Fork me on GitHub

source: svn/trunk/Delphes.cpp@ 405

Last change on this file since 405 was 401, checked in by Xavier Rouby, 15 years ago

move the header print-out to SmearUtil

File size: 34.0 KB
Line 
1/***********************************************************************
2** **
3** /----------------------------------------------\ **
4** | Delphes, a framework for the fast simulation | **
5** | of a generic collider experiment | **
6** \------------- arXiv:0903.2225v1 ------------/ **
7** **
8** **
9** This package uses: **
10** ------------------ **
11** FastJet algorithm: Phys. Lett. B641 (2006) [hep-ph/0512210] **
12** Hector: JINST 2:P09005 (2007) [physics.acc-ph:0707.1198v2] **
13** FROG: [hep-ex/0901.2718v1] **
14** **
15** ------------------------------------------------------------------ **
16** **
17** Main authors: **
18** ------------- **
19** **
20** Severine Ovyn Xavier Rouby **
21** severine.ovyn@uclouvain.be xavier.rouby@cern **
22** **
23** Center for Particle Physics and Phenomenology (CP3) **
24** Universite catholique de Louvain (UCL) **
25** Louvain-la-Neuve, Belgium **
26** **
27** Copyright (C) 2008-2009, **
28** All rights reserved. **
29** **
30***********************************************************************/
31
32/// \file Delphes.cpp
33/// \brief Executable for Delphes
34
35#include "TChain.h"
36#include "TApplication.h"
37#include "TStopwatch.h"
38#include "TFile.h"
39
40#include "ExRootTreeReader.h"
41#include "ExRootTreeWriter.h"
42#include "ExRootTreeBranch.h"
43#include "ExRootProgressBar.h"
44
45#include "DataConverter.h"
46#include "LHEFConverter.h"
47#include "HepMCConverter.h"
48#include "HEPEVTConverter.h"
49#include "STDHEPConverter.h"
50#include "LHCOConverter.h"
51
52#include "SmearUtil.h"
53#include "CaloUtil.h"
54#include "BFieldProp.h"
55#include "TriggerUtil.h"
56#include "VeryForward.h"
57#include "JetsUtil.h"
58#include "FrogUtil.h"
59
60#include <vector>
61#include <iostream>
62
63using namespace std;
64
65//------------------------------------------------------------------------------
66void todo(string filename) {
67 ifstream infile(filename.c_str());
68 cout << "** TODO list ..." << endl;
69 while(infile.good()) {
70 string temp;
71 getline(infile,temp);
72 cout << "*" << temp << endl;
73 }
74 cout << "** done...\n";
75}
76
77//------------------------------------------------------------------------------
78
79int main(int argc, char *argv[])
80{
81
82 int appargc = 2;
83 char *appName= new char[20];
84 char *appOpt= new char[20];
85 sprintf(appName,"Delphes");
86 sprintf(appOpt,"-b");
87 char *appargv[] = {appName,appOpt};
88 TApplication app(appName, &appargc, appargv);
89 delete [] appName;
90 delete [] appOpt;
91
92 if(argc != 3 && argc != 4 && argc != 5) {
93 cout << " Usage: " << argv[0] << " input_file output_file [detector_card] [trigger_card] " << endl;
94 cout << " input_list - list of files in Ntpl, StdHep of LHEF format," << endl;
95 cout << " output_file - output file." << endl;
96 cout << " detector_card - Datacard containing resolution variables for the detector simulation (optional) "<<endl;
97 cout << " trigger_card - Datacard containing the trigger algorithms (optional) "<<endl;
98 exit(1);
99 }
100
101 print_header();
102
103 // 1. ********** initialisation ***********
104
105 srand (time (NULL)); /* Initialisation du générateur */
106 TStopwatch globalwatch, loopwatch, triggerwatch, frogwatch, lhcowatch;
107 globalwatch.Start();
108
109
110 //read the output TROOT file
111 string inputFileList(argv[1]), outputfilename(argv[2]);
112 if(outputfilename.find(".root") > outputfilename.length()) {
113 cout <<"** ERROR: 'output_file' should be a .root file. Exiting... **"<< endl;
114 exit(1);
115 }
116 //create output log-file name
117 string forLog = outputfilename;
118 string LogName = forLog.erase(forLog.find(".root"));
119 LogName = LogName+"_run.log";
120
121 TFile *outputFile = TFile::Open(outputfilename.c_str(), "RECREATE"); // Creates the file, but should be closed just after
122 outputFile->Close();
123
124 string line;
125 ifstream infile(inputFileList.c_str());
126 if(!infile.good()) {
127 cout << "** ERROR: Input list (" << left << setw(13) << inputFileList << ") not found. Exiting... **"<< endl;
128 cout <<"*********************************************************************"<< endl;
129 exit(1);
130 }
131 infile >> line; // the first line determines the type of input files
132
133 //read the datacard input file
