Fork me on GitHub

source: svn/trunk/Delphes.cpp@ 745

Last change on this file since 745 was 579, checked in by cp3-support, 13 years ago

b-tagging bug solved by a.mertens

File size: 37.1 KB
RevLine 
[260]1/***********************************************************************
2** **
3** /----------------------------------------------\ **
4** | Delphes, a framework for the fast simulation | **
5** | of a generic collider experiment | **
[401]6** \------------- arXiv:0903.2225v1 ------------/ **
[260]7** **
8** **
9** This package uses: **
10** ------------------ **
[429]11** ROOT: Nucl. Inst. & Meth. in Phys. Res. A389 (1997) 81-86 **
[260]12** FastJet algorithm: Phys. Lett. B641 (2006) [hep-ph/0512210] **
[429]13** Hector: JINST 2:P09005 (2007) [physics.acc-ph:0707.1198v2] **
[260]14** FROG: [hep-ex/0901.2718v1] **
[429]15** HepMC: Comput. Phys. Commun.134 (2001) 41 **
[260]16** **
17** ------------------------------------------------------------------ **
18** **
19** Main authors: **
20** ------------- **
21** **
22** Severine Ovyn Xavier Rouby **
23** severine.ovyn@uclouvain.be xavier.rouby@cern **
24** **
25** Center for Particle Physics and Phenomenology (CP3) **
[429]26** Universite catholique de Louvain (UCL) **
27** Louvain-la-Neuve, Belgium **
[260]28** **
[564]29** Copyright (C) 2008-2010, **
[429]30** All rights reserved. **
[260]31** **
32***********************************************************************/
[2]33
34/// \file Delphes.cpp
[264]35/// \brief Executable for Delphes
[2]36
37#include "TChain.h"
38#include "TApplication.h"
[191]39#include "TStopwatch.h"
[228]40#include "TFile.h"
[2]41
[228]42#include "ExRootTreeReader.h"
43#include "ExRootTreeWriter.h"
44#include "ExRootTreeBranch.h"
[264]45#include "ExRootProgressBar.h"
[2]46
[228]47#include "DataConverter.h"
48#include "LHEFConverter.h"
[350]49#include "HepMCConverter.h"
[353]50#include "HEPEVTConverter.h"
[228]51#include "STDHEPConverter.h"
[307]52#include "LHCOConverter.h"
[457]53#include "DelphesRootConverter.h"
[2]54
[228]55#include "SmearUtil.h"
[264]56#include "CaloUtil.h"
[228]57#include "BFieldProp.h"
58#include "TriggerUtil.h"
59#include "VeryForward.h"
60#include "JetsUtil.h"
61#include "FrogUtil.h"
[2]62
[55]63#include <vector>
64#include <iostream>
[547]65#include <cstdlib> // abs(int)
[11]66
[2]67using namespace std;
68
69//------------------------------------------------------------------------------
70
71int main(int argc, char *argv[])
72{
[463]73
[2]74 int appargc = 2;
[228]75 char *appName= new char[20];
76 char *appOpt= new char[20];
77 sprintf(appName,"Delphes");
78 sprintf(appOpt,"-b");
79 char *appargv[] = {appName,appOpt};
[2]80 TApplication app(appName, &appargc, appargv);
[228]81 delete [] appName;
82 delete [] appOpt;
[307]83
[249]84 if(argc != 3 && argc != 4 && argc != 5) {
[94]85 cout << " Usage: " << argv[0] << " input_file output_file [detector_card] [trigger_card] " << endl;
[429]86 cout << " input_list - list of files in Ntpl, StdHep, HepMC or LHEF format," << endl;
[94]87 cout << " output_file - output file." << endl;
88 cout << " detector_card - Datacard containing resolution variables for the detector simulation (optional) "<<endl;
89 cout << " trigger_card - Datacard containing the trigger algorithms (optional) "<<endl;
90 exit(1);
[2]91 }
[401]92
93 print_header();
[228]94
[307]95 // 1. ********** initialisation ***********
96
[2]97 srand (time (NULL)); /* Initialisation du générateur */
[530]98 TRandom3 * grandom = new TRandom3();
[313]99 TStopwatch globalwatch, loopwatch, triggerwatch, frogwatch, lhcowatch;
[191]100 globalwatch.Start();
[2]101
[307]102
[249]103 //read the output TROOT file
[2]104 string inputFileList(argv[1]), outputfilename(argv[2]);
[249]105 if(outputfilename.find(".root") > outputfilename.length()) {
106 cout <<"** ERROR: 'output_file' should be a .root file. Exiting... **"<< endl;
[94]107 exit(1);
[2]108 }
[44]109 //create output log-file name
[45]110 string forLog = outputfilename;
111 string LogName = forLog.erase(forLog.find(".root"));
[44]112 LogName = LogName+"_run.log";
[94]113
[2]114 TFile *outputFile = TFile::Open(outputfilename.c_str(), "RECREATE"); // Creates the file, but should be closed just after
115 outputFile->Close();
[94]116
[2]117 string line;
118 ifstream infile(inputFileList.c_str());
[384]119 if(!infile.good()) {
120 cout << "** ERROR: Input list (" << left << setw(13) << inputFileList << ") not found. Exiting... **"<< endl;
121 cout <<"*********************************************************************"<< endl;
