Fork me on GitHub

source: svn/trunk/Delphes.cpp@ 560

Last change on this file since 560 was 557, checked in by severine ovyn, 15 years ago

SumEt and SumPt + change ISOL names

File size: 36.3 KB
Line 
1/***********************************************************************
2** **
3** /----------------------------------------------\ **
4** | Delphes, a framework for the fast simulation | **
5** | of a generic collider experiment | **
6** \------------- arXiv:0903.2225v1 ------------/ **
7** **
8** **
9** This package uses: **
10** ------------------ **
11** ROOT: Nucl. Inst. & Meth. in Phys. Res. A389 (1997) 81-86 **
12** FastJet algorithm: Phys. Lett. B641 (2006) [hep-ph/0512210] **
13** Hector: JINST 2:P09005 (2007) [physics.acc-ph:0707.1198v2] **
14** FROG: [hep-ex/0901.2718v1] **
15** HepMC: Comput. Phys. Commun.134 (2001) 41 **
16** **
17** ------------------------------------------------------------------ **
18** **
19** Main authors: **
20** ------------- **
21** **
22** Severine Ovyn Xavier Rouby **
23** severine.ovyn@uclouvain.be xavier.rouby@cern **
24** **
25** Center for Particle Physics and Phenomenology (CP3) **
26** Universite catholique de Louvain (UCL) **
27** Louvain-la-Neuve, Belgium **
28** **
29** Copyright (C) 2008-2009, **
30** All rights reserved. **
31** **
32***********************************************************************/
33
34/// \file Delphes.cpp
35/// \brief Executable for Delphes
36
37#include "TChain.h"
38#include "TApplication.h"
39#include "TStopwatch.h"
40#include "TFile.h"
41
42#include "ExRootTreeReader.h"
43#include "ExRootTreeWriter.h"
44#include "ExRootTreeBranch.h"
45#include "ExRootProgressBar.h"
46
47#include "DataConverter.h"
48#include "LHEFConverter.h"
49#include "HepMCConverter.h"
50#include "HEPEVTConverter.h"
51#include "STDHEPConverter.h"
52#include "LHCOConverter.h"
53#include "DelphesRootConverter.h"
54
55#include "SmearUtil.h"
56#include "CaloUtil.h"
57#include "BFieldProp.h"
58#include "TriggerUtil.h"
59#include "VeryForward.h"
60#include "JetsUtil.h"
61#include "FrogUtil.h"
62
63#include <vector>
64#include <iostream>
65#include <cstdlib> // abs(int)
66
67using namespace std;
68
69//------------------------------------------------------------------------------
70
71int main(int argc, char *argv[])
72{
73
74 int appargc = 2;
75 char *appName= new char[20];
76 char *appOpt= new char[20];
77 sprintf(appName,"Delphes");
78 sprintf(appOpt,"-b");
79 char *appargv[] = {appName,appOpt};
80 TApplication app(appName, &appargc, appargv);
81 delete [] appName;
82 delete [] appOpt;
83
84 if(argc != 3 && argc != 4 && argc != 5) {
85 cout << " Usage: " << argv[0] << " input_file output_file [detector_card] [trigger_card] " << endl;
86 cout << " input_list - list of files in Ntpl, StdHep, HepMC or LHEF format," << endl;
87 cout << " output_file - output file." << endl;
88 cout << " detector_card - Datacard containing resolution variables for the detector simulation (optional) "<<endl;
89 cout << " trigger_card - Datacard containing the trigger algorithms (optional) "<<endl;
90 exit(1);
91 }
92
93 print_header();
94
95 // 1. ********** initialisation ***********
96
97 srand (time (NULL)); /* Initialisation du générateur */
98 TRandom3 * grandom = new TRandom3();
99 TStopwatch globalwatch, loopwatch, triggerwatch, frogwatch, lhcowatch;
100 globalwatch.Start();
101
102
103 //read the output TROOT file
104 string inputFileList(argv[1]), outputfilename(argv[2]);
105 if(outputfilename.find(".root") > outputfilename.length()) {
106 cout <<"** ERROR: 'output_file' should be a .root file. Exiting... **"<< endl;
107 exit(1);
108 }
109 //create output log-file name
110 string forLog = outputfilename;
111 string LogName = forLog.erase(forLog.find(".root"));
112 LogName = LogName+"_run.log";
113
114 TFile *outputFile = TFile::Open(outputfilename.c_str(), "RECREATE"); // Creates the file, but should be closed just after
115 outputFile->Close();
116
117 string line;
118 ifstream infile(inputFileList.c_str());
119 if(!infile.good()) {
120 cout << "** ERROR: Input list (" << left << setw(13) << inputFileList << ") not found. Exiting... **"<< endl;
121 cout <<"*********************************************************************"<< endl;
122 exit(1);
123 }
124 infile >> line; // the first line determines the type of input files