134 string DetDatacard("data/DetectorCard.dat"); //for detector smearing parameters
135 string TrigDatacard("data/TriggerCard.dat"); //for trigger selection
136
137 string lineCard1,lineCard2;
138 bool detecCard=false,trigCard=false;
139 if(argv[3])
140 {
141 ifstream infile1(argv[3]);
142 infile1 >> lineCard1; // the first line determines the type of input files
143 if(strstr(lineCard1.c_str(),"DETECTOR") && detecCard==true)
144 cerr <<"** ERROR: A DETECTOR card has already been loaded **"<< endl;
145 else if(strstr(lineCard1.c_str(),"DETECTOR") && detecCard==false){DetDatacard =argv[3]; detecCard=true;}
146 else if(strstr(lineCard1.c_str(),"TRIGGER") && trigCard==true)
147 cerr <<"** ERROR: A TRIGGER card has already been loaded **"<< endl;
148 else if(strstr(lineCard1.c_str(),"TRIGGER") && trigCard==false){TrigDatacard =argv[3]; trigCard=true;}
149 }
150 if(argv[4])
151 {
152 ifstream infile2(argv[4]);
153 infile2 >> lineCard2; // the first line determines the type of input files
154 if(strstr(lineCard2.c_str(),"DETECTOR") && detecCard==true)
155 cerr <<"** ERROR: A DETECTOR card has already been loaded **"<< endl;
156 else if(strstr(lineCard2.c_str(),"DETECTOR") && detecCard==false){DetDatacard =argv[4]; detecCard=true;}
157 else if(strstr(lineCard2.c_str(),"TRIGGER") && trigCard==true)
158 cerr <<"** ERROR: A TRIGGER card has already been loaded **"<< endl;
159 else if(strstr(lineCard2.c_str(),"TRIGGER") && trigCard==false){TrigDatacard =argv[4]; trigCard=true;}
160 }
161
162 //Smearing information
163 RESOLution *DET = new RESOLution();
164
165 cout <<"** **"<< endl;
166 cout <<"** ####### Start reading DETECTOR parameters ####### **"<< endl;
167 cout << left << setw(40) <<"** Opening configuration card: "<<""
168 << left << setw(27) << DetDatacard <<""
169 << right << setw(2) <<"**"<<""<<endl;
170 DET->ReadDataCard(DetDatacard);
171 DET->Logfile(LogName);
172 cout << left << setw(40) <<"** Parameters summarised in: "<<""
173 << left << setw(27) << LogName <<""
174 << right << setw(2) <<"**"<<""<<endl;
175 cout <<"** **"<< endl;
176 DET->ReadParticleDataGroupTable();
177 // DET->PDGtable.print();
178
179 //Trigger information
180 cout <<"** ########### Start reading TRIGGER card ########## **"<< endl;
181 if(trigCard==false)
182 {
183 cout <<"** WARNING: Datacard not found, use default card **" << endl;
184 TrigDatacard="data/TriggerCard.dat";
185 }
186 TriggerTable *TRIGT = new TriggerTable();
187 TRIGT->TriggerCardReader(TrigDatacard.c_str());
188 TRIGT->PrintTriggerTable(LogName);
189 if(DET->FLAG_trigger == 1)
190 {
191 cout << left << setw(40) <<"** Opening configuration card: "<<""
192 << left << setw(27) << TrigDatacard <<""
193 << right << setw(2) <<"**"<<""<<endl;
194 cout <<"** **"<< endl;
195 }
196
197 //Propagation of tracks in the B field
198 TrackPropagation *TRACP = new TrackPropagation(DET);
199
200 //Jet information
201 JetsUtil *JETRUN = new JetsUtil(DET);
202
203 //VFD information
204 VeryForward * VFD = new VeryForward(DET);
205
206 // data converters
207 cout <<"** **"<<endl;
208 cout <<"** ####### Start convertion to TRoot format ######## **"<< endl;
209
210 if(line.length() == 1+line.find_last_of(".hep"))
211 {
212 cout <<"** StdHEP file format detected **"<<endl;
213 cout <<"** This can take several minutes **"<< endl;
214 STDHEPConverter converter(inputFileList,outputfilename,DET->PDGtable);//case ntpl file in input list
215 }
216 else if(line.length() == 1+line.find_last_of(".lhe"))
217 {
218 cout <<"** LHEF file format detected **"<<endl;
219 cout <<"** This can take several minutes **"<< endl;
220 LHEFConverter converter(inputFileList,outputfilename,DET->PDGtable);//case ntpl file in input list
221 }
222 else if(line.length() == 1+line.find_last_of(".root"))
223 {
224 cout <<"** h2root file format detected **"<<endl;
225 cout <<"** This can take several minutes **"<< endl;
226 HEPEVTConverter converter(inputFileList,outputfilename,DET->PDGtable);//case ntpl file in input list
227 }
228 else if(line.length() == 1+line.find_last_of(".hepmc"))
229 {
230 cout <<"** HepMC ASCII file format detected **"<<endl;
231 cout <<"** This can take several minutes **"<< endl;
232 HepMCConverter converter(inputFileList,outputfilename,DET->PDGtable);
233 }
234 else {
235 cerr << left << setw(4) <<"** "<<""
236 << left << setw(63) << line.c_str() <<""
237 << right << setw(2) <<"**"<<endl;
238 cerr <<"** ERROR: File format not identified -- Exiting... **"<< endl;
239 cout <<"** **"<< endl;
