Fork me on GitHub

source: svn/trunk/Delphes.cpp@ 429

Last change on this file since 429 was 429, checked in by Xavier Rouby, 15 years ago

Headers + bug hepmc/hep

File size: 34.1 KB
Line 
1/***********************************************************************
2** **
3** /----------------------------------------------\ **
4** | Delphes, a framework for the fast simulation | **
5** | of a generic collider experiment | **
6** \------------- arXiv:0903.2225v1 ------------/ **
7** **
8** **
9** This package uses: **
10** ------------------ **
11** ROOT: Nucl. Inst. & Meth. in Phys. Res. A389 (1997) 81-86 **
12** FastJet algorithm: Phys. Lett. B641 (2006) [hep-ph/0512210] **
13** Hector: JINST 2:P09005 (2007) [physics.acc-ph:0707.1198v2] **
14** FROG: [hep-ex/0901.2718v1] **
15** HepMC: Comput. Phys. Commun.134 (2001) 41 **
16** **
17** ------------------------------------------------------------------ **
18** **
19** Main authors: **
20** ------------- **
21** **
22** Severine Ovyn Xavier Rouby **
23** severine.ovyn@uclouvain.be xavier.rouby@cern **
24** **
25** Center for Particle Physics and Phenomenology (CP3) **
26** Universite catholique de Louvain (UCL) **
27** Louvain-la-Neuve, Belgium **
28** **
29** Copyright (C) 2008-2009, **
30** All rights reserved. **
31** **
32***********************************************************************/
33
34/// \file Delphes.cpp
35/// \brief Executable for Delphes
36
37#include "TChain.h"
38#include "TApplication.h"
39#include "TStopwatch.h"
40#include "TFile.h"
41
42#include "ExRootTreeReader.h"
43#include "ExRootTreeWriter.h"
44#include "ExRootTreeBranch.h"
45#include "ExRootProgressBar.h"
46
47#include "DataConverter.h"
48#include "LHEFConverter.h"
49#include "HepMCConverter.h"
50#include "HEPEVTConverter.h"
51#include "STDHEPConverter.h"
52#include "LHCOConverter.h"
53
54#include "SmearUtil.h"
55#include "CaloUtil.h"
56#include "BFieldProp.h"
57#include "TriggerUtil.h"
58#include "VeryForward.h"
59#include "JetsUtil.h"
60#include "FrogUtil.h"
61
62#include <vector>
63#include <iostream>
64
65using namespace std;
66
67//------------------------------------------------------------------------------
68void todo(string filename) {
69 ifstream infile(filename.c_str());
70 cout << "** TODO list ..." << endl;
71 while(infile.good()) {
72 string temp;
73 getline(infile,temp);
74 cout << "*" << temp << endl;
75 }
76 cout << "** done...\n";
77}
78
79//------------------------------------------------------------------------------
80
81int main(int argc, char *argv[])
82{
83
84 int appargc = 2;
85 char *appName= new char[20];
86 char *appOpt= new char[20];
87 sprintf(appName,"Delphes");
88 sprintf(appOpt,"-b");
89 char *appargv[] = {appName,appOpt};
90 TApplication app(appName, &appargc, appargv);
91 delete [] appName;
92 delete [] appOpt;
93
94 if(argc != 3 && argc != 4 && argc != 5) {
95 cout << " Usage: " << argv[0] << " input_file output_file [detector_card] [trigger_card] " << endl;
96 cout << " input_list - list of files in Ntpl, StdHep, HepMC or LHEF format," << endl;
97 cout << " output_file - output file." << endl;
98 cout << " detector_card - Datacard containing resolution variables for the detector simulation (optional) "<<endl;
99 cout << " trigger_card - Datacard containing the trigger algorithms (optional) "<<endl;
100 exit(1);
101 }
102
103 print_header();
104
105 // 1. ********** initialisation ***********
106
107 srand (time (NULL)); /* Initialisation du générateur */
108 TStopwatch globalwatch, loopwatch, triggerwatch, frogwatch, lhcowatch;
109 globalwatch.Start();
110
111
112 //read the output TROOT file
113 string inputFileList(argv[1]), outputfilename(argv[2]);
114 if(outputfilename.find(".root") > outputfilename.length()) {
115 cout <<"** ERROR: 'output_file' should be a .root file. Exiting... **"<< endl;
116 exit(1);
117 }
118 //create output log-file name
119 string forLog = outputfilename;
120 string LogName = forLog.erase(forLog.find(".root"));
121 LogName = LogName+"_run.log";
122
123 TFile *outputFile = TFile::Open(outputfilename.c_str(), "RECREATE"); // Creates the file, but should be closed just after
124 outputFile->Close();
125
126 string line;
127 ifstream infile(inputFileList.c_str());
128 if(!infile.good()) {
129 cout << "** ERROR: Input list (" << left << setw(13) << inputFileList << ") not found. Exiting... **"<< endl;
130 cout <<"*********************************************************************"<< endl;
131 exit(1);
132 }