125
126 //read the datacard input file
127 string DetDatacard("data/DetectorCard.dat"); //for detector smearing parameters
128 string TrigDatacard("data/TriggerCard.dat"); //for trigger selection
129
130 string lineCard1,lineCard2;
131 bool detecCard=false,trigCard=false;
132 if(argv[3])
133 {
134 ifstream infile1(argv[3]);
135 infile1 >> lineCard1; // the first line determines the type of input files
136 if(strstr(lineCard1.c_str(),"DETECTOR") && detecCard==true)
137 cerr <<"** ERROR: A DETECTOR card has already been loaded **"<< endl;
138 else if(strstr(lineCard1.c_str(),"DETECTOR") && detecCard==false){DetDatacard =argv[3]; detecCard=true;}
139 else if(strstr(lineCard1.c_str(),"TRIGGER") && trigCard==true)
140 cerr <<"** ERROR: A TRIGGER card has already been loaded **"<< endl;
141 else if(strstr(lineCard1.c_str(),"TRIGGER") && trigCard==false){TrigDatacard =argv[3]; trigCard=true;}
142 }
143 if(argv[4])
144 {
145 ifstream infile2(argv[4]);
146 infile2 >> lineCard2; // the first line determines the type of input files
147 if(strstr(lineCard2.c_str(),"DETECTOR") && detecCard==true)
148 cerr <<"** ERROR: A DETECTOR card has already been loaded **"<< endl;
149 else if(strstr(lineCard2.c_str(),"DETECTOR") && detecCard==false){DetDatacard =argv[4]; detecCard=true;}
150 else if(strstr(lineCard2.c_str(),"TRIGGER") && trigCard==true)
151 cerr <<"** ERROR: A TRIGGER card has already been loaded **"<< endl;
152 else if(strstr(lineCard2.c_str(),"TRIGGER") && trigCard==false){TrigDatacard =argv[4]; trigCard=true;}
153 }
154
155 //Smearing information
156 RESOLution *DET = new RESOLution();
157
158 cout <<"** **"<< endl;
159 cout <<"** ####### Start reading DETECTOR parameters ####### **"<< endl;
160 cout << left << setw(40) <<"** Opening configuration card: "<<""
161 << left << setw(27) << DetDatacard <<""
162 << right << setw(2) <<"**"<<""<<endl;
163 DET->ReadDataCard(DetDatacard);
164 cout << left << setw(40) <<"** Parameters summarised in: "<<""
165 << left << setw(27) << LogName <<""
166 << right << setw(2) <<"**"<<""<<endl;
167 cout <<"** **"<< endl;
168 DET->ReadParticleDataGroupTable();
169 //DET->PDGtable.print();
170
171 //Trigger information
172 cout <<"** ########### Start reading TRIGGER card ########## **"<< endl;
173 if(trigCard==false)
174 {
175 cout <<"** WARNING: Datacard not found, use default card **" << endl;
176 TrigDatacard="data/TriggerCard.dat";
177 }
178 TriggerTable *TRIGT = new TriggerTable();
179 TRIGT->TriggerCardReader(TrigDatacard.c_str());
180 TRIGT->PrintTriggerTable(LogName);
181 if(DET->FLAG_trigger == 1)
182 {
183 cout << left << setw(40) <<"** Opening configuration card: "<<""
184 << left << setw(27) << TrigDatacard <<""
185 << right << setw(2) <<"**"<<""<<endl;
186 cout <<"** **"<< endl;
187 }
188
189 // Logfile
190 DET->setNames(inputFileList,DetDatacard,TrigDatacard);
191 DET->Logfile(LogName);
192
193 //Propagation of tracks in the B field
194 TrackPropagation *TRACP = new TrackPropagation(DET);
195
196 //Jet information
197 JetsUtil *JETRUN = new JetsUtil(DET);
198
199 //VFD information
200 VeryForward * VFD = new VeryForward(DET);
201
202 // data converters
203 cout <<"** **"<<endl;
204 cout <<"** ####### Start conversion to TRoot format ######## **"<< endl;
205
206 if(line.rfind(".hepmc") < line.length())
207 {
208 cout <<"** HepMC ASCII file format detected **"<<endl;
209 cout <<"** This can take several minutes **"<< endl;
210 HepMCConverter converter(inputFileList,outputfilename,DET->PDGtable,DET->NEvents);
211 }
212 else if(line.rfind(".hep") < line.length())
213 {
214 cout <<"** StdHEP file format detected **"<<endl;
215 cout <<"** This can take several minutes **"<< endl;
216 STDHEPConverter converter(inputFileList,outputfilename,DET->PDGtable,DET->NEvents);
217 }
218 else if(line.rfind(".lhe") < line.length())
219 {
220 cout <<"** LHEF file format detected **"<<endl;
221 cout <<"** This can take several minutes **"<< endl;
222 LHEFConverter converter(inputFileList,outputfilename,DET->PDGtable,DET->NEvents);
223 }
224 else if(line.rfind(".root") < line.length())
225 // can be either a root file from h2root (i.e. with "h101" tree)
226 // or a root file from Delphes (i.e. with "GEN" tree)
227 {
228 TFile f(line.c_str());
229 if (f.FindKey("GEN")) {
230 cout <<"** Delphes ROOT file format detected **"<<endl;