122 exit(1);
123 }
[2]124 infile >> line; // the first line determines the type of input files
[94]125
[44]126 //read the datacard input file
[304]127 string DetDatacard("data/DetectorCard.dat"); //for detector smearing parameters
128 string TrigDatacard("data/TriggerCard.dat"); //for trigger selection
[307]129
[249]130 string lineCard1,lineCard2;
131 bool detecCard=false,trigCard=false;
132 if(argv[3])
133 {
134 ifstream infile1(argv[3]);
135 infile1 >> lineCard1; // the first line determines the type of input files
136 if(strstr(lineCard1.c_str(),"DETECTOR") && detecCard==true)
[307]137 cerr <<"** ERROR: A DETECTOR card has already been loaded **"<< endl;
[249]138 else if(strstr(lineCard1.c_str(),"DETECTOR") && detecCard==false){DetDatacard =argv[3]; detecCard=true;}
139 else if(strstr(lineCard1.c_str(),"TRIGGER") && trigCard==true)
[307]140 cerr <<"** ERROR: A TRIGGER card has already been loaded **"<< endl;
[249]141 else if(strstr(lineCard1.c_str(),"TRIGGER") && trigCard==false){TrigDatacard =argv[3]; trigCard=true;}
142 }
143 if(argv[4])
144 {
145 ifstream infile2(argv[4]);
146 infile2 >> lineCard2; // the first line determines the type of input files
147 if(strstr(lineCard2.c_str(),"DETECTOR") && detecCard==true)
[307]148 cerr <<"** ERROR: A DETECTOR card has already been loaded **"<< endl;
[249]149 else if(strstr(lineCard2.c_str(),"DETECTOR") && detecCard==false){DetDatacard =argv[4]; detecCard=true;}
150 else if(strstr(lineCard2.c_str(),"TRIGGER") && trigCard==true)
[307]151 cerr <<"** ERROR: A TRIGGER card has already been loaded **"<< endl;
[249]152 else if(strstr(lineCard2.c_str(),"TRIGGER") && trigCard==false){TrigDatacard =argv[4]; trigCard=true;}
153 }
[94]154
[55]155 //Smearing information
[44]156 RESOLution *DET = new RESOLution();
[380]157
[212]158 cout <<"** **"<< endl;
159 cout <<"** ####### Start reading DETECTOR parameters ####### **"<< endl;
160 cout << left << setw(40) <<"** Opening configuration card: "<<""
[258]161 << left << setw(27) << DetDatacard <<""
162 << right << setw(2) <<"**"<<""<<endl;
[44]163 DET->ReadDataCard(DetDatacard);
[304]164 cout << left << setw(40) <<"** Parameters summarised in: "<<""
[258]165 << left << setw(27) << LogName <<""
166 << right << setw(2) <<"**"<<""<<endl;
[212]167 cout <<"** **"<< endl;
[380]168 DET->ReadParticleDataGroupTable();
[474]169 //DET->PDGtable.print();
[494]170
[55]171 //Trigger information
[249]172 cout <<"** ########### Start reading TRIGGER card ########## **"<< endl;
173 if(trigCard==false)
[307]174 {
175 cout <<"** WARNING: Datacard not found, use default card **" << endl;
176 TrigDatacard="data/TriggerCard.dat";
177 }
[72]178 TriggerTable *TRIGT = new TriggerTable();
[80]179 TRIGT->TriggerCardReader(TrigDatacard.c_str());
[72]180 TRIGT->PrintTriggerTable(LogName);
[212]181 if(DET->FLAG_trigger == 1)
182 {
183 cout << left << setw(40) <<"** Opening configuration card: "<<""
[258]184 << left << setw(27) << TrigDatacard <<""
185 << right << setw(2) <<"**"<<""<<endl;
[212]186 cout <<"** **"<< endl;
187 }
[453]188
189 // Logfile
190 DET->setNames(inputFileList,DetDatacard,TrigDatacard);
191 DET->Logfile(LogName);
192
[55]193 //Propagation of tracks in the B field
[228]194 TrackPropagation *TRACP = new TrackPropagation(DET);
[94]195
[55]196 //Jet information
[228]197 JetsUtil *JETRUN = new JetsUtil(DET);
[94]198
[55]199 //VFD information
[228]200 VeryForward * VFD = new VeryForward(DET);
[307]201
[178]202 // data converters
[212]203 cout <<"** **"<<endl;
[415]204 cout <<"** ####### Start conversion to TRoot format ######## **"<< endl;
[418]205
206 if(line.rfind(".hepmc") < line.length())
207 {
208 cout <<"** HepMC ASCII file format detected **"<<endl;
209 cout <<"** This can take several minutes **"<< endl;
210 HepMCConverter converter(inputFileList,outputfilename,DET->PDGtable,DET->NEvents);
211 }
212 else if(line.rfind(".hep") < line.length())
[2]213 {
[212]214 cout <<"** StdHEP file format detected **"<<endl;
215 cout <<"** This can take several minutes **"<< endl;
[418]216 STDHEPConverter converter(inputFileList,outputfilename,DET->PDGtable,DET->NEvents);
[2]217 }
[418]218 else if(line.rfind(".lhe") < line.length())
[2]219 {
[212]220 cout <<"** LHEF file format detected **"<<endl;
[564]221 cout <<"** !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!**"<<endl;
222 cout <<"** !!!!!! The file should already be hadronised !!!!!!**"<<endl;
223 cout <<"** !!!!!! Delphes is running neither PYTHIA neither Herwig !!!!!!**"<<endl;
224 cout <<"** !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!**"<<endl;
