1 | /***********************************************************************
|
---|
2 | ** **
|
---|
3 | ** /----------------------------------------------\ **
|
---|
4 | ** | Delphes, a framework for the fast simulation | **
|
---|
5 | ** | of a generic collider experiment | **
|
---|
6 | ** \----------------------------------------------/ **
|
---|
7 | ** **
|
---|
8 | ** **
|
---|
9 | ** This package uses: **
|
---|
10 | ** ------------------ **
|
---|
11 | ** FastJet algorithm: Phys. Lett. B641 (2006) [hep-ph/0512210] **
|
---|
12 | ** Hector: JINST 2:P09005 (2007) [physics.acc-ph:0707.1198v2] **
|
---|
13 | ** FROG: [hep-ex/0901.2718v1] **
|
---|
14 | ** **
|
---|
15 | ** ------------------------------------------------------------------ **
|
---|
16 | ** **
|
---|
17 | ** Main authors: **
|
---|
18 | ** ------------- **
|
---|
19 | ** **
|
---|
20 | ** Severine Ovyn Xavier Rouby **
|
---|
21 | ** severine.ovyn@uclouvain.be xavier.rouby@cern **
|
---|
22 | ** **
|
---|
23 | ** Center for Particle Physics and Phenomenology (CP3) **
|
---|
24 | ** Universite catholique de Louvain (UCL) **
|
---|
25 | ** Louvain-la-Neuve, Belgium **
|
---|
26 | ** **
|
---|
27 | ** Copyright (C) 2008-2009, **
|
---|
28 | ** All rights reserved. **
|
---|
29 | ** **
|
---|
30 | ***********************************************************************/
|
---|
31 |
|
---|
32 |
|
---|
33 | #include "Examples/interface/Analysis_Ex.h"
|
---|
34 | #include <iostream>
|
---|
35 | #include <sstream>
|
---|
36 | #include <fstream>
|
---|
37 | #include <iomanip>
|
---|
38 |
|
---|
39 | using namespace std;
|
---|
40 |
|
---|
41 | //******************************Debut de l'analyse****************************************
|
---|
42 | //*****************************************************************************************
|
---|
43 |
|
---|
44 | Analysis_Ex::Analysis_Ex(string CardWithCuts,string LogName)
|
---|
45 | {
|
---|
46 | string temp_string;
|
---|
47 | istringstream curstring;
|
---|
48 |
|
---|
49 | ifstream fichier_a_lire(CardWithCuts.c_str());
|
---|
50 | if(!fichier_a_lire.good()) {
|
---|
51 | cout << "DataCardname " << CardWithCuts << " not found, use default values" << endl;
|
---|
52 | return;
|
---|
53 | }
|
---|
54 |
|
---|
55 | while (getline(fichier_a_lire,temp_string)) {
|
---|
56 | curstring.clear(); // needed when using several times istringstream::str(string)
|
---|
57 | curstring.str(temp_string);
|
---|
58 | string varname;
|
---|
59 | float value;
|
---|
60 |
|
---|
61 | if(strstr(temp_string.c_str(),"#")) { }//remove comments
|
---|
62 | else if(strstr(temp_string.c_str(),"PT_ELEC")){curstring >> varname >> value; PT_ELEC = value;}
|
---|
63 | else if(strstr(temp_string.c_str(),"PT_MUON")){curstring >> varname >> value; PT_MUON = value;}
|
---|
64 | else if(strstr(temp_string.c_str(),"INV_MASS_LL")){curstring >> varname >> value; INV_MASS_LL = value;}
