; // particle momentum vector (z component) in GeV
|
---|
180 |
|
---|
181 | PT = jet->PT; // particle transverse momentum in GeV
|
---|
182 | Eta = jet->Eta; // particle pseudorapidity
|
---|
183 | Phi = jet->Phi; // particle azimuthal angle in rad
|
---|
184 | Btag = jet->Btag; // is the jet BTagged
|
---|
185 | }
|
---|
186 | //Running on the tau-jet branch is identical:
|
---|
187 | TIter itTaujet((TCollection*)TAUJET);
|
---|
188 | TRootTauJet *taujet;
|
---|
189 | itTaujet.Reset();
|
---|
190 | while( (taujet = (TRootTauJet*) itTaujet.Next()) ){}
|
---|
191 |
|
---|
192 | //access the track branch
|
---|
193 | TIter itTrack((TCollection*)TRACKS);
|
---|
194 | TRootTracks *tracks;
|
---|
195 | itTrack.Reset();
|
---|
196 | while( (tracks = (TRootTracks*) itTrack.Next()) )
|
---|
197 | {
|
---|
198 | E = tracks->E; // particle energy in GeV
|
---|
199 | Px = tracks->Px; // particle momentum vector (x component) in GeV
|
---|
200 | Py = tracks->Py; // particle momentum vector (y component) in GeV
|
---|
201 | Pz = tracks->Pz; // particle momentum vector (z component) in GeV
|
---|
202 |
|
---|
203 | PT = tracks->PT; // particle transverse momentum in GeV
|
---|
204 | Eta = tracks->Eta; // particle pseudorapidity
|
---|
205 | Phi = tracks->Phi; // particle azimuthal angle in rad
|
---|
206 | }
|
---|
207 |
|
---|
208 | //Running on the calo branch is identical:
|
---|
209 | TIter itCalo((TCollection*)CALO);
|
---|
210 | TRootCalo *calo;
|
---|
211 | itCalo.Reset();
|
---|
212 | while( (calo = (TRootCalo*) itCalo.Next()) ){}
|
---|
213 |
|
---|
214 | //***************************************************
|
---|
215 | //Example how to run on the VFD reconstructed objects
|
---|
216 | //***************************************************
|
---|
217 |
|
---|
218 | //access the ZDC branch
|
---|
219 | TIter itZdc((TCollection*)ZDC);
|
---|
220 | TRootZdcHits *zdc;
|
---|
221 | itZdc.Reset();
|
---|
222 | while( (zdc = (TRootZdcHits*) itZdc.Next()) )
|
---|
223 | {
|
---|
224 | E = zdc->E; // particle energy in GeV
|
---|
225 | Px = zdc->Px; // particle momentum vector (x component) in GeV
|
---|
226 | Py = zdc->Py; // particle momentum vector (y component) in GeV
|
---|
227 | Pz = zdc->Pz; // particle momentum vector (z component) in GeV
|
---|
228 |
|
---|
229 | PT = zdc->PT; // particle transverse momentum in GeV
|
---|
230 | Eta = zdc->Eta; // particle pseudorapidity
|
---|
231 | Phi = zdc->Phi; // particle azimuthal angle in rad
|
---|
232 |
|
---|
233 | T = zdc->T; // time of flight [s]
|
---|
234 | side = zdc->side; // -1 or +1
|
---|
235 | }
|
---|
236 |
|
---|
237 | //access the RP220 branch
|
---|
238 | TIter itRp220((TCollection*)RP220);
|
---|
239 | TRootRomanPotHits *rp220;
|
---|
240 | itRp220.Reset();
|
---|
241 | //TRootRomanPotHits.MakeClass("test_xav");
|
---|
242 | while( (rp220 = (TRootRomanPotHits*) itRp220.Next()) )
|
---|
243 | {
|
---|
244 | T = rp220->T; // time of flight to the detector [s]
|
---|
245 | S = rp220->S; // distance to the IP [m]
|
---|
246 | E = rp220->E; // reconstructed energy [GeV]
|
---|
247 | q2 = rp220->q2; // reconstructed squared momentum transfer [GeV^2]
|
---|
248 |
|
---|
249 | X = rp220->X; // horizontal distance to the beam [um]
|
---|
250 | Y = rp220->Y; // vertical distance to the beam [um]
|
---|
251 |
|
---|
252 | Tx = rp220->Tx; // angle of the momentum in the horizontal (x,z) plane [urad]
|
---|
253 | Ty = rp220->Ty; // angle of the momentum in the verical (y,z) plane [urad]
|
---|
254 |
|
---|
255 | side = rp220->side; // -1 or 1
|
---|
256 | }
|
---|
257 | //running on FP420 branch is identical
|
---|
258 | TIter itFp420((TCollection*)FP420);
|
---|
259 | TRootRomanPotHits *fp420;
|
---|
260 | itFp420.Reset();
|
---|
261 | while( (fp420 = (TRootRomanPotHits*) itFp420.Next()) ){}
|
---|
262 |
|
---|
263 | //*********************************************
|
---|