240 cout <<"*********************************************************************"<< endl;
241 return -1;};
242 cout <<"** Exiting conversion... **"<< endl;
243
244 TChain chain("GEN");
245 chain.Add(outputfilename.c_str());
246 ExRootTreeReader *treeReader = new ExRootTreeReader(&chain);
247 const TClonesArray *branchGen = treeReader->UseBranch("Particle");
248
249 TIter itGen((TCollection*)branchGen);
250
251 //Output file : contents of the analysis object data
252 ExRootTreeWriter *treeWriter = new ExRootTreeWriter(outputfilename, "Analysis");
253 ExRootTreeBranch *branchTauJet = treeWriter->NewBranch("TauJet", TRootTauJet::Class());
254 ExRootTreeBranch *branchJet = treeWriter->NewBranch("Jet", TRootJet::Class());
255 ExRootTreeBranch *branchElectron = treeWriter->NewBranch("Electron", TRootElectron::Class());
256 ExRootTreeBranch *branchMuon = treeWriter->NewBranch("Muon", TRootMuon::Class());
257 ExRootTreeBranch *branchPhoton = treeWriter->NewBranch("Photon", TRootPhoton::Class());
258 ExRootTreeBranch *branchTrack = treeWriter->NewBranch("Tracks", TRootTracks::Class());
259 ExRootTreeBranch *branchETmis = treeWriter->NewBranch("ETmis", TRootETmis::Class());
260 ExRootTreeBranch *branchCalo = treeWriter->NewBranch("CaloTower", TRootCalo::Class());
261 ExRootTreeBranch *branchZDC = treeWriter->NewBranch("ZDChits", TRootZdcHits::Class());
262 ExRootTreeBranch *branchRP220 = treeWriter->NewBranch("RP220hits", TRootRomanPotHits::Class());
263 //ExRootTreeBranch *branchFP420 = treeWriter->NewBranch("FP420hits", TRootForwardTaggerHits::Class());
264 ExRootTreeBranch *branchFP420 = treeWriter->NewBranch("FP420hits", TRootRomanPotHits::Class());
265
266 TRootETmis *elementEtmis;
267 TRootElectron *elementElec;
268 TRootMuon *elementMu;
269 TRootPhoton *elementPhoton;
270 TRootTracks * elementTrack;
271 TRootCalo *elementCalo;
272
273 TLorentzVector genMomentum(0,0,0,0); // four-momentum at the vertex
274 TLorentzVector genMomentumBfield(0,0,0,0); // four-momentum at the exit of the tracks
275 TLorentzVector momentumCaloSegmentation(0,0,0,0); // four-momentum in the calo, after applying the calo segmentation
276 LorentzVector jetMomentum;
277
278 vector<fastjet::PseudoJet> input_particles;//for FastJet algorithm
279 vector<fastjet::PseudoJet> sorted_jets;
280 vector<TRootTracks> TrackCentral;
281 vector<PhysicsTower> towers;
282 vector<D_Particle> electron;
283 vector<D_Particle> muon;
284 vector<D_Particle> gamma;
285
286 vector<int> NTrackJet;
287
288 TSimpleArray<TRootC::GenParticle> NFCentralQ;
289
290 D_CaloList list_of_calorimeters;
291 D_CaloElement CentralCalo("centralcalo",
292 -DET->CEN_max_calo_cen, DET->CEN_max_calo_cen,
293 DET->ELG_Ccen, DET->ELG_Ncen, DET->ELG_Scen,
294 DET->HAD_Chcal, DET->HAD_Nhcal, DET->HAD_Shcal);
295 D_CaloElement ForwardCalo("forwardcalo",
296 DET->CEN_max_calo_cen, DET->CEN_max_calo_fwd,
297 DET->ELG_Cfwd, DET->ELG_Nfwd, DET->ELG_Sfwd,
298 DET->HAD_Chf, DET->HAD_Nhf, DET->HAD_Shf );
299 D_CaloElement BackwardCalo("backwardcalo",
300 -DET->CEN_max_calo_fwd, -DET->CEN_max_calo_cen,
301 DET->ELG_Cfwd, DET->ELG_Nfwd, DET->ELG_Sfwd,
302 DET->HAD_Chf, DET->HAD_Nhf, DET->HAD_Shf );
303 //D_CaloElement CastorCalo("castor",5.5,6.6,1,0,0,1,0,0);
304 list_of_calorimeters.addElement(CentralCalo);
305 list_of_calorimeters.addElement(ForwardCalo);
306 list_of_calorimeters.addElement(BackwardCalo);
307 //list_of_calorimeters.addElement(CastorCalo);
308 list_of_calorimeters.sortElements();
309
310
311 // 2. ********** Loop over all events ***********
312 Long64_t entry, allEntries = treeReader->GetEntries();
313 cout <<"** **"<<endl;
314 cout <<"** ####### Start fast detector simulation ######## **"<< endl;
315 cout << left << setw(52) <<"** Total number of events to run: "<<""
316 << left << setw(15) << allEntries <<""
317 << right << setw(2) <<"**"<<endl;
318
319 ExRootProgressBar *Progress = new ExRootProgressBar(allEntries);
320
321 loopwatch.Start();
322
323 // loop on all events
324 for(entry = 0; entry < allEntries; ++entry)
325 {
326 Progress->Update(entry);
327 TLorentzVector PTmis(0,0,0,0);
328 treeReader->ReadEntry(entry);
329 treeWriter->Clear();
330
331 electron.clear();
332 muon.clear();
333 gamma.clear();
334 NFCentralQ.Clear();
335
336 TrackCentral.clear();
337 towers.clear();
338 input_particles.clear();
339 NTrackJet.clear();
340
341 // 'list_of_active_towers' contains the exact list of calorimetric towers which have some deposits inside (E>0).