231 cout <<"** This can take several minutes **"<< endl;
232 DelphesRootConverter converter(inputFileList,outputfilename,DET->NEvents);
233 }
234 else
235 if (f.FindKey("h101")) {
236 cout <<"** h2root file format detected **"<<endl;
237 cout <<"** This can take several minutes **"<< endl;
238 HEPEVTConverter converter(inputFileList,outputfilename,DET->PDGtable,DET->NEvents);
239 }
240 else {
241 cerr << left << setw(4) <<"** "<<""
242 << left << setw(63) << line.c_str() <<""
243 << right << setw(2) <<"**"<<endl;
244 cerr <<"** ERROR: File format not identified -- Exiting... **"<< endl;
245 cout <<"** **"<< endl;
246 cout <<"*********************************************************************"<< endl;
247 return -1;
248 } // not found any interesting input tree
249 f.Close();
250 } // .root file
251 else {
252 cerr << left << setw(4) <<"** "<<""
253 << left << setw(63) << line.c_str() <<""
254 << right << setw(2) <<"**"<<endl;
255 cerr <<"** ERROR: File format not identified -- Exiting... **"<< endl;
256 cout <<"** **"<< endl;
257 cout <<"*********************************************************************"<< endl;
258 return -1;};
259 cout <<"** Exiting conversion... **"<< endl;
260
261 TChain chain("GEN");
262 chain.Add(outputfilename.c_str());
263 ExRootTreeReader *treeReader = new ExRootTreeReader(&chain);
264 const TClonesArray *branchGen = treeReader->UseBranch("Particle");
265
266 TIter itGen((TCollection*)branchGen);
267
268 //Output file : contents of the analysis object data
269 ExRootTreeWriter *treeWriter = new ExRootTreeWriter(outputfilename, "Analysis");
270 ExRootTreeBranch *branchTauJet = treeWriter->NewBranch("TauJet", TRootTauJet::Class());
271 ExRootTreeBranch *branchJet = treeWriter->NewBranch("Jet", TRootJet::Class());
272 ExRootTreeBranch *branchElectron = treeWriter->NewBranch("Electron", TRootElectron::Class());
273 ExRootTreeBranch *branchMuon = treeWriter->NewBranch("Muon", TRootMuon::Class());
274 ExRootTreeBranch *branchPhoton = treeWriter->NewBranch("Photon", TRootPhoton::Class());
275 ExRootTreeBranch *branchTrack = treeWriter->NewBranch("Tracks", TRootTracks::Class());
276 ExRootTreeBranch *branchETmis = treeWriter->NewBranch("ETmis", TRootETmis::Class());
277 ExRootTreeBranch *branchCalo = treeWriter->NewBranch("CaloTower", TRootCalo::Class());
278 ExRootTreeBranch *branchZDC = treeWriter->NewBranch("ZDChits", TRootZdcHits::Class());
279 ExRootTreeBranch *branchRP220 = treeWriter->NewBranch("RP220hits", TRootRomanPotHits::Class());
280 //ExRootTreeBranch *branchFP420 = treeWriter->NewBranch("FP420hits", TRootForwardTaggerHits::Class());
281 ExRootTreeBranch *branchFP420 = treeWriter->NewBranch("FP420hits", TRootRomanPotHits::Class());
282
283 TRootETmis *elementEtmis;
284 TRootElectron *elementElec;
285 TRootMuon *elementMu;
286 TRootPhoton *elementPhoton;
287 TRootTracks * elementTrack;
288 TRootCalo *elementCalo;
289
290 TLorentzVector genMomentum(0,0,0,0); // four-momentum at the vertex
291 TLorentzVector genMomentumBfield(0,0,0,0); // four-momentum at the exit of the tracks
292 TLorentzVector momentumCaloSegmentation(0,0,0,0); // four-momentum in the calo, after applying the calo segmentation
293 LorentzVector jetMomentum;
294
295 vector<fastjet::PseudoJet> input_particles;//for FastJet algorithm
296 vector<fastjet::PseudoJet> sorted_jets;
297 vector<TRootTracks> TrackCentral;
298 vector<PhysicsTower> towers;
299 vector<D_Particle> electron;
300 vector<D_Particle> muon;
301 vector<D_Particle> gamma;
302
303 vector<int> NTrackJet;
304
305 TSimpleArray<TRootC::GenParticle> NFCentralQ;
306
307 D_CaloList list_of_calorimeters;
308 D_CaloElement CentralCalo("centralcalo",
309 -DET->CEN_max_calo_cen, DET->CEN_max_calo_cen,
310 DET->ELG_Ccen, DET->ELG_Ncen, DET->ELG_Scen,
311 DET->HAD_Ccen, DET->HAD_Ncen, DET->HAD_Scen);
312 D_CaloElement ForwardECCalo("forwardendcapcalo",
313 DET->CEN_max_calo_cen, DET->CEN_max_calo_ec,
314 DET->ELG_Cec, DET->ELG_Nec, DET->ELG_Sec,
315 DET->HAD_Cec, DET->HAD_Nec, DET->HAD_Sec );
316 D_CaloElement BackwardECCalo("backwardendcapcalo",
317 -DET->CEN_max_calo_ec, -DET->CEN_max_calo_cen,
318 DET->ELG_Cec, DET->ELG_Nec, DET->ELG_Sec,
319 DET->HAD_Cec, DET->HAD_Nec, DET->HAD_Sec );
320 D_CaloElement ForwardCalo("forwardcalo",
321 DET->CEN_max_calo_ec, DET->CEN_max_calo_fwd,