133 infile >> line; // the first line determines the type of input files
134
135 //read the datacard input file
136 string DetDatacard("data/DetectorCard.dat"); //for detector smearing parameters
137 string TrigDatacard("data/TriggerCard.dat"); //for trigger selection
138
139 string lineCard1,lineCard2;
140 bool detecCard=false,trigCard=false;
141 if(argv[3])
142 {
143 ifstream infile1(argv[3]);
144 infile1 >> lineCard1; // the first line determines the type of input files
145 if(strstr(lineCard1.c_str(),"DETECTOR") && detecCard==true)
146 cerr <<"** ERROR: A DETECTOR card has already been loaded **"<< endl;
147 else if(strstr(lineCard1.c_str(),"DETECTOR") && detecCard==false){DetDatacard =argv[3]; detecCard=true;}
148 else if(strstr(lineCard1.c_str(),"TRIGGER") && trigCard==true)
149 cerr <<"** ERROR: A TRIGGER card has already been loaded **"<< endl;
150 else if(strstr(lineCard1.c_str(),"TRIGGER") && trigCard==false){TrigDatacard =argv[3]; trigCard=true;}
151 }
152 if(argv[4])
153 {
154 ifstream infile2(argv[4]);
155 infile2 >> lineCard2; // the first line determines the type of input files
156 if(strstr(lineCard2.c_str(),"DETECTOR") && detecCard==true)
157 cerr <<"** ERROR: A DETECTOR card has already been loaded **"<< endl;
158 else if(strstr(lineCard2.c_str(),"DETECTOR") && detecCard==false){DetDatacard =argv[4]; detecCard=true;}
159 else if(strstr(lineCard2.c_str(),"TRIGGER") && trigCard==true)
160 cerr <<"** ERROR: A TRIGGER card has already been loaded **"<< endl;
161 else if(strstr(lineCard2.c_str(),"TRIGGER") && trigCard==false){TrigDatacard =argv[4]; trigCard=true;}
162 }
163
164 //Smearing information
165 RESOLution *DET = new RESOLution();
166
167 cout <<"** **"<< endl;
168 cout <<"** ####### Start reading DETECTOR parameters ####### **"<< endl;
169 cout << left << setw(40) <<"** Opening configuration card: "<<""
170 << left << setw(27) << DetDatacard <<""
171 << right << setw(2) <<"**"<<""<<endl;
172 DET->ReadDataCard(DetDatacard);
173 DET->Logfile(LogName);
174 cout << left << setw(40) <<"** Parameters summarised in: "<<""
175 << left << setw(27) << LogName <<""
176 << right << setw(2) <<"**"<<""<<endl;
177 cout <<"** **"<< endl;
178 DET->ReadParticleDataGroupTable();
179 // DET->PDGtable.print();
180
181 //Trigger information
182 cout <<"** ########### Start reading TRIGGER card ########## **"<< endl;
183 if(trigCard==false)
184 {
185 cout <<"** WARNING: Datacard not found, use default card **" << endl;
186 TrigDatacard="data/TriggerCard.dat";
187 }
188 TriggerTable *TRIGT = new TriggerTable();
189 TRIGT->TriggerCardReader(TrigDatacard.c_str());
190 TRIGT->PrintTriggerTable(LogName);
191 if(DET->FLAG_trigger == 1)
192 {
193 cout << left << setw(40) <<"** Opening configuration card: "<<""
194 << left << setw(27) << TrigDatacard <<""
195 << right << setw(2) <<"**"<<""<<endl;
196 cout <<"** **"<< endl;
197 }
198
199 //Propagation of tracks in the B field
200 TrackPropagation *TRACP = new TrackPropagation(DET);
201
202 //Jet information
203 JetsUtil *JETRUN = new JetsUtil(DET);
204
205 //VFD information
206 VeryForward * VFD = new VeryForward(DET);
207
208 // data converters
209 cout <<"** **"<<endl;
210 cout <<"** ####### Start conversion to TRoot format ######## **"<< endl;
211
212 if(line.rfind(".hepmc") < line.length())
213 {
214 cout <<"** HepMC ASCII file format detected **"<<endl;
215 cout <<"** This can take several minutes **"<< endl;
216 HepMCConverter converter(inputFileList,outputfilename,DET->PDGtable,DET->NEvents);
217 }
218 else if(line.rfind(".hep") < line.length())
219 {
220 cout <<"** StdHEP file format detected **"<<endl;
221 cout <<"** This can take several minutes **"<< endl;
222 STDHEPConverter converter(inputFileList,outputfilename,DET->PDGtable,DET->NEvents);
223 }
224 else if(line.rfind(".lhe") < line.length())
225 {
226 cout <<"** LHEF file format detected **"<<endl;
227 cout <<"** This can take several minutes **"<< endl;
228 LHEFConverter converter(inputFileList,outputfilename,DET->PDGtable,DET->NEvents);
229 }
230 else if(line.rfind(".root") < line.length())
231 {
232 cout <<"** h2root file format detected **"<<endl;
233 cout <<"** This can take several minutes **"<< endl;
234 HEPEVTConverter converter(inputFileList,outputfilename,DET->PDGtable,DET->NEvents);
235 }
236 else {
237 cerr << left << setw(4) <<"** "<<""
238 << left << setw(63) << line.c_str() <<""
239 << right << setw(2) <<"**"<<endl;
240 cerr <<"** ERROR: File format not identified -- Exiting... **"<< endl;