342 // The towers of this list will be smeared according to the calo resolution, afterwards
343 D_CaloTowerList list_of_active_towers;
344
345 // 'list_of_towers_with_photon' and 'list_of_centowers_with_neutrals' are list of towers, whose energy is **not** computed.
346 // They are only used to store the eta/phi of some towers, in order to search later inside 'list_of_active_towers'.
347 // 'list_of_towers_with_photon' contains the towers hit by photons only
348 // 'list_of_centowers_with_neutrals' is used to the jet-E-flow calculation: contains the towers with eta < CEN_max_tracker,
349 // i.e. towers behind the tracker.
350 D_CaloTowerList list_of_towers_with_photon; // to speed up the code: will only look in interesting towers for gamma candidates
351
352 D_CaloTowerList list_of_centowers_with_neutrals; // list of towers with neutral particles : for jet E-flow
353 float etamax_calocoverage_behindtracker = DET->CEN_max_tracker; // finds the extension in eta of the furthest
354 for (unsigned int i=1; i< DET->TOWER_number+1; i++) { // cell (at least) partially behind the tracker
355 if(DET->TOWER_eta_edges[i] > DET->CEN_max_tracker) break;
356 etamax_calocoverage_behindtracker = DET->TOWER_eta_edges[i];
357 }
358 // 2.1a Loop over all particles in event, to fill the towers
359 itGen.Reset();
360 TRootC::GenParticle *particleG;
361 while( (particleG = (TRootC::GenParticle*) itGen.Next()) )
362 {
363 TRootGenParticle *particle = new TRootGenParticle(particleG);
364 PdgParticle pdg_part = DET->PDGtable[particle->PID];
365 particle->Charge = pdg_part.charge();
366 particle->M = pdg_part.mass();
367 //particle->Charge=ChargeVal(particle->PID);
368 particle->setFractions(); // init
369 int pid = abs(particle->PID);
370
371
372 // 2.1a.1********************* preparation for the b-tagging
373 //// This subarray is needed for the B-jet algorithm
374 // optimization for speed : put first PID condition, then ETA condition, then either pt or status
375 if( (pid <= pB || pid == pGLUON) &&// is it a light quark or a gluon, i.e. is it one of these : u,d,c,s,b,g ?
376 fabs(particle->Eta) < DET->CEN_max_tracker &&
377 particle->Status != 1 &&
378 particle->PT > DET->PT_QUARKS_MIN )
379 {
380 NFCentralQ.Add(particleG);
381 }
382
383 // 2.1a.2********************* visible particles only
384 if( (particle->Status == 1) && (pid != pNU1) && (pid != pNU2) && (pid != pNU3) )
385 {
386 // 2.1a.2.1 Central solenoidal magnetic field
387 TRACP->bfield(particle); // fills in particle->EtaCalo et particle->PhiCalo
388 // 2.1a.2.2 Filling the calorimetric towers -- includes also forward detectors ?
389 // first checks if the charged particles reach the calo!