[212]225 cout <<"** This can take several minutes **"<< endl;
[418]226 LHEFConverter converter(inputFileList,outputfilename,DET->PDGtable,DET->NEvents);
[2]227 }
[418]228 else if(line.rfind(".root") < line.length())
[457]229 // can be either a root file from h2root (i.e. with "h101" tree)
230 // or a root file from Delphes (i.e. with "GEN" tree)
[2]231 {
[457]232 TFile f(line.c_str());
233 if (f.FindKey("GEN")) {
234 cout <<"** Delphes ROOT file format detected **"<<endl;
235 cout <<"** This can take several minutes **"<< endl;
236 DelphesRootConverter converter(inputFileList,outputfilename,DET->NEvents);
237 }
238 else
239 if (f.FindKey("h101")) {
240 cout <<"** h2root file format detected **"<<endl;
241 cout <<"** This can take several minutes **"<< endl;
242 HEPEVTConverter converter(inputFileList,outputfilename,DET->PDGtable,DET->NEvents);
243 }
244 else {
245 cerr << left << setw(4) <<"** "<<""
246 << left << setw(63) << line.c_str() <<""
247 << right << setw(2) <<"**"<<endl;
248 cerr <<"** ERROR: File format not identified -- Exiting... **"<< endl;
249 cout <<"** **"<< endl;
250 cout <<"*********************************************************************"<< endl;
251 return -1;
252 } // not found any interesting input tree
253 f.Close();
254 } // .root file
[212]255 else {
[307]256 cerr << left << setw(4) <<"** "<<""
257 << left << setw(63) << line.c_str() <<""
258 << right << setw(2) <<"**"<<endl;
259 cerr <<"** ERROR: File format not identified -- Exiting... **"<< endl;
260 cout <<"** **"<< endl;
261 cout <<"*********************************************************************"<< endl;
262 return -1;};
[212]263 cout <<"** Exiting conversion... **"<< endl;
[307]264
[2]265 TChain chain("GEN");
266 chain.Add(outputfilename.c_str());
267 ExRootTreeReader *treeReader = new ExRootTreeReader(&chain);
268 const TClonesArray *branchGen = treeReader->UseBranch("Particle");
[307]269
[2]270 TIter itGen((TCollection*)branchGen);
271
[178]272 //Output file : contents of the analysis object data
[2]273 ExRootTreeWriter *treeWriter = new ExRootTreeWriter(outputfilename, "Analysis");
[267]274 ExRootTreeBranch *branchTauJet = treeWriter->NewBranch("TauJet", TRootTauJet::Class());
[2]275 ExRootTreeBranch *branchJet = treeWriter->NewBranch("Jet", TRootJet::Class());
276 ExRootTreeBranch *branchElectron = treeWriter->NewBranch("Electron", TRootElectron::Class());
277 ExRootTreeBranch *branchMuon = treeWriter->NewBranch("Muon", TRootMuon::Class());
278 ExRootTreeBranch *branchPhoton = treeWriter->NewBranch("Photon", TRootPhoton::Class());
[268]279 ExRootTreeBranch *branchTrack = treeWriter->NewBranch("Tracks", TRootTracks::Class());
[2]280 ExRootTreeBranch *branchETmis = treeWriter->NewBranch("ETmis", TRootETmis::Class());
281 ExRootTreeBranch *branchCalo = treeWriter->NewBranch("CaloTower", TRootCalo::Class());
282 ExRootTreeBranch *branchZDC = treeWriter->NewBranch("ZDChits", TRootZdcHits::Class());
283 ExRootTreeBranch *branchRP220 = treeWriter->NewBranch("RP220hits", TRootRomanPotHits::Class());
[380]284 //ExRootTreeBranch *branchFP420 = treeWriter->NewBranch("FP420hits", TRootForwardTaggerHits::Class());
285 ExRootTreeBranch *branchFP420 = treeWriter->NewBranch("FP420hits", TRootRomanPotHits::Class());
[30]286
[2]287 TRootETmis *elementEtmis;
288 TRootElectron *elementElec;
289 TRootMuon *elementMu;
290 TRootPhoton *elementPhoton;
[268]291 TRootTracks * elementTrack;
[2]292 TRootCalo *elementCalo;
293
[184]294 TLorentzVector genMomentum(0,0,0,0); // four-momentum at the vertex
295 TLorentzVector genMomentumBfield(0,0,0,0); // four-momentum at the exit of the tracks
296 TLorentzVector momentumCaloSegmentation(0,0,0,0); // four-momentum in the calo, after applying the calo segmentation
[2]297 LorentzVector jetMomentum;
[94]298
[55]299 vector<fastjet::PseudoJet> input_particles;//for FastJet algorithm
300 vector<fastjet::PseudoJet> sorted_jets;
[290]301 vector<TRootTracks> TrackCentral;
[2]302 vector<PhysicsTower> towers;
[264]303 vector<D_Particle> electron;
304 vector<D_Particle> muon;
305 vector<D_Particle> gamma;
[307]306
[567]307 vector<int> NTrackJet; //for number of tracks
308 vector<float> EHADEEM; //for energyHad over energyEm
309 vector<int> NCALO; //nombre de tours calorimetriques utilisee
[98]310
[350]311 TSimpleArray<TRootC::GenParticle> NFCentralQ;
[307]312
313 D_CaloList list_of_calorimeters;
314 D_CaloElement CentralCalo("centralcalo",
315 -DET->CEN_max_calo_cen, DET->CEN_max_calo_cen,
316 DET->ELG_Ccen, DET->ELG_Ncen, DET->ELG_Scen,