241 cout <<"** **"<< endl;
242 cout <<"*********************************************************************"<< endl;
243 return -1;};
244 cout <<"** Exiting conversion... **"<< endl;
245
246 TChain chain("GEN");
247 chain.Add(outputfilename.c_str());
248 ExRootTreeReader *treeReader = new ExRootTreeReader(&chain);
249 const TClonesArray *branchGen = treeReader->UseBranch("Particle");
250
251 TIter itGen((TCollection*)branchGen);
252
253 //Output file : contents of the analysis object data
254 ExRootTreeWriter *treeWriter = new ExRootTreeWriter(outputfilename, "Analysis");
255 ExRootTreeBranch *branchTauJet = treeWriter->NewBranch("TauJet", TRootTauJet::Class());
256 ExRootTreeBranch *branchJet = treeWriter->NewBranch("Jet", TRootJet::Class());
257 ExRootTreeBranch *branchElectron = treeWriter->NewBranch("Electron", TRootElectron::Class());
258 ExRootTreeBranch *branchMuon = treeWriter->NewBranch("Muon", TRootMuon::Class());
259 ExRootTreeBranch *branchPhoton = treeWriter->NewBranch("Photon", TRootPhoton::Class());
260 ExRootTreeBranch *branchTrack = treeWriter->NewBranch("Tracks", TRootTracks::Class());
261 ExRootTreeBranch *branchETmis = treeWriter->NewBranch("ETmis", TRootETmis::Class());
262 ExRootTreeBranch *branchCalo = treeWriter->NewBranch("CaloTower", TRootCalo::Class());
263 ExRootTreeBranch *branchZDC = treeWriter->NewBranch("ZDChits", TRootZdcHits::Class());
264 ExRootTreeBranch *branchRP220 = treeWriter->NewBranch("RP220hits", TRootRomanPotHits::Class());
265 //ExRootTreeBranch *branchFP420 = treeWriter->NewBranch("FP420hits", TRootForwardTaggerHits::Class());
266 ExRootTreeBranch *branchFP420 = treeWriter->NewBranch("FP420hits", TRootRomanPotHits::Class());
267
268 TRootETmis *elementEtmis;
269 TRootElectron *elementElec;
270 TRootMuon *elementMu;
271 TRootPhoton *elementPhoton;
272 TRootTracks * elementTrack;
273 TRootCalo *elementCalo;
274
275 TLorentzVector genMomentum(0,0,0,0); // four-momentum at the vertex
276 TLorentzVector genMomentumBfield(0,0,0,0); // four-momentum at the exit of the tracks
277 TLorentzVector momentumCaloSegmentation(0,0,0,0); // four-momentum in the calo, after applying the calo segmentation
278 LorentzVector jetMomentum;
279
280 vector<fastjet::PseudoJet> input_particles;//for FastJet algorithm
281 vector<fastjet::PseudoJet> sorted_jets;
282 vector<TRootTracks> TrackCentral;
283 vector<PhysicsTower> towers;
284 vector<D_Particle> electron;
285 vector<D_Particle> muon;
286 vector<D_Particle> gamma;
287
288 vector<int> NTrackJet;
289
290 TSimpleArray<TRootC::GenParticle> NFCentralQ;
291
292 D_CaloList list_of_calorimeters;
293 D_CaloElement CentralCalo("centralcalo",
294 -DET->CEN_max_calo_cen, DET->CEN_max_calo_cen,
295 DET->ELG_Ccen, DET->ELG_Ncen, DET->ELG_Scen,
296 DET->HAD_Chcal, DET->HAD_Nhcal, DET->HAD_Shcal);
297 D_CaloElement ForwardCalo("forwardcalo",
298 DET->CEN_max_calo_cen, DET->CEN_max_calo_fwd,
299 DET->ELG_Cfwd, DET->ELG_Nfwd, DET->ELG_Sfwd,
300 DET->HAD_Chf, DET->HAD_Nhf, DET->HAD_Shf );
301 D_CaloElement BackwardCalo("backwardcalo",
302 -DET->CEN_max_calo_fwd, -DET->CEN_max_calo_cen,
303 DET->ELG_Cfwd, DET->ELG_Nfwd, DET->ELG_Sfwd,
304 DET->HAD_Chf, DET->HAD_Nhf, DET->HAD_Shf );
305 //D_CaloElement CastorCalo("castor",5.5,6.6,1,0,0,1,0,0);
306 list_of_calorimeters.addElement(CentralCalo);
307 list_of_calorimeters.addElement(ForwardCalo);
308 list_of_calorimeters.addElement(BackwardCalo);
309 //list_of_calorimeters.addElement(CastorCalo);
310 list_of_calorimeters.sortElements();
311
312
313 // 2. ********** Loop over all events ***********
314 Long64_t entry, allEntries = treeReader->GetEntries();
315 cout <<"** **"<<endl;
316 cout <<"** ####### Start fast detector simulation ######## **"<< endl;
317 cout << left << setw(52) <<"** Total number of events to run: "<<""
318 << left << setw(15) << allEntries <<""
319 << right << setw(2) <<"**"<<endl;
320
321 ExRootProgressBar *Progress = new ExRootProgressBar(allEntries);
322
323 loopwatch.Start();
324
325 // loop on all events
326 for(entry = 0; entry < allEntries; ++entry)
327 {
328 Progress->Update(entry);
329 TLorentzVector PTmis(0,0,0,0);
330 treeReader->ReadEntry(entry);
331 treeWriter->Clear();
332
333 electron.clear();
334 muon.clear();
335 gamma.clear();
336 NFCentralQ.Clear();
337
338 TrackCentral.clear();
339 towers.clear();
340 input_particles.clear();
341 NTrackJet.clear();
342
343 // 'list_of_active_towers' contains the exact list of calorimetric towers which have some deposits inside (E>0).