390 if( DET->FLAG_bfield ||
391 particle->Charge==0 ||
392 (!DET->FLAG_bfield && particle->Charge!=0 && particle->PT > DET->TRACK_ptmin))
393 if(
394 (particle->EtaCalo > list_of_calorimeters.getEtamin() ) &&
395 (particle->EtaCalo < list_of_calorimeters.getEtamax() )
396 )
397 {
398 float iEta=UNDEFINED, iPhi=UNDEFINED;
399 DET->BinEtaPhi(particle->PhiCalo,particle->EtaCalo,iPhi,iEta); // fills in iPhi and iEta
400 if (iEta != UNDEFINED && iPhi != UNDEFINED)
401 {
402 D_CaloTower tower(iEta,iPhi); // new tower
403 tower.Set_Eem_Ehad_E_ET(particle->E*particle->getFem() , particle->E*particle->getFhad() );
404 list_of_active_towers.addTower(tower);
405 // this list may contain several times the same calotower, as several particles
406 // may leave some energy in the same calotower
407 // After the loop on particles, identical cells in the list should be merged
408 } // iEta and iPhi must be defined
409 }
410
411 // 2.1a.2.3 charged particles in tracker: energy flow
412 // if bfield not simulated, pt should be high enough to be taken into account
413 // it is supposed here that DET->MAX_calo > DET->CEN_max_tracker > DET->CEN_max_mu > 0
414 if( particle->Charge !=0 &&
415 fabs(particle->EtaCalo)< DET->CEN_max_tracker && // stays in the tracker -> track available
416 ( DET->FLAG_bfield ||
417 (!DET->FLAG_bfield && particle->PT > DET->TRACK_ptmin)
418 )
419 )
420 {
421 // 2.1a.2.3.1 Filling the particle properties + smearing
422 // Hypothesis: the final eta/phi are the ones from the generator, thanks to the track reconstruction
423 // This is the EnergyFlow hypothesis
424 particle->SetEtaPhi(particle->Eta,particle->Phi);
425 float sET=UNDEFINED; // smeared ET, computed from the smeared E -> needed for the tracks
426
427 // 2.1a.2.3.2 Muons
428 if (pid == pMU && fabs(particle->EtaCalo)< DET->CEN_max_mu)
429 {
430 TLorentzVector p;
431 float sPT = gRandom->Gaus(particle->PT, DET->MU_SmearPt*particle->PT );
432 if (sPT > 0 && sPT > DET->PTCUT_muon)
433 {
434 p.SetPtEtaPhiE(sPT,particle->Eta,particle->Phi,sPT*cosh(particle->Eta));
435 muon.push_back(D_Particle(p,particle->PID,particle->EtaCalo,particle->PhiCalo));
436 }
437 sET = (sPT >0)? sPT : 0;
438 }
439 // 2.1a.2.3.3 Electrons
440 else if (pid == pE)
441 {
442 // Finds in which calorimeter the particle has gone, to know its resolution
443
444 D_CaloElement currentCalo = list_of_calorimeters.getElement(particle->EtaCalo);
445 if(currentCalo.getName() == dummyCalo.getName())
446 {
447 cout << "** Warning: the calo coverage behind the tracker is not complete! **" << endl;
448 }
449
450 // final smeared EM energy // electromagnetic fraction F_em =1 for electrons;
451 float sE = currentCalo.getElectromagneticResolution().Smear(particle->E);
452 if (sE>0)
453 {
454 sET = sE/cosh(particle->Eta);
455 // NB: ET is found via the calorimetry and not via the track curvature
456
457 TLorentzVector p;
458 p.SetPtEtaPhiE(sET,particle->Eta,particle->Phi,sE);
459 if (sET > DET->PTCUT_elec)
460 electron.push_back(D_Particle(p,particle->PID,particle->EtaCalo,particle->PhiCalo));
461 //if(DET->JET_Eflow) input_particles.push_back(fastjet::PseudoJet(p.Px(),p.Py(),p.Pz(),p.E()));
462 }
463 else { sET=0;} // if negative smeared energy -- needed for the tracks
464 }
465 // 2.1a.2.3.4 Other charged particles : smear them for the tracks!
466 else
467 { //other particles
468 D_CaloElement currentCalo = list_of_calorimeters.getElement(particle->EtaCalo);
469 float sEem = currentCalo.getElectromagneticResolution().Smear(particle->E * particle->getFem());
470 float sEhad = currentCalo.getHadronicResolution().Smear(particle->E * particle->getFhad());
471 float sE = ( (sEem>0)? sEem : 0 ) + ( (sEhad>0)? sEhad : 0 );
472 sET = sE/cosh(particle->EtaCalo);
473 }
474
475 // 2.1a.2.3.5 Tracks
476 if( (rand()%100) < DET->TRACK_eff && sET!=0)
477 {
478 elementTrack = (TRootTracks*) branchTrack->NewEntry();
479 elementTrack->Set(particle->Eta, particle->Phi, particle->EtaCalo, particle->PhiCalo, sET, particle->Charge);