[494]317 DET->HAD_Ccen, DET->HAD_Ncen, DET->HAD_Scen);
318 D_CaloElement ForwardECCalo("forwardendcapcalo",
319 DET->CEN_max_calo_cen, DET->CEN_max_calo_ec,
320 DET->ELG_Cec, DET->ELG_Nec, DET->ELG_Sec,
321 DET->HAD_Cec, DET->HAD_Nec, DET->HAD_Sec );
322 D_CaloElement BackwardECCalo("backwardendcapcalo",
323 -DET->CEN_max_calo_ec, -DET->CEN_max_calo_cen,
324 DET->ELG_Cec, DET->ELG_Nec, DET->ELG_Sec,
325 DET->HAD_Cec, DET->HAD_Nec, DET->HAD_Sec );
[307]326 D_CaloElement ForwardCalo("forwardcalo",
[494]327 DET->CEN_max_calo_ec, DET->CEN_max_calo_fwd,
[307]328 DET->ELG_Cfwd, DET->ELG_Nfwd, DET->ELG_Sfwd,
[494]329 DET->HAD_Cfwd, DET->HAD_Nfwd, DET->HAD_Sfwd );
[307]330 D_CaloElement BackwardCalo("backwardcalo",
[494]331 -DET->CEN_max_calo_fwd, -DET->CEN_max_calo_ec,
[307]332 DET->ELG_Cfwd, DET->ELG_Nfwd, DET->ELG_Sfwd,
[494]333 DET->HAD_Cfwd, DET->HAD_Nfwd, DET->HAD_Sfwd );
[307]334 //D_CaloElement CastorCalo("castor",5.5,6.6,1,0,0,1,0,0);
335 list_of_calorimeters.addElement(CentralCalo);
[494]336 list_of_calorimeters.addElement(ForwardECCalo);
[307]337 list_of_calorimeters.addElement(ForwardCalo);
[494]338 list_of_calorimeters.addElement(BackwardECCalo);
[307]339 list_of_calorimeters.addElement(BackwardCalo);
340 //list_of_calorimeters.addElement(CastorCalo);
341 list_of_calorimeters.sortElements();
342
343
344 // 2. ********** Loop over all events ***********
[2]345 Long64_t entry, allEntries = treeReader->GetEntries();
[212]346 cout <<"** **"<<endl;
347 cout <<"** ####### Start fast detector simulation ######## **"<< endl;
348 cout << left << setw(52) <<"** Total number of events to run: "<<""
349 << left << setw(15) << allEntries <<""
350 << right << setw(2) <<"**"<<endl;
[307]351
[251]352 ExRootProgressBar *Progress = new ExRootProgressBar(allEntries);
[307]353
[191]354 loopwatch.Start();
[307]355
[178]356 // loop on all events
357 for(entry = 0; entry < allEntries; ++entry)
[2]358 {
[251]359 Progress->Update(entry);
[2]360 TLorentzVector PTmis(0,0,0,0);
361 treeReader->ReadEntry(entry);
362 treeWriter->Clear();
363
[30]364 electron.clear();
365 muon.clear();
[74]366 gamma.clear();
[30]367 NFCentralQ.Clear();
368
[2]369 TrackCentral.clear();
370 towers.clear();
[11]371 input_particles.clear();
[307]372 NTrackJet.clear();
[567]373 NCALO.clear();
374 EHADEEM.clear();
[310]375
[384]376 // 'list_of_active_towers' contains the exact list of calorimetric towers which have some deposits inside (E>0).
377 // The towers of this list will be smeared according to the calo resolution, afterwards
[310]378 D_CaloTowerList list_of_active_towers;
[384]379
380 // 'list_of_towers_with_photon' and 'list_of_centowers_with_neutrals' are list of towers, whose energy is **not** computed.
381 // They are only used to store the eta/phi of some towers, in order to search later inside 'list_of_active_towers'.
382 // 'list_of_towers_with_photon' contains the towers hit by photons only
383 // 'list_of_centowers_with_neutrals' is used to the jet-E-flow calculation: contains the towers with eta < CEN_max_tracker,
384 // i.e. towers behind the tracker.
[310]385 D_CaloTowerList list_of_towers_with_photon; // to speed up the code: will only look in interesting towers for gamma candidates
[384]386
387 D_CaloTowerList list_of_centowers_with_neutrals; // list of towers with neutral particles : for jet E-flow
388 float etamax_calocoverage_behindtracker = DET->CEN_max_tracker; // finds the extension in eta of the furthest
389 for (unsigned int i=1; i< DET->TOWER_number+1; i++) { // cell (at least) partially behind the tracker
390 if(DET->TOWER_eta_edges[i] > DET->CEN_max_tracker) break;
391 etamax_calocoverage_behindtracker = DET->TOWER_eta_edges[i];
392 }
[310]393 // 2.1a Loop over all particles in event, to fill the towers
394 itGen.Reset();
[350]395 TRootC::GenParticle *particleG;
396 while( (particleG = (TRootC::GenParticle*) itGen.Next()) )
[310]397 {
[307]398 TRootGenParticle *particle = new TRootGenParticle(particleG);
[380]399 PdgParticle pdg_part = DET->PDGtable[particle->PID];
400 particle->Charge = pdg_part.charge();
401 particle->M = pdg_part.mass();
402 //particle->Charge=ChargeVal(particle->PID);
403 particle->setFractions(); // init
[307]404 int pid = abs(particle->PID);
405
[264]406 // 2.1a.1********************* preparation for the b-tagging
407 //// This subarray is needed for the B-jet algorithm
408 // optimization for speed : put first PID condition, then ETA condition, then either pt or status
409 if( (pid <= pB || pid == pGLUON) &&// is it a light quark or a gluon, i.e. is it one of these : u,d,c,s,b,g ?