344 // The towers of this list will be smeared according to the calo resolution, afterwards
345 D_CaloTowerList list_of_active_towers;
346
347 // 'list_of_towers_with_photon' and 'list_of_centowers_with_neutrals' are list of towers, whose energy is **not** computed.
348 // They are only used to store the eta/phi of some towers, in order to search later inside 'list_of_active_towers'.
349 // 'list_of_towers_with_photon' contains the towers hit by photons only
350 // 'list_of_centowers_with_neutrals' is used to the jet-E-flow calculation: contains the towers with eta < CEN_max_tracker,
351 // i.e. towers behind the tracker.
352 D_CaloTowerList list_of_towers_with_photon; // to speed up the code: will only look in interesting towers for gamma candidates
353
354 D_CaloTowerList list_of_centowers_with_neutrals; // list of towers with neutral particles : for jet E-flow
355 float etamax_calocoverage_behindtracker = DET->CEN_max_tracker; // finds the extension in eta of the furthest
356 for (unsigned int i=1; i< DET->TOWER_number+1; i++) { // cell (at least) partially behind the tracker
357 if(DET->TOWER_eta_edges[i] > DET->CEN_max_tracker) break;
358 etamax_calocoverage_behindtracker = DET->TOWER_eta_edges[i];
359 }
360 // 2.1a Loop over all particles in event, to fill the towers
361 itGen.Reset();
362 TRootC::GenParticle *particleG;
363 while( (particleG = (TRootC::GenParticle*) itGen.Next()) )
364 {
365 TRootGenParticle *particle = new TRootGenParticle(particleG);
366 PdgParticle pdg_part = DET->PDGtable[particle->PID];
367 particle->Charge = pdg_part.charge();
368 particle->M = pdg_part.mass();
369 //particle->Charge=ChargeVal(particle->PID);
370 particle->setFractions(); // init
371 int pid = abs(particle->PID);
372
373
374 // 2.1a.1********************* preparation for the b-tagging
375 //// This subarray is needed for the B-jet algorithm
376 // optimization for speed : put first PID condition, then ETA condition, then either pt or status
377 if( (pid <= pB || pid == pGLUON) &&// is it a light quark or a gluon, i.e. is it one of these : u,d,c,s,b,g ?
378 fabs(particle->Eta) < DET->CEN_max_tracker &&
379 particle->Status != 1 &&
380 particle->PT > DET->PT_QUARKS_MIN )
381 {
382 NFCentralQ.Add(particleG);
383 }
384
385 // 2.1a.2********************* visible particles only
386 if( (particle->Status == 1) && (pid != pNU1) && (pid != pNU2) && (pid != pNU3) )
387 {
388 // 2.1a.2.1 Central solenoidal magnetic field
389 TRACP->bfield(particle); // fills in particle->EtaCalo et particle->PhiCalo
390 // 2.1a.2.2 Filling the calorimetric towers -- includes also forward detectors ?
391 // first checks if the charged particles reach the calo!