480 TrackCentral.push_back(*elementTrack); // tracks at vertex!
481 if(DET->JET_Eflow)
482 input_particles.push_back(fastjet::PseudoJet(particle->Px,particle->Py,particle->Pz,particle->E));
483 // TODO!!! apply a smearing on the position of the origin of the track
484 // TODO!!! elementTracks->SetPositionOut(Xout,Yout,Zout);
485 }
486 } // 2.1a.2.3 : if tracker/energy-flow
487 // 2.1a.2.4 Photons
488 // stays in the tracker -> track available -> gamma ID
489 else if( (pid == pGAMMA) && fabs(particle->EtaCalo)< DET->CEN_max_tracker )
490 {
491 float iEta=UNDEFINED, iPhi=UNDEFINED;
492 DET->BinEtaPhi(particle->PhiCalo,particle->EtaCalo,iPhi,iEta); // fills in iPhi and iEta
493 D_CaloTower tower(iEta,iPhi);
494 // stores the list of towers where to apply the photon ID algorithm. Just a trick for a faster search
495 list_of_towers_with_photon.addTower(tower);
496 }
497 // 2.1a.2.5 Neutrals within tracker -- for jet energy flow
498 else if( particle->Charge ==0 && fabs(particle->EtaCalo)< etamax_calocoverage_behindtracker)
499 {
500 float iEta=UNDEFINED, iPhi=UNDEFINED;
501 DET->BinEtaPhi(particle->PhiCalo,particle->EtaCalo,iPhi,iEta); // fills in iPhi and iEta
502 D_CaloTower tower(iEta,iPhi);
503 list_of_centowers_with_neutrals.addTower(tower);
504 }
505 // 2.1a.2.6 : very forward detectors
506 else
507 {
508 if (DET->FLAG_RP==1)
509 {
510 // for the moment, only protons are transported
511 // BUT !!! could be a beam of other particles! (heavy ions?)
512 // BUT ALSO !!! if very forward muons, or others!
513 VFD->RomanPots(treeWriter,branchRP220,branchFP420,particle);
514 }
515 // 2.1a.2.6: Zero degree calorimeter
516 if(DET->FLAG_vfd==1)
517 {
518 VFD->ZDC(treeWriter,branchZDC,particle);
519 }
520 }
521
522 } // 2.1a.2 : if visible particle
523 delete particle;
524 }// loop on all particles 2.1a
525
526 // 2.1b loop on all (activated) towers
527 // at this stage, list_of_active_towers may contain several times the same tower
528 // first step is to merge identical towers, by matching their (iEta,iPhi)
529
530 list_of_active_towers.sortElements();
531 list_of_active_towers.mergeDuplicates();
532
533 // Calotower smearing
534 list_of_active_towers.smearTowers(list_of_calorimeters);
535
536 for(unsigned int i=0; i<list_of_active_towers.size(); i++)
537 {
538 float iEta = list_of_active_towers[i].getEta();
539 float iPhi = list_of_active_towers[i].getPhi();
540 float e = list_of_active_towers[i].getE();
541 if(iEta != UNDEFINED && iPhi != UNDEFINED && e!=0)
542 {
543 elementCalo = (TRootCalo*) branchCalo->NewEntry();
544 elementCalo->set(list_of_active_towers[i]);
545 // not beautiful : should be improved!
546 TLorentzVector p;
547 p.SetPtEtaPhiE(list_of_active_towers[i].getET(), iEta, iPhi, e );
548 PhysicsTower Tower(LorentzVector(p.Px(),p.Py(),p.Pz(),p.E()));
549 towers.push_back(Tower);
550 }
551 } // loop on towers
552
553 // 2.1c photon ID
554 // list_of_towers_with_photon is the list of towers with photon candidates
555 // already smeared !
556 // sorts the vector and smears duplicates
557 list_of_towers_with_photon.mergeDuplicates();
558 for(unsigned int i=0; i<list_of_towers_with_photon.size(); i++) {
559 float eta = list_of_towers_with_photon[i].getEta();
560 float phi = list_of_towers_with_photon[i].getPhi();