322 DET->ELG_Cfwd, DET->ELG_Nfwd, DET->ELG_Sfwd,
323 DET->HAD_Cfwd, DET->HAD_Nfwd, DET->HAD_Sfwd );
324 D_CaloElement BackwardCalo("backwardcalo",
325 -DET->CEN_max_calo_fwd, -DET->CEN_max_calo_ec,
326 DET->ELG_Cfwd, DET->ELG_Nfwd, DET->ELG_Sfwd,
327 DET->HAD_Cfwd, DET->HAD_Nfwd, DET->HAD_Sfwd );
328 //D_CaloElement CastorCalo("castor",5.5,6.6,1,0,0,1,0,0);
329 list_of_calorimeters.addElement(CentralCalo);
330 list_of_calorimeters.addElement(ForwardECCalo);
331 list_of_calorimeters.addElement(ForwardCalo);
332 list_of_calorimeters.addElement(BackwardECCalo);
333 list_of_calorimeters.addElement(BackwardCalo);
334 //list_of_calorimeters.addElement(CastorCalo);
335 list_of_calorimeters.sortElements();
336
337
338 // 2. ********** Loop over all events ***********
339 Long64_t entry, allEntries = treeReader->GetEntries();
340 cout <<"** **"<<endl;
341 cout <<"** ####### Start fast detector simulation ######## **"<< endl;
342 cout << left << setw(52) <<"** Total number of events to run: "<<""
343 << left << setw(15) << allEntries <<""
344 << right << setw(2) <<"**"<<endl;
345
346 ExRootProgressBar *Progress = new ExRootProgressBar(allEntries);
347
348 loopwatch.Start();
349
350 // loop on all events
351 for(entry = 0; entry < allEntries; ++entry)
352 {
353 Progress->Update(entry);
354 TLorentzVector PTmis(0,0,0,0);
355 treeReader->ReadEntry(entry);
356 treeWriter->Clear();
357
358 electron.clear();
359 muon.clear();
360 gamma.clear();
361 NFCentralQ.Clear();
362
363 TrackCentral.clear();
364 towers.clear();
365 input_particles.clear();
366 NTrackJet.clear();
367
368 // 'list_of_active_towers' contains the exact list of calorimetric towers which have some deposits inside (E>0).
369 // The towers of this list will be smeared according to the calo resolution, afterwards
370 D_CaloTowerList list_of_active_towers;
371
372 // 'list_of_towers_with_photon' and 'list_of_centowers_with_neutrals' are list of towers, whose energy is **not** computed.
373 // They are only used to store the eta/phi of some towers, in order to search later inside 'list_of_active_towers'.
374 // 'list_of_towers_with_photon' contains the towers hit by photons only
375 // 'list_of_centowers_with_neutrals' is used to the jet-E-flow calculation: contains the towers with eta < CEN_max_tracker,
376 // i.e. towers behind the tracker.
377 D_CaloTowerList list_of_towers_with_photon; // to speed up the code: will only look in interesting towers for gamma candidates
378
379 D_CaloTowerList list_of_centowers_with_neutrals; // list of towers with neutral particles : for jet E-flow
380 float etamax_calocoverage_behindtracker = DET->CEN_max_tracker; // finds the extension in eta of the furthest
381 for (unsigned int i=1; i< DET->TOWER_number+1; i++) { // cell (at least) partially behind the tracker
382 if(DET->TOWER_eta_edges[i] > DET->CEN_max_tracker) break;
383 etamax_calocoverage_behindtracker = DET->TOWER_eta_edges[i];
384 }
385 // 2.1a Loop over all particles in event, to fill the towers
386 itGen.Reset();
387 TRootC::GenParticle *particleG;
388 while( (particleG = (TRootC::GenParticle*) itGen.Next()) )
389 {
390 TRootGenParticle *particle = new TRootGenParticle(particleG);
391 PdgParticle pdg_part = DET->PDGtable[particle->PID];
392 particle->Charge = pdg_part.charge();
393 particle->M = pdg_part.mass();
394 //particle->Charge=ChargeVal(particle->PID);
395 particle->setFractions(); // init
396 int pid = abs(particle->PID);
397
398 // 2.1a.1********************* preparation for the b-tagging
399 //// This subarray is needed for the B-jet algorithm
400 // optimization for speed : put first PID condition, then ETA condition, then either pt or status
401 if( (pid <= pB || pid == pGLUON) &&// is it a light quark or a gluon, i.e. is it one of these : u,d,c,s,b,g ?
402 fabs(particle->Eta) < DET->CEN_max_tracker &&
403 particle->Status != 1 &&
404 particle->PT > DET->PT_QUARKS_MIN )
405 {
406 NFCentralQ.Add(particleG);
407 }
408
409 // 2.1a.2********************* visible particles only
410 if( (particle->Status == 1) && (! pdg_part.invisible() ) )
411 {
412 // 2.1a.2.1 Central solenoidal magnetic field
413 TRACP->bfield(particle); // fills in particle->EtaCalo et particle->PhiCalo
414 // 2.1a.2.2 Filling the calorimetric towers -- includes also forward detectors ?
415 // first checks if the charged particles reach the calo!