392 if( DET->FLAG_bfield ||
393 particle->Charge==0 ||
394 (!DET->FLAG_bfield && particle->Charge!=0 && particle->PT > DET->TRACK_ptmin))
395 if(
396 (particle->EtaCalo > list_of_calorimeters.getEtamin() ) &&
397 (particle->EtaCalo < list_of_calorimeters.getEtamax() )
398 )
399 {
400 float iEta=UNDEFINED, iPhi=UNDEFINED;
401 DET->BinEtaPhi(particle->PhiCalo,particle->EtaCalo,iPhi,iEta); // fills in iPhi and iEta
402 if (iEta != UNDEFINED && iPhi != UNDEFINED)
403 {
404 D_CaloTower tower(iEta,iPhi); // new tower
405 tower.Set_Eem_Ehad_E_ET(particle->E*particle->getFem() , particle->E*particle->getFhad() );
406 list_of_active_towers.addTower(tower);
407 // this list may contain several times the same calotower, as several particles
408 // may leave some energy in the same calotower
409 // After the loop on particles, identical cells in the list should be merged
410 } // iEta and iPhi must be defined
411 }
412
413 // 2.1a.2.3 charged particles in tracker: energy flow
414 // if bfield not simulated, pt should be high enough to be taken into account
415 // it is supposed here that DET->MAX_calo > DET->CEN_max_tracker > DET->CEN_max_mu > 0
416 if( particle->Charge !=0 &&
417 fabs(particle->EtaCalo)< DET->CEN_max_tracker && // stays in the tracker -> track available
418 ( DET->FLAG_bfield ||
419 (!DET->FLAG_bfield && particle->PT > DET->TRACK_ptmin)
420 )
421 )
422 {
423 // 2.1a.2.3.1 Filling the particle properties + smearing
424 // Hypothesis: the final eta/phi are the ones from the generator, thanks to the track reconstruction
425 // This is the EnergyFlow hypothesis
426 particle->SetEtaPhi(particle->Eta,particle->Phi);
427 float sET=UNDEFINED; // smeared ET, computed from the smeared E -> needed for the tracks
428
429 // 2.1a.2.3.2 Muons
430 if (pid == pMU && fabs(particle->EtaCalo)< DET->CEN_max_mu)
431 {
432 TLorentzVector p;
433 float sPT = gRandom->Gaus(particle->PT, DET->MU_SmearPt*particle->PT );
434 if (sPT > 0 && sPT > DET->PTCUT_muon)
435 {
436 p.SetPtEtaPhiE(sPT,particle->Eta,particle->Phi,sPT*cosh(particle->Eta));
437 muon.push_back(D_Particle(p,particle->PID,particle->EtaCalo,particle->PhiCalo));
438 }
439 sET = (sPT >0)? sPT : 0;
440 }
441 // 2.1a.2.3.3 Electrons
442 else if (pid == pE)
443 {
444 // Finds in which calorimeter the particle has gone, to know its resolution
445
446 D_CaloElement currentCalo = list_of_calorimeters.getElement(particle->EtaCalo);
447 if(currentCalo.getName() == dummyCalo.getName())
448 {
449 cout << "** Warning: the calo coverage behind the tracker is not complete! **" << endl;
450 }
451
452 // final smeared EM energy // electromagnetic fraction F_em =1 for electrons;
453 float sE = currentCalo.getElectromagneticResolution().Smear(particle->E);
454 if (sE>0)
455 {
456 sET = sE/cosh(particle->Eta);
457 // NB: ET is found via the calorimetry and not via the track curvature
458
459 TLorentzVector p;
460 p.SetPtEtaPhiE(sET,particle->Eta,particle->Phi,sE);
461 if (sET > DET->PTCUT_elec)
462 electron.push_back(D_Particle(p,particle->PID,particle->EtaCalo,particle->PhiCalo));
463 //if(DET->JET_Eflow) input_particles.push_back(fastjet::PseudoJet(p.Px(),p.Py(),p.Pz(),p.E()));
464 }
465 else { sET=0;} // if negative smeared energy -- needed for the tracks
466 }
467 // 2.1a.2.3.4 Other charged particles : smear them for the tracks!
468 else
469 { //other particles
470 D_CaloElement currentCalo = list_of_calorimeters.getElement(particle->EtaCalo);
471 float sEem = currentCalo.getElectromagneticResolution().Smear(particle->E * particle->getFem());
472 float sEhad = currentCalo.getHadronicResolution().Smear(particle->E * particle->getFhad());
473 float sE = ( (sEem>0)? sEem : 0 ) + ( (sEhad>0)? sEhad : 0 );
474 sET = sE/cosh(particle->EtaCalo);
475 }
476
477 // 2.1a.2.3.5 Tracks
478 if( (rand()%100) < DET->TRACK_eff && sET!=0)
479 {
480 elementTrack = (TRootTracks*) branchTrack->NewEntry();
481 elementTrack->Set(particle->Eta, particle->Phi, particle->EtaCalo, particle->PhiCalo, sET, particle->Charge);