561 D_CaloTower cal(list_of_active_towers.getElement(eta,phi)); //// <---------- buh???????
562 if(cal.getEta() != UNDEFINED && cal.getPhi() != UNDEFINED && cal.getE() > 0)
563 {
564 TLorentzVector p;
565 p.SetPtEtaPhiE(cal.getET(), eta,phi,cal.getE() );
566 if (cal.getET() > DET->PTCUT_gamma) { gamma.push_back(D_Particle(p,pGAMMA,p.Eta(),p.Phi())); }
567 }
568 } // for -- list of photons
569
570 // 2.1d jet-E-flow -- taking into account the neutrals within tracker
571 if(DET->JET_Eflow) {
572 list_of_centowers_with_neutrals.mergeDuplicates();
573 for(unsigned int i=0; i<list_of_centowers_with_neutrals.size(); i++) {
574 float eta = list_of_centowers_with_neutrals[i].getEta();
575 float phi = list_of_centowers_with_neutrals[i].getPhi();
576 D_CaloTower cal(list_of_active_towers.getElement(eta,phi));
577 if(cal.getEta() != UNDEFINED && cal.getPhi() != UNDEFINED && cal.getE() > 0)
578 {
579 TLorentzVector p;
580 p.SetPtEtaPhiE(cal.getET(), eta,phi,cal.getE() );
581 //cout << "**************list: " << p.Px() << " " << p.Py() << " " << p.Pz() << " " << p.E() << endl;
582 input_particles.push_back(fastjet::PseudoJet(p.Px(),p.Py(),p.Pz(),p.E()));
583 }
584 } // for - list_of_centowers
585 } // JET_Eflow
586
587 // 2.2 ********** Output preparation & complex objects ***********
588 // 2.2.1 ********************* sorting collections by decreasing pt
589 DET->SortedVector(electron);
590 float iPhiEl=0,iEtaEl=0,ptisoEl=0;
591 for(unsigned int i=0; i < electron.size(); i++)
592 {
593 elementElec = (TRootElectron*) branchElectron->NewEntry();
594 elementElec->Set(electron[i].Px(),electron[i].Py(),electron[i].Pz(),electron[i].E());
595 elementElec->EtaCalo = electron[i].EtaCalo();
596 elementElec->PhiCalo = electron[i].PhiCalo();
597 elementElec->Charge = sign(electron[i].PID());
598 elementElec->IsolFlag = DET->Isolation(electron[i],TrackCentral,DET->ISOL_PT,DET->ISOL_Cone,ptisoEl);
599 elementElec->IsolPt = ptisoEl;
600 DET->BinEtaPhi(elementElec->PhiCalo,elementElec->EtaCalo,iPhiEl,iEtaEl);
601 D_CaloTower calElec(list_of_active_towers.getElement(iEtaEl,iPhiEl));
602 elementElec->EHoverEE = calElec.getEhad()/calElec.getEem();
603 }
604
605 DET->SortedVector(muon);
606 float iPhiMu=0,iEtaMu=0,ptisoMu=0;
607 for(unsigned int i=0; i < muon.size(); i++)
608 {
609 elementMu = (TRootMuon*) branchMuon->NewEntry();
610 elementMu->Charge = sign(muon[i].PID());
611 elementMu->Set(muon[i].Px(),muon[i].Py(),muon[i].Pz(),muon[i].E());
612 elementMu->EtaCalo = muon[i].EtaCalo();
613 elementMu->PhiCalo = muon[i].PhiCalo();
614 elementMu->IsolFlag = DET->Isolation(muon[i],TrackCentral,DET->ISOL_PT,DET->ISOL_Cone,ptisoMu);
615 elementMu->IsolPt = ptisoMu;
616 DET->BinEtaPhi(elementMu->PhiCalo,elementMu->EtaCalo,iPhiMu,iEtaMu);
617 D_CaloTower calMuon(list_of_active_towers.getElement(iEtaMu,iPhiMu));
618 if( calMuon.getEem() !=0 ) elementMu->EHoverEE = calMuon.getEhad()/calMuon.getEem();
619 else elementMu->EHoverEE = UNDEFINED;
620 elementMu->EtRatio = DET->CaloIsolation(muon[i], list_of_active_towers,iPhiMu,iEtaMu);
621 }
622
623 DET->SortedVector(gamma);
624 for(unsigned int i=0; i < gamma.size(); i++)
625 {
626 elementPhoton = (TRootPhoton*) branchPhoton->NewEntry();
627 elementPhoton->Set(gamma[i].Px(),gamma[i].Py(),gamma[i].Pz(),gamma[i].E());
628 D_CaloTower calGamma(list_of_active_towers.getElement(gamma[i].EtaCalo(),gamma[i].PhiCalo()));
629 elementPhoton->EHoverEE = calGamma.getEhad()/calGamma.getEem();
630 }
631
632 // 2.2.2 ************* computes the Missing Transverse Momentum
633 TLorentzVector Att(0.,0.,0.,0.);
634 for(unsigned int i=0; i < towers.size(); i++)
635 {
636 Att.SetPxPyPzE(towers[i].fourVector.px, towers[i].fourVector.py, towers[i].fourVector.pz, towers[i].fourVector.E);
637 if(fabs(Att.Eta()) < DET->CEN_max_calo_fwd)
638 {
639 PTmis = PTmis + Att;
640 // create a fastjet::PseudoJet with these components and put it onto
641 // back of the input_particles vector
642 if(!DET->JET_Eflow)
643 input_particles.push_back(fastjet::PseudoJet(towers[i].fourVector.px,towers[i].fourVector.py,towers[i].fourVector.pz,towers[i].fourVector.E));
644 else { if(fabs(Att.Eta()) > DET->CEN_max_tracker)
645 input_particles.push_back(fastjet::PseudoJet(towers[i].fourVector.px,towers[i].fourVector.py,towers[i].fourVector.pz,towers[i].fourVector.E));