416 if( DET->FLAG_bfield ||
417 particle->Charge==0 ||
418 (!DET->FLAG_bfield && particle->Charge!=0 && particle->PT > DET->TRACK_ptmin))
419 if(
420 (particle->EtaCalo > list_of_calorimeters.getEtamin() ) &&
421 (particle->EtaCalo < list_of_calorimeters.getEtamax() )
422 )
423 {
424 float iEta=UNDEFINED, iPhi=UNDEFINED;
425 DET->BinEtaPhi(particle->PhiCalo,particle->EtaCalo,iPhi,iEta); // fills in iPhi and iEta
426 if (iEta != UNDEFINED && iPhi != UNDEFINED)
427 {
428 D_CaloTower tower(iEta,iPhi); // new tower
429 tower.Set_Eem_Ehad_E_ET(particle->E*particle->getFem() , particle->E*particle->getFhad() );
430 list_of_active_towers.addTower(tower);
431 // this list may contain several times the same calotower, as several particles
432 // may leave some energy in the same calotower
433 // After the loop on particles, identical cells in the list should be merged
434 } // iEta and iPhi must be defined
435 }
436
437 // 2.1a.2.3 charged particles in tracker: energy flow
438 // if bfield not simulated, pt should be high enough to be taken into account
439 // it is supposed here that DET->MAX_calo > DET->CEN_max_tracker > DET->CEN_max_mu > 0
440 if( particle->Charge !=0 &&
441 fabs(particle->EtaCalo)< DET->CEN_max_tracker && // stays in the tracker -> track available
442 ( DET->FLAG_bfield ||
443 (!DET->FLAG_bfield && particle->PT > DET->TRACK_ptmin)
444 )
445 )
446 {
447 // 2.1a.2.3.1 Filling the particle properties + smearing
448 // Hypothesis: the final eta/phi are the ones from the generator, thanks to the track reconstruction
449 // This is the EnergyFlow hypothesis
450 particle->SetEtaPhi(particle->Eta,particle->Phi);
451 float sET=UNDEFINED; // smeared ET, computed from the smeared E -> needed for the tracks
452
453 // 2.1a.2.3.2 Muons
454 if (pid == pMU && fabs(particle->EtaCalo)< DET->CEN_max_mu)
455 {
456 TLorentzVector p;
457 float sPT = gRandom->Gaus(particle->PT, DET->MU_SmearPt*particle->PT );
458 if (sPT > 0 && sPT > DET->PTCUT_muon)
459 {
460 p.SetPtEtaPhiE(sPT,particle->Eta,particle->Phi,sPT*cosh(particle->Eta));
461 muon.push_back(D_Particle(p,particle->PID,particle->EtaCalo,particle->PhiCalo));
462 }
463 sET = (sPT >0)? sPT : 0;
464 }
465 // 2.1a.2.3.3 Electrons
466 else if (pid == pE)
467 {
468 // Finds in which calorimeter the particle has gone, to know its resolution
469
470 D_CaloElement currentCalo = list_of_calorimeters.getElement(particle->EtaCalo);
471 if(currentCalo.getName() == dummyCalo.getName())
472 {
473 cout << "** Warning: the calo coverage behind the tracker is not complete! **" << endl;
474 }
475
476 // final smeared EM energy // electromagnetic fraction F_em =1 for electrons;
477 float sE = currentCalo.getElectromagneticResolution().Smear(particle->E);
478 if (sE>0)
479 {
480 sET = sE/cosh(particle->Eta);
481 // NB: ET is found via the calorimetry and not via the track curvature
482
483 TLorentzVector p;
484 p.SetPtEtaPhiE(sET,particle->Eta,particle->Phi,sE);
485 if (sET > DET->PTCUT_elec)
486 electron.push_back(D_Particle(p,particle->PID,particle->EtaCalo,particle->PhiCalo));
487 //if(DET->JET_Eflow) input_particles.push_back(fastjet::PseudoJet(p.Px(),p.Py(),p.Pz(),p.E()));
488 }
489 else { sET=0;} // if negative smeared energy -- needed for the tracks
490 }
491 // 2.1a.2.3.4 Other charged particles : smear them for the tracks!
492 else
493 { //other particles
494 D_CaloElement currentCalo = list_of_calorimeters.getElement(particle->EtaCalo);
495 float sEem = currentCalo.getElectromagneticResolution().Smear(particle->E * particle->getFem());
496 float sEhad = currentCalo.getHadronicResolution().Smear(particle->E * particle->getFhad());
497 float sE = ( (sEem>0)? sEem : 0 ) + ( (sEhad>0)? sEhad : 0 );
498 sET = sE/cosh(particle->EtaCalo);
499 }
500
501 // 2.1a.2.3.5 Tracks
502 //if( (rand()%100) < DET->TRACK_eff && sET!=0)
503 if( (grandom->Uniform()*100.) < DET->TRACK_eff && sET!=0)
504 {
505 elementTrack = (TRootTracks*) branchTrack->NewEntry();
506 elementTrack->Set(particle->Eta, particle->Phi, particle->EtaCalo, particle->PhiCalo, sET, particle->Charge);
507 elementTrack->Vx=particle->X;
508 elementTrack->Vy=particle->Y;
509 elementTrack->Vz=particle->Z;