410 fabs(particle->Eta) < DET->CEN_max_tracker &&
[579]411 particle->Status == 2 &&
[310]412 particle->PT > DET->PT_QUARKS_MIN )
413 {
[319]414 NFCentralQ.Add(particleG);
[310]415 }
[307]416
[264]417 // 2.1a.2********************* visible particles only
[469]418 if( (particle->Status == 1) && (! pdg_part.invisible() ) )
[310]419 {
420 // 2.1a.2.1 Central solenoidal magnetic field
421 TRACP->bfield(particle); // fills in particle->EtaCalo et particle->PhiCalo
422 // 2.1a.2.2 Filling the calorimetric towers -- includes also forward detectors ?
423 // first checks if the charged particles reach the calo!
424 if( DET->FLAG_bfield ||
425 particle->Charge==0 ||
426 (!DET->FLAG_bfield && particle->Charge!=0 && particle->PT > DET->TRACK_ptmin))
427 if(
428 (particle->EtaCalo > list_of_calorimeters.getEtamin() ) &&
429 (particle->EtaCalo < list_of_calorimeters.getEtamax() )
430 )
[307]431 {
[310]432 float iEta=UNDEFINED, iPhi=UNDEFINED;
433 DET->BinEtaPhi(particle->PhiCalo,particle->EtaCalo,iPhi,iEta); // fills in iPhi and iEta
434 if (iEta != UNDEFINED && iPhi != UNDEFINED)
435 {
436 D_CaloTower tower(iEta,iPhi); // new tower
437 tower.Set_Eem_Ehad_E_ET(particle->E*particle->getFem() , particle->E*particle->getFhad() );
438 list_of_active_towers.addTower(tower);
439 // this list may contain several times the same calotower, as several particles
440 // may leave some energy in the same calotower
441 // After the loop on particles, identical cells in the list should be merged
442 } // iEta and iPhi must be defined
443 }
[307]444
[310]445 // 2.1a.2.3 charged particles in tracker: energy flow
446 // if bfield not simulated, pt should be high enough to be taken into account
447 // it is supposed here that DET->MAX_calo > DET->CEN_max_tracker > DET->CEN_max_mu > 0
448 if( particle->Charge !=0 &&
449 fabs(particle->EtaCalo)< DET->CEN_max_tracker && // stays in the tracker -> track available
450 ( DET->FLAG_bfield ||
451 (!DET->FLAG_bfield && particle->PT > DET->TRACK_ptmin)
452 )
453 )
[564]454 {
455 bool trackRec=true;
456 if((grandom->Uniform()*100.) > DET->TRACK_eff)trackRec=false;
[310]457 // 2.1a.2.3.1 Filling the particle properties + smearing
458 // Hypothesis: the final eta/phi are the ones from the generator, thanks to the track reconstruction
459 // This is the EnergyFlow hypothesis
460 particle->SetEtaPhi(particle->Eta,particle->Phi);
461 float sET=UNDEFINED; // smeared ET, computed from the smeared E -> needed for the tracks
462
463 // 2.1a.2.3.2 Muons
[564]464 if (pid == pMU && fabs(particle->EtaCalo)< DET->CEN_max_mu && trackRec==true)
[310]465 {
466 TLorentzVector p;
467 float sPT = gRandom->Gaus(particle->PT, DET->MU_SmearPt*particle->PT );
468 if (sPT > 0 && sPT > DET->PTCUT_muon)
469 {
470 p.SetPtEtaPhiE(sPT,particle->Eta,particle->Phi,sPT*cosh(particle->Eta));
[390]471 muon.push_back(D_Particle(p,particle->PID,particle->EtaCalo,particle->PhiCalo));
[310]472 }
473 sET = (sPT >0)? sPT : 0;
474 }
475 // 2.1a.2.3.3 Electrons
[564]476 else if (pid == pE && trackRec==true)
[310]477 {
478 // Finds in which calorimeter the particle has gone, to know its resolution
479
480 D_CaloElement currentCalo = list_of_calorimeters.getElement(particle->EtaCalo);
481 if(currentCalo.getName() == dummyCalo.getName())
482 {
483 cout << "** Warning: the calo coverage behind the tracker is not complete! **" << endl;
484 }
485
486 // final smeared EM energy // electromagnetic fraction F_em =1 for electrons;
487 float sE = currentCalo.getElectromagneticResolution().Smear(particle->E);
488 if (sE>0)
489 {
490 sET = sE/cosh(particle->Eta);
491 // NB: ET is found via the calorimetry and not via the track curvature
492
493 TLorentzVector p;
494 p.SetPtEtaPhiE(sET,particle->Eta,particle->Phi,sE);
495 if (sET > DET->PTCUT_elec)
496 electron.push_back(D_Particle(p,particle->PID,particle->EtaCalo,particle->PhiCalo));
[384]497 //if(DET->JET_Eflow) input_particles.push_back(fastjet::PseudoJet(p.Px(),p.Py(),p.Pz(),p.E()));
[310]498 }
499 else { sET=0;} // if negative smeared energy -- needed for the tracks
500 }
501 // 2.1a.2.3.4 Other charged particles : smear them for the tracks!