646 }
647 }
648 }
649 elementEtmis = (TRootETmis*) branchETmis->NewEntry();
650 elementEtmis->ET = (PTmis).Pt();
651 elementEtmis->Phi = (-PTmis).Phi();
652 elementEtmis->Px = (-PTmis).Px();
653 elementEtmis->Py = (-PTmis).Py();
654
655 // 2.2.3 ************* jets, B-tag, tau jets
656 vector<int> NTrackJet; //for number of tracks
657 vector<float> EHADEEM; //for energyHad over energyEm
658 sorted_jets=JETRUN->RunJets(input_particles, TrackCentral,NTrackJet,EHADEEM,list_of_active_towers);
659 JETRUN->RunJetBtagging(treeWriter, branchJet,sorted_jets,NFCentralQ,NTrackJet,EHADEEM);
660 JETRUN->RunTauJets(treeWriter,branchTauJet,sorted_jets,towers, TrackCentral,NTrackJet,EHADEEM);
661
662 treeWriter->Fill();
663 } // 2. Loop over all events ('for' loop)
664
665 cout <<"** Exiting detector simulation... **"<< endl;
666
667
668 treeWriter->Write();
669 delete treeWriter;
670 loopwatch.Stop();
671
672
673
674 // 3. ********** Trigger & Frog ***********
675 // 3.1 ************ running the trigger in case the FLAG trigger is put to 1 in the datacard
676 triggerwatch.Start();
677 if(DET->FLAG_trigger == 1)
678 {
679 cout <<"** **"<<endl;
680 cout <<"** ########### Start Trigger selection ########### **"<< endl;
681
682 // input
683 TChain chainT("Analysis");
684 chainT.Add(outputfilename.c_str());
685 ExRootTreeReader *treeReaderT = new ExRootTreeReader(&chainT);
686
687 // output
688 TClonesArray *branchElecTrig = treeReaderT->UseBranch("Electron");
689 TClonesArray *branchMuonTrig = treeReaderT->UseBranch("Muon");
690 TClonesArray *branchJetTrig = treeReaderT->UseBranch("Jet");
691 TClonesArray *branchTauJetTrig = treeReaderT->UseBranch("TauJet");
692 TClonesArray *branchPhotonTrig = treeReaderT->UseBranch("Photon");
693 TClonesArray *branchETmisTrig = treeReaderT->UseBranch("ETmis");
694
695 ExRootTreeWriter *treeWriterT = new ExRootTreeWriter(outputfilename, "Trigger");
696 ExRootTreeBranch *branchTrigger = treeWriterT->NewBranch("TrigResult", TRootTrigger::Class());
697
698
699 Long64_t entryT, allEntriesT = treeReaderT->GetEntries();
700 // loop on all entries
701 for(entryT = 0; entryT < allEntriesT; ++entryT) {
702 treeWriterT->Clear();
703 treeReaderT->ReadEntry(entryT);
704 TRIGT->GetGlobalResult(branchElecTrig, branchMuonTrig,branchJetTrig, branchTauJetTrig,branchPhotonTrig, branchETmisTrig,branchTrigger);
705 treeWriterT->Fill();
706 } // loop on all entries
707 cout <<"** Exiting trigger simulation... **"<< endl;
708
709 treeWriterT->Write();
710 delete treeWriterT;
711 delete treeReaderT;
712 } // trigger
713 triggerwatch.Stop();
714
715
716 // 3.2 ************** FROG display
717 frogwatch.Start();
718 if(DET->FLAG_frog == 1) {
719 cout <<"** **"<<endl;
720 cout <<"** ################## Start FROG ################# **"<< endl;
721
722 FrogDisplay *FROG = new FrogDisplay(DET);
723 FROG->BuildEvents(outputfilename);
724 FROG->BuildGeom();
725 delete FROG;
726 cout <<"** Exiting FROG preparation... **"<< endl;
727 }
728 frogwatch.Stop();
729
730 // 3.3 *************** LHCO output
731 lhcowatch.Start();
732 if(DET->FLAG_lhco == 1){
733 cout <<"** **"<<endl;
734 cout <<"** ############ Start LHCO convertion ############ **"<< endl;
735
736 //LHCOConverter *LHCO = new LHCOConverter(outputfilename,LogNameLHCO);
737 LHCOConverter *LHCO = new LHCOConverter(outputfilename,"");
738 LHCO->CopyRunLogFile();
739 LHCO->ConvertExRootAnalysisToLHCO();
740 delete LHCO;
741 cout <<"** Exiting LHCO converstion... **"<< endl;
742 }
743 lhcowatch.Stop();
744
745
746
747 // 4. ********** End & Exit ***********
748
749 globalwatch.Stop();
750 time_report(globalwatch,loopwatch,triggerwatch,frogwatch,lhcowatch,DET->FLAG_frog,DET->FLAG_trigger,DET->FLAG_lhco,LogName,allEntries);
751
752 cout <<"** **"<< endl;
753 cout <<"** Exiting Delphes ... **"<< endl;
754 cout <<"** **"<< endl;
755 cout <<"*********************************************************************"<< endl;
756 cout <<"*********************************************************************"<< endl;
757
758
759 delete treeReader;
760 delete DET;
761 delete TRIGT;
762 delete TRACP;
763 delete JETRUN;
764 delete VFD;
765
766 // todo("TODO");
767}
Note: See TracBrowser for help on using the repository browser.