510 TrackCentral.push_back(*elementTrack); // tracks at vertex!
511 if(DET->JET_Eflow)
512 input_particles.push_back(fastjet::PseudoJet(particle->Px,particle->Py,particle->Pz,particle->E));
513 // TODO!!! apply a smearing on the position of the origin of the track
514 // TODO!!! elementTracks->SetPositionOut(Xout,Yout,Zout);
515 }
516 } // 2.1a.2.3 : if tracker/energy-flow
517 // 2.1a.2.4 Photons
518 // stays in the tracker -> track available -> gamma ID
519 else if( (pid == pGAMMA) && fabs(particle->EtaCalo)< DET->CEN_max_tracker )
520 {
521 float iEta=UNDEFINED, iPhi=UNDEFINED;
522 DET->BinEtaPhi(particle->PhiCalo,particle->EtaCalo,iPhi,iEta); // fills in iPhi and iEta
523 D_CaloTower tower(iEta,iPhi);
524 // stores the list of towers where to apply the photon ID algorithm. Just a trick for a faster search
525 list_of_towers_with_photon.addTower(tower);
526 }
527 // 2.1a.2.5 Neutrals within tracker -- for jet energy flow
528 else if( particle->Charge ==0 && fabs(particle->EtaCalo)< etamax_calocoverage_behindtracker)
529 {
530 float iEta=UNDEFINED, iPhi=UNDEFINED;
531 DET->BinEtaPhi(particle->PhiCalo,particle->EtaCalo,iPhi,iEta); // fills in iPhi and iEta
532 D_CaloTower tower(iEta,iPhi);
533 list_of_centowers_with_neutrals.addTower(tower);
534 }
535 // 2.1a.2.6 : very forward detectors
536 else
537 {
538 if (DET->FLAG_RP==1)
539 {
540 // for the moment, only protons are transported
541 // BUT !!! could be a beam of other particles! (heavy ions?)
542 // BUT ALSO !!! if very forward muons, or others!
543 VFD->RomanPots(treeWriter,branchRP220,branchFP420,particle);
544 }
545 // 2.1a.2.6: Zero degree calorimeter
546 if(DET->FLAG_vfd==1)
547 {
548 VFD->ZDC(treeWriter,branchZDC,particle);
549 }
550 }
551
552 } // 2.1a.2 : if visible particle
553 delete particle;
554 }// loop on all particles 2.1a
555
556 // 2.1b loop on all (activated) towers
557 // at this stage, list_of_active_towers may contain several times the same tower
558 // first step is to merge identical towers, by matching their (iEta,iPhi)
559
560 list_of_active_towers.sortElements();
561 list_of_active_towers.mergeDuplicates();
562
563 // Calotower smearing
564 list_of_active_towers.smearTowers(list_of_calorimeters);
565
566 for(unsigned int i=0; i<list_of_active_towers.size(); i++)
567 {
568 float iEta = list_of_active_towers[i].getEta();
569 float iPhi = list_of_active_towers[i].getPhi();
570 float e = list_of_active_towers[i].getE();
571 if(iEta != UNDEFINED && iPhi != UNDEFINED && e!=0)
572 {
573 elementCalo = (TRootCalo*) branchCalo->NewEntry();
574 elementCalo->set(list_of_active_towers[i]);
575 // not beautiful : should be improved!
576 TLorentzVector p;
577 p.SetPtEtaPhiE(list_of_active_towers[i].getET(), iEta, iPhi, e );
578 PhysicsTower Tower(LorentzVector(p.Px(),p.Py(),p.Pz(),p.E()));
579 towers.push_back(Tower);
580 }
581 } // loop on towers
582
583 // 2.1c photon ID
584 // list_of_towers_with_photon is the list of towers with photon candidates
585 // already smeared !
586 // sorts the vector and smears duplicates
587 list_of_towers_with_photon.mergeDuplicates();
588 for(unsigned int i=0; i<list_of_towers_with_photon.size(); i++) {
589 float eta = list_of_towers_with_photon[i].getEta();
590 float phi = list_of_towers_with_photon[i].getPhi();