502 else
503 { //other particles
504 D_CaloElement currentCalo = list_of_calorimeters.getElement(particle->EtaCalo);
505 float sEem = currentCalo.getElectromagneticResolution().Smear(particle->E * particle->getFem());
506 float sEhad = currentCalo.getHadronicResolution().Smear(particle->E * particle->getFhad());
507 float sE = ( (sEem>0)? sEem : 0 ) + ( (sEhad>0)? sEhad : 0 );
508 sET = sE/cosh(particle->EtaCalo);
509 }
[307]510
[310]511 // 2.1a.2.3.5 Tracks
[530]512 //if( (rand()%100) < DET->TRACK_eff && sET!=0)
[564]513 if( trackRec==true && sET!=0)
[310]514 {
515 elementTrack = (TRootTracks*) branchTrack->NewEntry();
516 elementTrack->Set(particle->Eta, particle->Phi, particle->EtaCalo, particle->PhiCalo, sET, particle->Charge);
[547]517 elementTrack->Vx=particle->X;
518 elementTrack->Vy=particle->Y;
519 elementTrack->Vz=particle->Z;
[310]520 TrackCentral.push_back(*elementTrack); // tracks at vertex!
[384]521 if(DET->JET_Eflow)
522 input_particles.push_back(fastjet::PseudoJet(particle->Px,particle->Py,particle->Pz,particle->E));
[310]523 // TODO!!! apply a smearing on the position of the origin of the track
524 // TODO!!! elementTracks->SetPositionOut(Xout,Yout,Zout);
525 }
526 } // 2.1a.2.3 : if tracker/energy-flow
527 // 2.1a.2.4 Photons
528 // stays in the tracker -> track available -> gamma ID
529 else if( (pid == pGAMMA) && fabs(particle->EtaCalo)< DET->CEN_max_tracker )
530 {
531 float iEta=UNDEFINED, iPhi=UNDEFINED;
532 DET->BinEtaPhi(particle->PhiCalo,particle->EtaCalo,iPhi,iEta); // fills in iPhi and iEta
533 D_CaloTower tower(iEta,iPhi);
534 // stores the list of towers where to apply the photon ID algorithm. Just a trick for a faster search
535 list_of_towers_with_photon.addTower(tower);
[307]536 }
[384]537 // 2.1a.2.5 Neutrals within tracker -- for jet energy flow
538 else if( particle->Charge ==0 && fabs(particle->EtaCalo)< etamax_calocoverage_behindtracker)
539 {
540 float iEta=UNDEFINED, iPhi=UNDEFINED;
541 DET->BinEtaPhi(particle->PhiCalo,particle->EtaCalo,iPhi,iEta); // fills in iPhi and iEta
542 D_CaloTower tower(iEta,iPhi);
543 list_of_centowers_with_neutrals.addTower(tower);
544 }
545 // 2.1a.2.6 : very forward detectors
[310]546 else
547 {
548 if (DET->FLAG_RP==1)
549 {
550 // for the moment, only protons are transported
551 // BUT !!! could be a beam of other particles! (heavy ions?)
552 // BUT ALSO !!! if very forward muons, or others!
553 VFD->RomanPots(treeWriter,branchRP220,branchFP420,particle);
554 }
555 // 2.1a.2.6: Zero degree calorimeter
556 if(DET->FLAG_vfd==1)
557 {
558 VFD->ZDC(treeWriter,branchZDC,particle);
559 }
560 }
[307]561
[310]562 } // 2.1a.2 : if visible particle
[307]563 delete particle;
[310]564 }// loop on all particles 2.1a
[384]565
[310]566 // 2.1b loop on all (activated) towers
567 // at this stage, list_of_active_towers may contain several times the same tower
568 // first step is to merge identical towers, by matching their (iEta,iPhi)
569
570 list_of_active_towers.sortElements();
571 list_of_active_towers.mergeDuplicates();
572
573 // Calotower smearing
574 list_of_active_towers.smearTowers(list_of_calorimeters);
575
576 for(unsigned int i=0; i<list_of_active_towers.size(); i++)
577 {
[307]578 float iEta = list_of_active_towers[i].getEta();
579 float iPhi = list_of_active_towers[i].getPhi();
580 float e = list_of_active_towers[i].getE();
[310]581 if(iEta != UNDEFINED && iPhi != UNDEFINED && e!=0)
582 {
583 elementCalo = (TRootCalo*) branchCalo->NewEntry();
584 elementCalo->set(list_of_active_towers[i]);
585 // not beautiful : should be improved!
586 TLorentzVector p;
587 p.SetPtEtaPhiE(list_of_active_towers[i].getET(), iEta, iPhi, e );
588 PhysicsTower Tower(LorentzVector(p.Px(),p.Py(),p.Pz(),p.E()));
589 towers.push_back(Tower);
590 }
[307]591 } // loop on towers
[310]592
[384]593 // 2.1c photon ID
594 // list_of_towers_with_photon is the list of towers with photon candidates
595 // already smeared !