264 | //Example how to run on the trigger information
|
---|
265 | //*********************************************
|
---|
266 |
|
---|
267 | TRootTrigger *trig;
|
---|
268 | int NumTrigBit = TRIGGER->GetEntries();
|
---|
269 | //get the global response of the trigger
|
---|
270 |
|
---|
271 | bool GlobalResponse=false;
|
---|
272 | if(NumTrigBit!=0)GlobalResponse=true;
|
---|
273 | cout<<"GlobalResponse "<<GlobalResponse<<endl;
|
---|
274 | for(int i=0; i < NumTrigBit-1; i++){
|
---|
275 | trig = (TRootTrigger*)TRIGGER->At(i);
|
---|
276 | cout<<"The event has been accepted by the trigger number: "<<trig->Accepted<<endl;
|
---|
277 | }
|
---|
278 |
|
---|
279 | //********************************
|
---|
280 | //Example of a very small analysis
|
---|
281 | //********************************
|
---|
282 |
|
---|
283 | TLorentzVector Lept[2];
|
---|
284 |
|
---|
285 | if(NumTrigBit==0)continue; //event not accepted by the trigger
|
---|
286 | cut_trig++;//event accepted
|
---|
287 |
|
---|
288 | TSimpleArray<TRootElectron> el=SubArrayEl(ELEC,PT_ELEC);//the central isolated electrons, pt > PT_ELEC GeV
|
---|
289 | TSimpleArray<TRootMuon> mu=SubArrayMu(MUON,PT_MUON);//the central isolated electrons, pt > PT_MUON GeV
|
---|
290 |
|
---|
291 | Int_t numElec=el.GetEntries();
|
---|
292 |
|
---|
293 | if(el.GetEntries()+mu.GetEntries()!=2)continue;//Exactly 2 isolated leptons are needed
|
---|
294 | cut_1++;//event accepted
|
---|
295 | for(Int_t i=0;i < numElec; i++)Lept[i].SetPxPyPzE(el[i]->Px,el[i]->Py,el[i]->Pz,el[i]->E);
|
---|
296 | for(Int_t k = numElec; k < (numElec+mu.GetEntries()); k++)Lept[k].SetPxPyPzE(mu[k-numElec]->Px,mu[k-numElec]->Py,mu[k-numElec]->Pz,mu[k-numElec]->E);
|
---|
297 |
|
---|
298 | if((Lept[0]+Lept[1]).M() > INV_MASS_LL )continue;// the invariant mass should be < INV_MASS_LL
|
---|
299 | cut_2++;//event accepted
|
---|
300 | }
|
---|
301 |
|
---|
302 | }
|
---|
303 |
|
---|
304 | void Analysis_Ex::WriteOutput(string LogName)
|
---|
305 | {
|
---|
306 | ofstream f_out(LogName.c_str(),ofstream::app);
|
---|
307 |
|
---|
308 | f_out<<"*******************************************************************"<<endl;
|
---|
309 | f_out << left << setw(20) << "Numer of Events "<<""
|
---|
310 | << right << setw(15) << total <<"\n";
|
---|
311 | f_out << left << setw(17) << " Accepted by the trigger "<<""
|
---|
312 | << right << setw(20) << cut_trig <<"\n";
|
---|
313 | f_out << left << setw(17) <<" 2 leptons "<< ""
|
---|
314 | << right << setw(20) << cut_1 << ""
|
---|
315 | << right << setw(15) << cut_1/total << "\n";
|
---|
316 | f_out << left << setw(17) <<" Invariant mass "<< ""
|
---|
317 | << right << setw(20) << cut_2 << ""
|
---|
318 | << right << setw(15) << cut_2/total << "\n";
|
---|
319 | f_out<<"*******************************************************************"<<endl;
|
---|
320 | f_out<<" "<<endl;
|
---|
321 |
|
---|
322 | }
|
---|
323 |
|
---|
324 | TSimpleArray<TRootElectron> Analysis_Ex::SubArrayEl(const TClonesArray *ELEC,float pt)
|
---|
325 | {
|
---|
326 | TIter itElec((TCollection*)ELEC);
|
---|
327 | TRootElectron *elec;
|
---|
328 | itElec.Reset();
|
---|
329 | TSimpleArray<TRootElectron> array;
|
---|
330 | while( (elec = (TRootElectron*) itElec.Next()) )
|
---|
331 | {
|
---|
332 | if(elec->PT<pt)continue;
|
---|
333 | array.Add(elec);
|
---|
334 | }
|
---|
335 | return array;
|
---|
336 | }
|
---|
337 |
|
---|
338 | TSimpleArray<TRootMuon> Analysis_Ex::SubArrayMu(const TClonesArray *MUON,float pt)
|
---|
339 | {
|
---|
340 | TIter itMuon((TCollection*)MUON);
|
---|
341 | TRootMuon *muon;
|
---|
342 | itMuon.Reset();
|
---|
343 | TSimpleArray<TRootMuon> array;
|
---|
344 | while( (muon = (TRootMuon*) itMuon.Next()) )
|
---|
345 | {
|
---|
346 | if(muon->PT<pt)continue;
|
---|
347 | array.Add(muon);
|
---|
348 | }
|
---|
349 | return array;
|
---|
350 | }
|
---|
351 |
|
---|
352 |
|
---|