591 D_CaloTower cal(list_of_active_towers.getElement(eta,phi)); //// <---------- buh???????
592 if(cal.getEta() != UNDEFINED && cal.getPhi() != UNDEFINED && cal.getE() > 0)
593 {
594 TLorentzVector p;
595 p.SetPtEtaPhiE(cal.getET(), eta,phi,cal.getE() );
596 if (cal.getET() > DET->PTCUT_gamma) { gamma.push_back(D_Particle(p,pGAMMA,p.Eta(),p.Phi())); }
597 }
598 } // for -- list of photons
599
600 // 2.1d jet-E-flow -- taking into account the neutrals within tracker
601 if(DET->JET_Eflow) {
602 list_of_centowers_with_neutrals.mergeDuplicates();
603 for(unsigned int i=0; i<list_of_centowers_with_neutrals.size(); i++) {
604 float eta = list_of_centowers_with_neutrals[i].getEta();
605 float phi = list_of_centowers_with_neutrals[i].getPhi();
606 D_CaloTower cal(list_of_active_towers.getElement(eta,phi));
607 if(cal.getEta() != UNDEFINED && cal.getPhi() != UNDEFINED && cal.getE() > 0)
608 {
609 TLorentzVector p;
610 p.SetPtEtaPhiE(cal.getET(), eta,phi,cal.getE() );
611 //cout << "**************list: " << p.Px() << " " << p.Py() << " " << p.Pz() << " " << p.E() << endl;
612 input_particles.push_back(fastjet::PseudoJet(p.Px(),p.Py(),p.Pz(),p.E()));
613 }
614 } // for - list_of_centowers
615 } // JET_Eflow
616
617 // 2.2 ********** Output preparation & complex objects ***********
618 // 2.2.1 ********************* sorting collections by decreasing pt
619 DET->SortedVector(electron);
620 float iPhiEl=0,iEtaEl=0,ptisoEl=0;
621 for(unsigned int i=0; i < electron.size(); i++)
622 {
623 elementElec = (TRootElectron*) branchElectron->NewEntry();
624 elementElec->Set(electron[i].Px(),electron[i].Py(),electron[i].Pz(),electron[i].E());
625 elementElec->EtaCalo = electron[i].EtaCalo();
626 elementElec->PhiCalo = electron[i].PhiCalo();
627 elementElec->Charge = - sign(electron[i].PID());
628 elementElec->IsolFlag = DET->Isolation(electron[i],TrackCentral,DET->ISOL_trk_PT,ptisoEl);
629
630 int electron_tower_index = DET->BinEtaPhi(elementElec->PhiCalo,elementElec->EtaCalo,iPhiEl,iEtaEl);
631 D_CaloTower calElec(list_of_active_towers.getElement(iEtaEl,iPhiEl));
632 elementElec->EHoverEE = calElec.getEhad()/calElec.getEem();
633 elementElec->EtRatio = DET->CaloIsolation(electron[i], list_of_active_towers,iPhiEl,iEtaEl,electron_tower_index);
634 elementElec->SumEt = DET->IsolationSumEt(iPhiEl,iEtaEl, list_of_active_towers);
635 elementElec->SumPt = ptisoEl;
636
637 }
638
639 DET->SortedVector(muon);
640 float iPhiMu=0,iEtaMu=0,ptisoMu=0;
641 for(unsigned int i=0; i < muon.size(); i++)
642 {
643 elementMu = (TRootMuon*) branchMuon->NewEntry();
644 elementMu->Charge = - sign(muon[i].PID());
645 elementMu->Set(muon[i].Px(),muon[i].Py(),muon[i].Pz(),muon[i].E());
646 elementMu->EtaCalo = muon[i].EtaCalo();
647 elementMu->PhiCalo = muon[i].PhiCalo();
648 elementMu->IsolFlag = DET->Isolation(muon[i],TrackCentral,DET->ISOL_trk_PT,ptisoMu);
649 elementMu->SumPt = ptisoMu;
650 elementMu->SumEt = DET->IsolationSumEt(iPhiMu,iEtaMu, list_of_active_towers);
651
652 int muon_tower_index = DET->BinEtaPhi(elementMu->PhiCalo,elementMu->EtaCalo,iPhiMu,iEtaMu);
653 D_CaloTower calMuon(list_of_active_towers.getElement(iEtaMu,iPhiMu));
654 if( calMuon.getEem() !=0 ) elementMu->EHoverEE = calMuon.getEhad()/calMuon.getEem();
655 else elementMu->EHoverEE = UNDEFINED;
656 elementMu->EtRatio = DET->CaloIsolation(muon[i], list_of_active_towers,iPhiMu,iEtaMu,muon_tower_index);
657 }
658
659 DET->SortedVector(gamma);
660 for(unsigned int i=0; i < gamma.size(); i++)
661 {
662 elementPhoton = (TRootPhoton*) branchPhoton->NewEntry();
663 elementPhoton->Set(gamma[i].Px(),gamma[i].Py(),gamma[i].Pz(),gamma[i].E());
664 D_CaloTower calGamma(list_of_active_towers.getElement(gamma[i].EtaCalo(),gamma[i].PhiCalo()));
665 elementPhoton->EHoverEE = calGamma.getEhad()/calGamma.getEem();
666 }
667
668 // 2.2.2 ************* computes the Missing Transverse Momentum
669 TLorentzVector Att(0.,0.,0.,0.);
670 for(unsigned int i=0; i < towers.size(); i++)
671 {
672 Att.SetPxPyPzE(towers[i].fourVector.px, towers[i].fourVector.py, towers[i].fourVector.pz, towers[i].fourVector.E);
673 if(fabs(Att.Eta()) < DET->CEN_max_calo_fwd)
674 {
675 PTmis = PTmis + Att;
676 // create a fastjet::PseudoJet with these components and put it onto
677 // back of the input_particles vector
678 if(!DET->JET_Eflow)
679 input_particles.push_back(fastjet::PseudoJet(towers[i].fourVector.px,towers[i].fourVector.py,towers[i].fourVector.pz,towers[i].fourVector.E));
680 else { if(fabs(Att.Eta()) > DET->CEN_max_tracker)