596 // sorts the vector and smears duplicates
[310]597 list_of_towers_with_photon.mergeDuplicates();
[321]598 for(unsigned int i=0; i<list_of_towers_with_photon.size(); i++) {
[264]599 float eta = list_of_towers_with_photon[i].getEta();
600 float phi = list_of_towers_with_photon[i].getPhi();
[384]601 D_CaloTower cal(list_of_active_towers.getElement(eta,phi)); //// <---------- buh???????
[310]602 if(cal.getEta() != UNDEFINED && cal.getPhi() != UNDEFINED && cal.getE() > 0)
603 {
604 TLorentzVector p;
605 p.SetPtEtaPhiE(cal.getET(), eta,phi,cal.getE() );
606 if (cal.getET() > DET->PTCUT_gamma) { gamma.push_back(D_Particle(p,pGAMMA,p.Eta(),p.Phi())); }
607 }
[307]608 } // for -- list of photons
[384]609
610 // 2.1d jet-E-flow -- taking into account the neutrals within tracker
611 if(DET->JET_Eflow) {
612 list_of_centowers_with_neutrals.mergeDuplicates();
613 for(unsigned int i=0; i<list_of_centowers_with_neutrals.size(); i++) {
614 float eta = list_of_centowers_with_neutrals[i].getEta();
615 float phi = list_of_centowers_with_neutrals[i].getPhi();
616 D_CaloTower cal(list_of_active_towers.getElement(eta,phi));
617 if(cal.getEta() != UNDEFINED && cal.getPhi() != UNDEFINED && cal.getE() > 0)
618 {
619 TLorentzVector p;
620 p.SetPtEtaPhiE(cal.getET(), eta,phi,cal.getE() );
621 //cout << "**************list: " << p.Px() << " " << p.Py() << " " << p.Pz() << " " << p.E() << endl;
622 input_particles.push_back(fastjet::PseudoJet(p.Px(),p.Py(),p.Pz(),p.E()));
623 }
624 } // for - list_of_centowers
625 } // JET_Eflow
626
[178]627 // 2.2 ********** Output preparation & complex objects ***********
628 // 2.2.1 ********************* sorting collections by decreasing pt
[74]629 DET->SortedVector(electron);
[321]630 float iPhiEl=0,iEtaEl=0,ptisoEl=0;
[310]631 for(unsigned int i=0; i < electron.size(); i++)
632 {
633 elementElec = (TRootElectron*) branchElectron->NewEntry();
634 elementElec->Set(electron[i].Px(),electron[i].Py(),electron[i].Pz(),electron[i].E());
635 elementElec->EtaCalo = electron[i].EtaCalo();
636 elementElec->PhiCalo = electron[i].PhiCalo();
[536]637 elementElec->Charge = - sign(electron[i].PID());
[557]638 elementElec->IsolFlag = DET->Isolation(electron[i],TrackCentral,DET->ISOL_trk_PT,ptisoEl);
[550]639
640 int electron_tower_index = DET->BinEtaPhi(elementElec->PhiCalo,elementElec->EtaCalo,iPhiEl,iEtaEl);
[312]641 D_CaloTower calElec(list_of_active_towers.getElement(iEtaEl,iPhiEl));
[310]642 elementElec->EHoverEE = calElec.getEhad()/calElec.getEem();
[551]643 elementElec->EtRatio = DET->CaloIsolation(electron[i], list_of_active_towers,iPhiEl,iEtaEl,electron_tower_index);
[555]644 elementElec->SumEt = DET->IsolationSumEt(iPhiEl,iEtaEl, list_of_active_towers);
645 elementElec->SumPt = ptisoEl;
646
[312]647 }
[310]648
[74]649 DET->SortedVector(muon);
[321]650 float iPhiMu=0,iEtaMu=0,ptisoMu=0;
[310]651 for(unsigned int i=0; i < muon.size(); i++)
652 {
653 elementMu = (TRootMuon*) branchMuon->NewEntry();
[536]654 elementMu->Charge = - sign(muon[i].PID());
[310]655 elementMu->Set(muon[i].Px(),muon[i].Py(),muon[i].Pz(),muon[i].E());
656 elementMu->EtaCalo = muon[i].EtaCalo();
657 elementMu->PhiCalo = muon[i].PhiCalo();
[557]658 elementMu->IsolFlag = DET->Isolation(muon[i],TrackCentral,DET->ISOL_trk_PT,ptisoMu);
[555]659 elementMu->SumPt = ptisoMu;
660 elementMu->SumEt = DET->IsolationSumEt(iPhiMu,iEtaMu, list_of_active_towers);
[550]661
662 int muon_tower_index = DET->BinEtaPhi(elementMu->PhiCalo,elementMu->EtaCalo,iPhiMu,iEtaMu);
[312]663 D_CaloTower calMuon(list_of_active_towers.getElement(iEtaMu,iPhiMu));
[321]664 if( calMuon.getEem() !=0 ) elementMu->EHoverEE = calMuon.getEhad()/calMuon.getEem();
665 else elementMu->EHoverEE = UNDEFINED;
[550]666 elementMu->EtRatio = DET->CaloIsolation(muon[i], list_of_active_towers,iPhiMu,iEtaMu,muon_tower_index);
[310]667 }
668
[74]669 DET->SortedVector(gamma);
[310]670 for(unsigned int i=0; i < gamma.size(); i++)
671 {