|
---|
65 | }
|
---|
66 |
|
---|
67 | ofstream f_out(LogName.c_str(),ofstream::app);
|
---|
68 |
|
---|
69 | f_out<<"*******************************************************************"<<endl;
|
---|
70 | f_out << left << setw(30) <<"Cut values used in the analysis: "<<""
|
---|
71 | << right << setw(37) <<"-------------------------------------"<<"\n";
|
---|
72 | f_out << left <<setw(50) << "Invariant mass of the leptons: "<<""
|
---|
73 | << right <<setw(17) << INV_MASS_LL <<"\n";
|
---|
74 | f_out<<"*******************************************************************"<<endl;
|
---|
75 |
|
---|
76 | }
|
---|
77 |
|
---|
78 | Analysis_Ex::~Analysis_Ex()
|
---|
79 | {
|
---|
80 | }
|
---|
81 |
|
---|
82 | void Analysis_Ex::Run(ExRootTreeReader *treeReaderGen, ExRootTreeReader *treeReaderRec, ExRootTreeReader *treeReaderTrig, ExRootTreeWriter *treeWriter)
|
---|
83 | {
|
---|
84 | total=0;//initialisation of total number of events
|
---|
85 | cut_trig=0;
|
---|
86 | cut_1=0;//initialisation of counter for cut 1
|
---|
87 | cut_2=0;
|
---|
88 | //access the branches************************
|
---|
89 | //to get the generator level information
|
---|
90 | const TClonesArray *GEN = treeReaderGen->UseBranch("Particle");
|
---|
91 |
|
---|
92 | //to get the reconstructed level information
|
---|
93 | const TClonesArray *JET = treeReaderRec->UseBranch("Jet");
|
---|
94 | const TClonesArray *TAUJET = treeReaderRec->UseBranch("TauJet");
|
---|
95 | const TClonesArray *PHOTO = treeReaderRec->UseBranch("Photon");
|
---|
96 | const TClonesArray *ELEC = treeReaderRec->UseBranch("Electron");
|
---|
97 | const TClonesArray *MUON = treeReaderRec->UseBranch("Muon");
|
---|
98 | const TClonesArray *TRACKS = treeReaderRec->UseBranch("Tracks");
|
---|
99 | const TClonesArray *CALO = treeReaderRec->UseBranch("CaloTower");
|
---|
100 |
|
---|
101 | //to get the VFD reconstructed level information
|
---|
102 | const TClonesArray *ZDC = treeReaderRec->UseBranch("ZDChits");
|
---|
103 | const TClonesArray *RP220 = treeReaderRec->UseBranch("RP220hits");
|
---|
104 | const TClonesArray *FP420 = treeReaderRec->UseBranch("FP420hits");
|
---|
105 |
|
---|
106 | //to get the trigger information
|
---|
107 | const TClonesArray *TRIGGER = treeReaderTrig->UseBranch("TrigResult");
|
---|
108 |
|
---|
109 | //Define the branches that will be filled during the analysis
|
---|
110 | ExRootTreeBranch *INVMASS = treeWriter->NewBranch("INVMass", TRootInvm::Class());
|
---|
111 | TRootInvm *inv_mass;
|
---|
112 | //*******************************************
|
---|
113 |
|
---|
114 | //run on the events
|
---|
115 | Long64_t entry, allEntries = treeReaderRec->GetEntries();
|
---|
116 | cout << "** Chain contains " << allEntries << " events" << endl;
|
---|
117 | total=allEntries;
|
---|
118 |
|
---|
119 | //general information
|
---|
120 | float E,Px,Py,Pz;
|
---|
121 | float PT,Eta,Phi;
|