482 TrackCentral.push_back(*elementTrack); // tracks at vertex!
483 if(DET->JET_Eflow)
484 input_particles.push_back(fastjet::PseudoJet(particle->Px,particle->Py,particle->Pz,particle->E));
485 // TODO!!! apply a smearing on the position of the origin of the track
486 // TODO!!! elementTracks->SetPositionOut(Xout,Yout,Zout);
487 }
488 } // 2.1a.2.3 : if tracker/energy-flow
489 // 2.1a.2.4 Photons
490 // stays in the tracker -> track available -> gamma ID
491 else if( (pid == pGAMMA) && fabs(particle->EtaCalo)< DET->CEN_max_tracker )
492 {
493 float iEta=UNDEFINED, iPhi=UNDEFINED;
494 DET->BinEtaPhi(particle->PhiCalo,particle->EtaCalo,iPhi,iEta); // fills in iPhi and iEta
495 D_CaloTower tower(iEta,iPhi);
496 // stores the list of towers where to apply the photon ID algorithm. Just a trick for a faster search
497 list_of_towers_with_photon.addTower(tower);
498 }
499 // 2.1a.2.5 Neutrals within tracker -- for jet energy flow
500 else if( particle->Charge ==0 && fabs(particle->EtaCalo)< etamax_calocoverage_behindtracker)
501 {
502 float iEta=UNDEFINED, iPhi=UNDEFINED;
503 DET->BinEtaPhi(particle->PhiCalo,particle->EtaCalo,iPhi,iEta); // fills in iPhi and iEta
504 D_CaloTower tower(iEta,iPhi);
505 list_of_centowers_with_neutrals.addTower(tower);
506 }
507 // 2.1a.2.6 : very forward detectors
508 else
509 {
510 if (DET->FLAG_RP==1)
511 {
512 // for the moment, only protons are transported
513 // BUT !!! could be a beam of other particles! (heavy ions?)
514 // BUT ALSO !!! if very forward muons, or others!
515 VFD->RomanPots(treeWriter,branchRP220,branchFP420,particle);
516 }
517 // 2.1a.2.6: Zero degree calorimeter
518 if(DET->FLAG_vfd==1)
519 {
520 VFD->ZDC(treeWriter,branchZDC,particle);
521 }
522 }
523
524 } // 2.1a.2 : if visible particle
525 delete particle;
526 }// loop on all particles 2.1a
527
528 // 2.1b loop on all (activated) towers
529 // at this stage, list_of_active_towers may contain several times the same tower
530 // first step is to merge identical towers, by matching their (iEta,iPhi)
531
532 list_of_active_towers.sortElements();
533 list_of_active_towers.mergeDuplicates();
534
535 // Calotower smearing
536 list_of_active_towers.smearTowers(list_of_calorimeters);
537
538 for(unsigned int i=0; i<list_of_active_towers.size(); i++)
539 {
540 float iEta = list_of_active_towers[i].getEta();
541 float iPhi = list_of_active_towers[i].getPhi();
542 float e = list_of_active_towers[i].getE();
543 if(iEta != UNDEFINED && iPhi != UNDEFINED && e!=0)
544 {
545 elementCalo = (TRootCalo*) branchCalo->NewEntry();
546 elementCalo->set(list_of_active_towers[i]);
547 // not beautiful : should be improved!
548 TLorentzVector p;
549 p.SetPtEtaPhiE(list_of_active_towers[i].getET(), iEta, iPhi, e );
550 PhysicsTower Tower(LorentzVector(p.Px(),p.Py(),p.Pz(),p.E()));
551 towers.push_back(Tower);
552 }
553 } // loop on towers
554
555 // 2.1c photon ID
556 // list_of_towers_with_photon is the list of towers with photon candidates
557 // already smeared !
558 // sorts the vector and smears duplicates
559 list_of_towers_with_photon.mergeDuplicates();
560 for(unsigned int i=0; i<list_of_towers_with_photon.size(); i++) {
561 float eta = list_of_towers_with_photon[i].getEta();
562 float phi = list_of_towers_with_photon[i].getPhi();