681 input_particles.push_back(fastjet::PseudoJet(towers[i].fourVector.px,towers[i].fourVector.py,towers[i].fourVector.pz,towers[i].fourVector.E));
682 }
683 }
684 }
685 elementEtmis = (TRootETmis*) branchETmis->NewEntry();
686 elementEtmis->ET = (PTmis).Pt();
687 elementEtmis->Phi = (-PTmis).Phi();
688 elementEtmis->Px = (-PTmis).Px();
689 elementEtmis->Py = (-PTmis).Py();
690
691 // 2.2.3 ************* jets, B-tag, tau jets
692 vector<int> NTrackJet; //for number of tracks
693 vector<float> EHADEEM; //for energyHad over energyEm
694 sorted_jets=JETRUN->RunJets(input_particles, TrackCentral,NTrackJet,EHADEEM,list_of_active_towers);
695 JETRUN->RunJetBtagging(treeWriter, branchJet,sorted_jets,NFCentralQ,NTrackJet,EHADEEM);
696 JETRUN->RunTauJets(treeWriter,branchTauJet,sorted_jets,towers, TrackCentral,NTrackJet,EHADEEM);
697
698 treeWriter->Fill();
699 } // 2. Loop over all events ('for' loop)
700
701 cout <<"** Exiting detector simulation... **"<< endl;
702
703
704 treeWriter->Write();
705 delete treeWriter;
706 loopwatch.Stop();
707
708
709
710 // 3. ********** Trigger & Frog ***********
711 // 3.1 ************ running the trigger in case the FLAG trigger is put to 1 in the datacard
712 triggerwatch.Start();
713 if(DET->FLAG_trigger == 1)
714 {
715 cout <<"** **"<<endl;
716 cout <<"** ########### Start Trigger selection ########### **"<< endl;
717
718 // input
719 TChain chainT("Analysis");
720 chainT.Add(outputfilename.c_str());
721 ExRootTreeReader *treeReaderT = new ExRootTreeReader(&chainT);
722
723 // output
724 TClonesArray *branchElecTrig = treeReaderT->UseBranch("Electron");
725 TClonesArray *branchMuonTrig = treeReaderT->UseBranch("Muon");
726 TClonesArray *branchJetTrig = treeReaderT->UseBranch("Jet");
727 TClonesArray *branchTauJetTrig = treeReaderT->UseBranch("TauJet");
728 TClonesArray *branchPhotonTrig = treeReaderT->UseBranch("Photon");
729 TClonesArray *branchETmisTrig = treeReaderT->UseBranch("ETmis");
730
731 ExRootTreeWriter *treeWriterT = new ExRootTreeWriter(outputfilename, "Trigger");
732 ExRootTreeBranch *branchTrigger = treeWriterT->NewBranch("TrigResult", TRootTrigger::Class());
733
734
735 Long64_t entryT, allEntriesT = treeReaderT->GetEntries();
736 // loop on all entries
737 for(entryT = 0; entryT < allEntriesT; ++entryT) {
738 treeWriterT->Clear();
739 treeReaderT->ReadEntry(entryT);
740 TRIGT->GetGlobalResult(branchElecTrig, branchMuonTrig,branchJetTrig, branchTauJetTrig,branchPhotonTrig, branchETmisTrig,branchTrigger);
741 treeWriterT->Fill();
742 } // loop on all entries
743 cout <<"** Exiting trigger simulation... **"<< endl;
744
745 treeWriterT->Write();
746 delete treeWriterT;
747 delete treeReaderT;
748 } // trigger
749 triggerwatch.Stop();
750
751
752 // 3.2 ************** FROG display
753 frogwatch.Start();
754 if(DET->FLAG_frog == 1) {
755 cout <<"** **"<<endl;
756 cout <<"** ################## Start FROG ################# **"<< endl;
757
758 FrogDisplay *FROG = new FrogDisplay(DET);
759 FROG->BuildEvents(outputfilename);
760 FROG->BuildGeom();
761 delete FROG;
762 cout <<"** Exiting FROG preparation... **"<< endl;
763 }
764 frogwatch.Stop();
765
766 // 3.3 *************** LHCO output
767 lhcowatch.Start();
768 if(DET->FLAG_lhco == 1){
769 cout <<"** **"<<endl;
770 cout <<"** ############ Start LHCO conversion ############ **"<< endl;
771
772 //LHCOConverter *LHCO = new LHCOConverter(outputfilename,LogNameLHCO);
773 LHCOConverter *LHCO = new LHCOConverter(outputfilename,"");
774 LHCO->CopyRunLogFile();
775 LHCO->ConvertExRootAnalysisToLHCO();
776 delete LHCO;
777 cout <<"** Exiting LHCO conversion... **"<< endl;
778 }
779 lhcowatch.Stop();
780
781
782
783 // 4. ********** End & Exit ***********
784
785 globalwatch.Stop();
786 time_report(globalwatch,loopwatch,triggerwatch,frogwatch,lhcowatch,DET->FLAG_frog,DET->FLAG_trigger,DET->FLAG_lhco,LogName,allEntries);
787
788 cout << left << setw(16) << "** " << ""
789 << left << setw(51) << get_time_date() << "**" << endl;
790
791 cout <<"** **"<< endl;
792 cout <<"** Exiting Delphes ... **"<< endl;
793 cout <<"** **"<< endl;
794 cout <<"*********************************************************************"<< endl;
795 cout <<"*********************************************************************"<< endl;
796
797 delete treeReader;
798 delete DET;
799 delete TRIGT;
800 delete TRACP;
801 delete JETRUN;
802 delete VFD;
803 delete grandom; // TRandom3
804
805}
Note: See TracBrowser for help on using the repository browser.