---|
122 |
|
---|
123 | //lepton information
|
---|
124 | bool IsolFlag;
|
---|
125 |
|
---|
126 | //bjet information
|
---|
127 | bool Btag;
|
---|
128 |
|
---|
129 | //Particle level information
|
---|
130 | int PID, Status, M1,M2,D1,D2;
|
---|
131 | float Charge, T, X, Y, Z, M;
|
---|
132 |
|
---|
133 | //VFD information
|
---|
134 | float S,q2,Tx,Ty;
|
---|
135 | int side;
|
---|
136 | bool hadronic_hit;
|
---|
137 |
|
---|
138 | for(entry = 0; entry < allEntries; ++entry)
|
---|
139 | {
|
---|
140 | treeReaderGen->ReadEntry(entry);//access information of generated information
|
---|
141 | treeReaderRec->ReadEntry(entry);//access information of reconstructed information
|
---|
142 | treeReaderTrig->ReadEntry(entry);//access information of Trigger information
|
---|
143 |
|
---|
144 | //*****************************************************
|
---|
145 | //Example how to run on the generator level information
|
---|
146 | //*****************************************************
|
---|
147 | TIter itGen((TCollection*)GEN);
|
---|
148 | TRootC::GenParticle *gen;
|
---|
149 | itGen.Reset();
|
---|
150 | while( (gen = (TRootC::GenParticle*) itGen.Next()) )
|
---|
151 | {
|
---|
152 | PID = gen->PID; // particle HEP ID number
|
---|
153 | Status = gen->Status; // particle status
|
---|
154 | M1 = gen->M1; // particle 1st mother
|
---|
155 | M2 = gen->M2; // particle 2nd mother
|
---|
156 | D1 = gen->D1; // particle 1st daughter
|
---|
157 | D2 = gen->D2; // particle 2nd daughter
|
---|
158 | Charge = gen->Charge; // electrical charge
|
---|
159 |
|
---|
160 | T = gen->T; // particle vertex position (t component)
|
---|
161 | X = gen->X; // particle vertex position (x component)
|
---|
162 | Y = gen->Y; // particle vertex position (y component)
|
---|
163 | Z = gen->Z; // particle vertex position (z component)
|
---|
164 | M = gen->M; // particle mass
|
---|
165 | }
|
---|
166 |
|
---|
167 |
|
---|
168 | //***********************************************
|
---|
169 | //Example how to run on the reconstructed objects
|
---|
170 | //***********************************************
|
---|
171 |
|
---|
172 | //access the Electron branch
|
---|
173 | TIter itElec((TCollection*)ELEC);
|
---|
174 | TRootElectron *elec;
|
---|
175 | itElec.Reset();
|
---|
176 | while( (elec = (TRootElectron*) itElec.Next()) )
|
---|
177 | {
|
---|
178 | E = elec->E; // particle energy in GeV
|
---|
179 | Px = elec->Px; // particle momentum vector (x component) in GeV
|
---|
180 | Py = elec->Py; // particle momentum vector (y component) in GeV
|
---|
181 | Pz = elec->Pz; // particle momentum vector (z component) in GeV
|
---|
182 |
|
---|
183 | PT = elec->PT; // particle transverse momentum in GeV
|
---|
184 | Eta = elec->Eta; // particle pseudorapidity
|
---|
185 | Phi = elec->Phi; // particle azimuthal angle in rad
|
---|
186 | IsolFlag = elec->IsolFlag; // is the particule isolated?