563 D_CaloTower cal(list_of_active_towers.getElement(eta,phi)); //// <---------- buh???????
564 if(cal.getEta() != UNDEFINED && cal.getPhi() != UNDEFINED && cal.getE() > 0)
565 {
566 TLorentzVector p;
567 p.SetPtEtaPhiE(cal.getET(), eta,phi,cal.getE() );
568 if (cal.getET() > DET->PTCUT_gamma) { gamma.push_back(D_Particle(p,pGAMMA,p.Eta(),p.Phi())); }
569 }
570 } // for -- list of photons
571
572 // 2.1d jet-E-flow -- taking into account the neutrals within tracker
573 if(DET->JET_Eflow) {
574 list_of_centowers_with_neutrals.mergeDuplicates();
575 for(unsigned int i=0; i<list_of_centowers_with_neutrals.size(); i++) {
576 float eta = list_of_centowers_with_neutrals[i].getEta();
577 float phi = list_of_centowers_with_neutrals[i].getPhi();
578 D_CaloTower cal(list_of_active_towers.getElement(eta,phi));
579 if(cal.getEta() != UNDEFINED && cal.getPhi() != UNDEFINED && cal.getE() > 0)
580 {
581 TLorentzVector p;
582 p.SetPtEtaPhiE(cal.getET(), eta,phi,cal.getE() );
583 //cout << "**************list: " << p.Px() << " " << p.Py() << " " << p.Pz() << " " << p.E() << endl;
584 input_particles.push_back(fastjet::PseudoJet(p.Px(),p.Py(),p.Pz(),p.E()));
585 }
586 } // for - list_of_centowers
587 } // JET_Eflow
588
589 // 2.2 ********** Output preparation & complex objects ***********
590 // 2.2.1 ********************* sorting collections by decreasing pt
591 DET->SortedVector(electron);
592 float iPhiEl=0,iEtaEl=0,ptisoEl=0;
593 for(unsigned int i=0; i < electron.size(); i++)
594 {
595 elementElec = (TRootElectron*) branchElectron->NewEntry();
596 elementElec->Set(electron[i].Px(),electron[i].Py(),electron[i].Pz(),electron[i].E());
597 elementElec->EtaCalo = electron[i].EtaCalo();
598 elementElec->PhiCalo = electron[i].PhiCalo();
599 elementElec->Charge = sign(electron[i].PID());
600 elementElec->IsolFlag = DET->Isolation(electron[i],TrackCentral,DET->ISOL_PT,DET->ISOL_Cone,ptisoEl);
601 elementElec->IsolPt = ptisoEl;
602 DET->BinEtaPhi(elementElec->PhiCalo,elementElec->EtaCalo,iPhiEl,iEtaEl);
603 D_CaloTower calElec(list_of_active_towers.getElement(iEtaEl,iPhiEl));
604 elementElec->EHoverEE = calElec.getEhad()/calElec.getEem();
605 }
606
607 DET->SortedVector(muon);
608 float iPhiMu=0,iEtaMu=0,ptisoMu=0;
609 for(unsigned int i=0; i < muon.size(); i++)
610 {
611 elementMu = (TRootMuon*) branchMuon->NewEntry();
612 elementMu->Charge = sign(muon[i].PID());
613 elementMu->Set(muon[i].Px(),muon[i].Py(),muon[i].Pz(),muon[i].E());
614 elementMu->EtaCalo = muon[i].EtaCalo();
615 elementMu->PhiCalo = muon[i].PhiCalo();
616 elementMu->IsolFlag = DET->Isolation(muon[i],TrackCentral,DET->ISOL_PT,DET->ISOL_Cone,ptisoMu);
617 elementMu->IsolPt = ptisoMu;
618 DET->BinEtaPhi(elementMu->PhiCalo,elementMu->EtaCalo,iPhiMu,iEtaMu);
619 D_CaloTower calMuon(list_of_active_towers.getElement(iEtaMu,iPhiMu));
620 if( calMuon.getEem() !=0 ) elementMu->EHoverEE = calMuon.getEhad()/calMuon.getEem();
621 else elementMu->EHoverEE = UNDEFINED;
622 elementMu->EtRatio = DET->CaloIsolation(muon[i], list_of_active_towers,iPhiMu,iEtaMu);
623 }
624
625 DET->SortedVector(gamma);
626 for(unsigned int i=0; i < gamma.size(); i++)
627 {
628 elementPhoton = (TRootPhoton*) branchPhoton->NewEntry();
629 elementPhoton->Set(gamma[i].Px(),gamma[i].Py(),gamma[i].Pz(),gamma[i].E());
630 D_CaloTower calGamma(list_of_active_towers.getElement(gamma[i].EtaCalo(),gamma[i].PhiCalo()));
631 elementPhoton->EHoverEE = calGamma.getEhad()/calGamma.getEem();
632 }
633
634 // 2.2.2 ************* computes the Missing Transverse Momentum
635 TLorentzVector Att(0.,0.,0.,0.);
636 for(unsigned int i=0; i < towers.size(); i++)
637 {
638 Att.SetPxPyPzE(towers[i].fourVector.px, towers[i].fourVector.py, towers[i].fourVector.pz, towers[i].fourVector.E);
639 if(fabs(Att.Eta()) < DET->CEN_max_calo_fwd)
640 {
641 PTmis = PTmis + Att;
642 // create a fastjet::PseudoJet with these components and put it onto
643 // back of the input_particles vector
644 if(!DET->JET_Eflow)
645 input_particles.push_back(fastjet::PseudoJet(towers[i].fourVector.px,towers[i].fourVector.py,towers[i].fourVector.pz,towers[i].fourVector.E));
646 else { if(fabs(Att.Eta()) > DET->CEN_max_tracker)
647 input_particles.push_back(fastjet::PseudoJet(towers[i].fourVector.px,towers[i].fourVector.py,towers[i].fourVector.pz,towers[i].fourVector.E));