|
---|
187 | }
|
---|
188 | //Running on the muon branch is identical:
|
---|
189 | TIter itMuon((TCollection*)MUON);
|
---|
190 | TRootMuon *muon;
|
---|
191 | itMuon.Reset();
|
---|
192 | while( (muon = (TRootMuon*) itMuon.Next()) ){}
|
---|
193 |
|
---|
194 | //access the Photon branch
|
---|
195 | TIter itGam((TCollection*)PHOTO);
|
---|
196 | TRootPhoton *gam;
|
---|
197 | itGam.Reset();
|
---|
198 | while( (gam = (TRootPhoton*) itGam.Next()) )
|
---|
199 | {
|
---|
200 | E = gam->E; // particle energy in GeV
|
---|
201 | Px = gam->Px; // particle momentum vector (x component) in GeV
|
---|
202 | Py = gam->Py; // particle momentum vector (y component) in GeV
|
---|
203 | Pz = gam->Pz; // particle momentum vector (z component) in GeV
|
---|
204 |
|
---|
205 | PT = gam->PT; // particle transverse momentum in GeV
|
---|
206 | Eta = gam->Eta; // particle pseudorapidity
|
---|
207 | Phi = gam->Phi; // particle azimuthal angle in rad
|
---|
208 | }
|
---|
209 |
|
---|
210 | //access the jet branch
|
---|
211 | TIter itJet((TCollection*)JET);
|
---|
212 | TRootJet *jet;
|
---|
213 | itJet.Reset();
|
---|
214 | while( (jet = (TRootJet*) itJet.Next()) )
|
---|
215 | {
|
---|
216 | E = jet->E; // particle energy in GeV
|
---|
217 | Px = jet->Px; // particle momentum vector (x component) in GeV
|
---|
218 | Py = jet->Py; // particle momentum vector (y component) in GeV
|
---|
219 | Pz = jet->Pz; // particle momentum vector (z component) in GeV
|
---|
220 |
|
---|
221 | PT = jet->PT; // particle transverse momentum in GeV
|
---|
222 | Eta = jet->Eta; // particle pseudorapidity
|
---|
223 | Phi = jet->Phi; // particle azimuthal angle in rad
|
---|
224 | Btag = jet->Btag; // is the jet BTagged
|
---|
225 | }
|
---|
226 | //Running on the tau-jet branch is identical:
|
---|
227 | TIter itTaujet((TCollection*)TAUJET);
|
---|
228 | TRootTauJet *taujet;
|
---|
229 | itTaujet.Reset();
|
---|
230 | while( (taujet = (TRootTauJet*) itTaujet.Next()) ){}
|
---|
231 |
|
---|
232 | //access the track branch
|
---|
233 | TIter itTrack((TCollection*)TRACKS);
|
---|
234 | TRootTracks *tracks;
|
---|
235 | itTrack.Reset();
|
---|
236 | while( (tracks = (TRootTracks*) itTrack.Next()) )
|
---|
237 | {
|
---|
238 | E = tracks->E; // particle energy in GeV
|
---|
239 | Px = tracks->Px; // particle momentum vector (x component) in GeV
|
---|
240 | Py = tracks->Py; // particle momentum vector (y component) in GeV
|
---|
241 | Pz = tracks->Pz; // particle momentum vector (z component) in GeV
|
---|
242 |
|
---|
243 | PT = tracks->PT; // particle transverse momentum in GeV
|
---|
244 | Eta = tracks->Eta; // particle pseudorapidity
|
---|
245 | Phi = tracks->Phi; // particle azimuthal angle in rad
|
---|
246 | }
|
---|
247 |
|
---|
248 | //Running on the calo branch is identical:
|
---|
249 | TIter itCalo((TCollection*)CALO);
|
---|
250 | TRootCalo *calo;
|
---|
251 | itCalo.Reset();
|
---|
252 | while( (calo = (TRootCalo*) itCalo.Next()) ){}
|
---|
253 |
|
---|
254 | //***************************************************
|
---|
255 | //Example how to run on the VFD reconstructed objects
|
---|
256 | //***************************************************
|
---|
257 |
|
---|
258 | //access the ZDC branch
|
---|
259 | TIter itZdc((TCollection*)ZDC);
|
---|
260 | TRootZdcHits *zdc;
|
---|
261 | itZdc.Reset();
|
---|
262 | while( (zdc = (TRootZdcHits*) itZdc.Next()) )
|
---|
263 | {
|
---|
264 | E = zdc->E; // particle energy in GeV
|
---|
265 | T = zdc->T; // time of flight [s]
|
---|
266 | /*
|
---|
267 | Px = zdc->Px; // particle momentum vector (x component) in GeV
|
---|
268 | Py = zdc->Py; // particle momentum vector (y component) in GeV
|
---|
269 | Pz = zdc->Pz; // particle momentum vector (z component) in GeV
|
---|
270 |
|
---|
271 | PT = zdc->PT; // particle transverse momentum in GeV
|
---|
272 | Eta = zdc->Eta; // particle pseudorapidity
|
---|
273 | Phi = zdc->Phi; // particle azimuthal angle in rad
|
---|
274 | */
|
---|
275 | side = zdc->side; // -1 or +1
|
---|
276 | //hadronic_hit = zdc->hadronic_hit; // true if neutron, false if photon
|
---|
277 | }
|
---|
278 |
|
---|
279 | //access the RP220 branch
|
---|
280 | TIter itRp220((TCollection*)RP220);
|
---|
281 | TRootRomanPotHits *rp220;
|
---|
282 | itRp220.Reset();
|
---|
283 |
|
---|
284 | while( (rp220 = (TRootRomanPotHits*) itRp220.Next()) )
|
---|
285 | {
|
---|
286 | //T = rp220->T; // time of flight to the detector [s]
|
---|
287 | S = rp220->S; // distance to the IP [m]
|
---|
288 | E = rp220->E; // reconstructed energy [GeV]
|
---|
289 | q2 = rp220->q2; // reconstructed squared momentum transfer [GeV^2]
|
---|
290 |
|
---|
291 | X = rp220->X; // horizontal distance to the beam [um]
|
---|
292 | Y = rp220->Y; // vertical distance to the beam [um]
|
---|
293 |
|
---|
294 | Tx = rp220->Tx; // angle of the momentum in the horizontal (x,z) plane [urad]
|
---|
295 | Ty = rp220->Ty; // angle of the momentum in the verical (y,z) plane [urad]
|
---|
296 |
|
---|
297 | T = rp220->T; // time of arrival of the particle in the detector [s]
|
---|
298 | side = rp220->side; // -1 or 1
|
---|
299 | }
|
---|
300 | //running on FP420 branch is identical
|
---|
301 | TIter itFp420((TCollection*)FP420);
|
---|
302 | TRootRomanPotHits *fp420;
|
---|
303 | itFp420.Reset();
|
---|
304 | while( (fp420 = (TRootRomanPotHits*) itFp420.Next()) ){}
|
---|
305 |
|
---|
306 | //*********************************************
|
---|
307 | //Example how to run on the trigger information
|
---|
308 | //*********************************************
|
---|
309 |
|
---|
310 | TRootTrigger *trig;
|
---|
311 | int NumTrigBit = TRIGGER->GetEntries();
|
---|
312 | //get the global response of the trigger
|
---|
313 |
|
---|
314 | bool GlobalResponse=false;
|
---|
315 | if(NumTrigBit!=0)GlobalResponse=true;
|
---|
316 | //cout<<"GlobalResponse "<<GlobalResponse<<endl;
|
---|
317 | for(int i=0; i < NumTrigBit-1; i++){
|
---|
318 | trig = (TRootTrigger*)TRIGGER->At(i);
|
---|
319 | cout<<"The event has been accepted by the trigger number: "<<trig->Accepted<<endl;
|
---|
320 | }
|
---|
321 |
|
---|
322 | //********************************
|
---|
323 | //Example of a very small analysis
|
---|
324 | //********************************
|
---|
325 |
|
---|
326 | TLorentzVector Lept[2];
|
---|
327 |
|
---|
328 | if(NumTrigBit==0)continue; //event not accepted by the trigger
|
---|
329 | cut_trig++;//event accepted
|