648 }
649 }
650 }
651 elementEtmis = (TRootETmis*) branchETmis->NewEntry();
652 elementEtmis->ET = (PTmis).Pt();
653 elementEtmis->Phi = (-PTmis).Phi();
654 elementEtmis->Px = (-PTmis).Px();
655 elementEtmis->Py = (-PTmis).Py();
656
657 // 2.2.3 ************* jets, B-tag, tau jets
658 vector<int> NTrackJet; //for number of tracks
659 vector<float> EHADEEM; //for energyHad over energyEm
660 sorted_jets=JETRUN->RunJets(input_particles, TrackCentral,NTrackJet,EHADEEM,list_of_active_towers);
661 JETRUN->RunJetBtagging(treeWriter, branchJet,sorted_jets,NFCentralQ,NTrackJet,EHADEEM);
662 JETRUN->RunTauJets(treeWriter,branchTauJet,sorted_jets,towers, TrackCentral,NTrackJet,EHADEEM);
663
664 treeWriter->Fill();
665 } // 2. Loop over all events ('for' loop)
666
667 cout <<"** Exiting detector simulation... **"<< endl;
668
669
670 treeWriter->Write();
671 delete treeWriter;
672 loopwatch.Stop();
673
674
675
676 // 3. ********** Trigger & Frog ***********
677 // 3.1 ************ running the trigger in case the FLAG trigger is put to 1 in the datacard
678 triggerwatch.Start();
679 if(DET->FLAG_trigger == 1)
680 {
681 cout <<"** **"<<endl;
682 cout <<"** ########### Start Trigger selection ########### **"<< endl;
683
684 // input
685 TChain chainT("Analysis");
686 chainT.Add(outputfilename.c_str());
687 ExRootTreeReader *treeReaderT = new ExRootTreeReader(&chainT);
688
689 // output
690 TClonesArray *branchElecTrig = treeReaderT->UseBranch("Electron");
691 TClonesArray *branchMuonTrig = treeReaderT->UseBranch("Muon");
692 TClonesArray *branchJetTrig = treeReaderT->UseBranch("Jet");
693 TClonesArray *branchTauJetTrig = treeReaderT->UseBranch("TauJet");
694 TClonesArray *branchPhotonTrig = treeReaderT->UseBranch("Photon");
695 TClonesArray *branchETmisTrig = treeReaderT->UseBranch("ETmis");
696
697 ExRootTreeWriter *treeWriterT = new ExRootTreeWriter(outputfilename, "Trigger");
698 ExRootTreeBranch *branchTrigger = treeWriterT->NewBranch("TrigResult", TRootTrigger::Class());
699
700
701 Long64_t entryT, allEntriesT = treeReaderT->GetEntries();
702 // loop on all entries
703 for(entryT = 0; entryT < allEntriesT; ++entryT) {
704 treeWriterT->Clear();
705 treeReaderT->ReadEntry(entryT);
706 TRIGT->GetGlobalResult(branchElecTrig, branchMuonTrig,branchJetTrig, branchTauJetTrig,branchPhotonTrig, branchETmisTrig,branchTrigger);
707 treeWriterT->Fill();
708 } // loop on all entries
709 cout <<"** Exiting trigger simulation... **"<< endl;
710
711 treeWriterT->Write();
712 delete treeWriterT;
713 delete treeReaderT;
714 } // trigger
715 triggerwatch.Stop();
716
717
718 // 3.2 ************** FROG display
719 frogwatch.Start();
720 if(DET->FLAG_frog == 1) {
721 cout <<"** **"<<endl;
722 cout <<"** ################## Start FROG ################# **"<< endl;
723
724 FrogDisplay *FROG = new FrogDisplay(DET);
725 FROG->BuildEvents(outputfilename);
726 FROG->BuildGeom();
727 delete FROG;
728 cout <<"** Exiting FROG preparation... **"<< endl;
729 }
730 frogwatch.Stop();
731
732 // 3.3 *************** LHCO output
733 lhcowatch.Start();
734 if(DET->FLAG_lhco == 1){
735 cout <<"** **"<<endl;
736 cout <<"** ############ Start LHCO conversion ############ **"<< endl;
737
738 //LHCOConverter *LHCO = new LHCOConverter(outputfilename,LogNameLHCO);
739 LHCOConverter *LHCO = new LHCOConverter(outputfilename,"");
740 LHCO->CopyRunLogFile();
741 LHCO->ConvertExRootAnalysisToLHCO();
742 delete LHCO;
743 cout <<"** Exiting LHCO conversion... **"<< endl;
744 }
745 lhcowatch.Stop();
746
747
748
749 // 4. ********** End & Exit ***********
750
751 globalwatch.Stop();
752 time_report(globalwatch,loopwatch,triggerwatch,frogwatch,lhcowatch,DET->FLAG_frog,DET->FLAG_trigger,DET->FLAG_lhco,LogName,allEntries);
753
754 cout <<"** **"<< endl;
755 cout <<"** Exiting Delphes ... **"<< endl;
756 cout <<"** **"<< endl;
757 cout <<"*********************************************************************"<< endl;
758 cout <<"*********************************************************************"<< endl;
759
760 delete treeReader;
761 delete DET;
762 delete TRIGT;
763 delete TRACP;
764 delete JETRUN;
765 delete VFD;
766
767 // todo("TODO");
768}
Note: See TracBrowser for help on using the repository browser.