---|
330 |
|
---|
331 | TSimpleArray<TRootElectron> el=SubArrayEl(ELEC,PT_ELEC);//the central isolated electrons, pt > PT_ELEC GeV
|
---|
332 | TSimpleArray<TRootMuon> mu=SubArrayMu(MUON,PT_MUON);//the central isolated electrons, pt > PT_MUON GeV
|
---|
333 |
|
---|
334 | Int_t numElec=el.GetEntries();
|
---|
335 |
|
---|
336 | if(el.GetEntries()+mu.GetEntries()!=2)continue;//Exactly 2 isolated leptons are needed
|
---|
337 | cut_1++;//event accepted
|
---|
338 | for(Int_t i=0;i < numElec; i++)Lept[i].SetPxPyPzE(el[i]->Px,el[i]->Py,el[i]->Pz,el[i]->E);
|
---|
339 | for(Int_t k = numElec; k < (numElec+mu.GetEntries()); k++)Lept[k].SetPxPyPzE(mu[k-numElec]->Px,mu[k-numElec]->Py,mu[k-numElec]->Pz,mu[k-numElec]->E);
|
---|
340 | cout<<"normalement il y a quelque chose... "<<endl;
|
---|
341 | //Example how to white a branch in the output file
|
---|
342 | inv_mass=(TRootInvm*) INVMASS->NewEntry();
|
---|
343 | inv_mass->M=(Lept[0]+Lept[1]).M();
|
---|
344 |
|
---|
345 | if((Lept[0]+Lept[1]).M() > INV_MASS_LL )continue;// the invariant mass should be < INV_MASS_LL
|
---|
346 | cut_2++;//event accepted
|
---|
347 |
|
---|
348 | treeWriter->Fill();
|
---|
349 | }
|
---|
350 | treeWriter->Write();
|
---|
351 |
|
---|
352 | }
|
---|
353 |
|
---|
354 | void Analysis_Ex::WriteOutput(string LogName)
|
---|
355 | {
|
---|
356 | ofstream f_out(LogName.c_str(),ofstream::app);
|
---|
357 |
|
---|
358 | f_out<<"*******************************************************************"<<endl;
|
---|
359 | f_out << left << setw(20) << "Numer of Events "<<""
|
---|
360 | << right << setw(15) << total <<"\n";
|
---|
361 | f_out << left << setw(17) << " Accepted by the trigger "<<""
|
---|
362 | << right << setw(20) << cut_trig <<"\n";
|
---|
363 | f_out << left << setw(17) <<" 2 leptons "<< ""
|
---|
364 | << right << setw(20) << cut_1 << ""
|
---|
365 | << right << setw(15) << cut_1/total << "\n";
|
---|
366 | f_out << left << setw(17) <<" Invariant mass "<< ""
|
---|
367 | << right << setw(20) << cut_2 << ""
|
---|
368 | << right << setw(15) << cut_2/total << "\n";
|
---|
369 | f_out<<"*******************************************************************"<<endl;
|
---|
370 | f_out<<" "<<endl;
|
---|
371 |
|
---|
372 | }
|
---|
373 |
|
---|
374 | TSimpleArray<TRootElectron> Analysis_Ex::SubArrayEl(const TClonesArray *ELEC,float pt)
|
---|
375 | {
|
---|
376 | TIter itElec((TCollection*)ELEC);
|
---|
377 | TRootElectron *elec;
|
---|
378 | itElec.Reset();
|
---|
379 | TSimpleArray<TRootElectron> array;
|
---|
380 | while( (elec = (TRootElectron*) itElec.Next()) )
|
---|
381 | {
|
---|
382 | if(elec->PT<pt)continue;
|
---|
383 | array.Add(elec);
|
---|
384 | }
|
---|
385 | return array;
|
---|
386 | }
|
---|
387 |
|
---|
388 | TSimpleArray<TRootMuon> Analysis_Ex::SubArrayMu(const TClonesArray *MUON,float pt)
|
---|
389 | {
|
---|
390 | TIter itMuon((TCollection*)MUON);
|
---|
391 | TRootMuon *muon;
|
---|
392 | itMuon.Reset();
|
---|
393 | TSimpleArray<TRootMuon> array;
|
---|
394 | while( (muon = (TRootMuon*) itMuon.Next()) )
|
---|
395 | {
|
---|
396 | if(muon->PT<pt)continue;
|
---|
397 | array.Add(muon);
|
---|
398 | }
|
---|
399 | return array;
|
---|
400 | }
|
---|
401 |
|
---|