672 elementPhoton = (TRootPhoton*) branchPhoton->NewEntry();
673 elementPhoton->Set(gamma[i].Px(),gamma[i].Py(),gamma[i].Pz(),gamma[i].E());
674 D_CaloTower calGamma(list_of_active_towers.getElement(gamma[i].EtaCalo(),gamma[i].PhiCalo()));
675 elementPhoton->EHoverEE = calGamma.getEhad()/calGamma.getEem();
676 }
[30]677
[178]678 // 2.2.2 ************* computes the Missing Transverse Momentum
[71]679 TLorentzVector Att(0.,0.,0.,0.);
680 for(unsigned int i=0; i < towers.size(); i++)
681 {
[107]682 Att.SetPxPyPzE(towers[i].fourVector.px, towers[i].fourVector.py, towers[i].fourVector.pz, towers[i].fourVector.E);
683 if(fabs(Att.Eta()) < DET->CEN_max_calo_fwd)
[307]684 {
685 PTmis = PTmis + Att;
686 // create a fastjet::PseudoJet with these components and put it onto
687 // back of the input_particles vector
[384]688 if(!DET->JET_Eflow)
689 input_particles.push_back(fastjet::PseudoJet(towers[i].fourVector.px,towers[i].fourVector.py,towers[i].fourVector.pz,towers[i].fourVector.E));
690 else { if(fabs(Att.Eta()) > DET->CEN_max_tracker)
691 input_particles.push_back(fastjet::PseudoJet(towers[i].fourVector.px,towers[i].fourVector.py,towers[i].fourVector.pz,towers[i].fourVector.E));
692 }
[307]693 }
[71]694 }
[564]695 //on rajoute les muons dans ETMIS
696 for(unsigned int i=0; i < muon.size(); i++)
697 {
698
699 Att.SetPxPyPzE(muon[i].Px(),muon[i].Py(),muon[i].Pz(),muon[i].E());
700 PTmis = PTmis + Att;
701 }
702 //on rempli les muons du dessus
[71]703 elementEtmis = (TRootETmis*) branchETmis->NewEntry();
704 elementEtmis->ET = (PTmis).Pt();
705 elementEtmis->Phi = (-PTmis).Phi();
706 elementEtmis->Px = (-PTmis).Px();
707 elementEtmis->Py = (-PTmis).Py();
[564]708
[74]709
[264]710 // 2.2.3 ************* jets, B-tag, tau jets
[564]711 sorted_jets=JETRUN->RunJets(input_particles, TrackCentral,NTrackJet,EHADEEM,list_of_active_towers,NCALO);
712 JETRUN->RunJetBtagging(treeWriter, branchJet,sorted_jets,NFCentralQ,NTrackJet,EHADEEM,NCALO);
713 JETRUN->RunTauJets(treeWriter,branchTauJet,sorted_jets,towers, TrackCentral,NTrackJet,EHADEEM,NCALO);
[74]714
[72]715 treeWriter->Fill();
[178]716 } // 2. Loop over all events ('for' loop)
[307]717
[212]718 cout <<"** Exiting detector simulation... **"<< endl;
[307]719
720
[2]721 treeWriter->Write();
[77]722 delete treeWriter;
[191]723 loopwatch.Stop();
[307]724
725
726
[212]727 // 3. ********** Trigger & Frog ***********
[178]728 // 3.1 ************ running the trigger in case the FLAG trigger is put to 1 in the datacard
[191]729 triggerwatch.Start();
[94]730 if(DET->FLAG_trigger == 1)
[72]731 {
[307]732 cout <<"** **"<<endl;
733 cout <<"** ########### Start Trigger selection ########### **"<< endl;
734
[178]735 // input
[72]736 TChain chainT("Analysis");
737 chainT.Add(outputfilename.c_str());
738 ExRootTreeReader *treeReaderT = new ExRootTreeReader(&chainT);
[74]739
[178]740 // output
[72]741 TClonesArray *branchElecTrig = treeReaderT->UseBranch("Electron");
742 TClonesArray *branchMuonTrig = treeReaderT->UseBranch("Muon");
743 TClonesArray *branchJetTrig = treeReaderT->UseBranch("Jet");
744 TClonesArray *branchTauJetTrig = treeReaderT->UseBranch("TauJet");
745 TClonesArray *branchPhotonTrig = treeReaderT->UseBranch("Photon");
746 TClonesArray *branchETmisTrig = treeReaderT->UseBranch("ETmis");
[74]747
[72]748 ExRootTreeWriter *treeWriterT = new ExRootTreeWriter(outputfilename, "Trigger");
749 ExRootTreeBranch *branchTrigger = treeWriterT->NewBranch("TrigResult", TRootTrigger::Class());
[307]750
751
[72]752 Long64_t entryT, allEntriesT = treeReaderT->GetEntries();
[178]753 // loop on all entries
754 for(entryT = 0; entryT < allEntriesT; ++entryT) {
[307]755 treeWriterT->Clear();
756 treeReaderT->ReadEntry(entryT);
757 TRIGT->GetGlobalResult(branchElecTrig, branchMuonTrig,branchJetTrig, branchTauJetTrig,branchPhotonTrig, branchETmisTrig,branchTrigger);
758 treeWriterT->Fill();
[178]759 } // loop on all entries
[212]760 cout <<"** Exiting trigger simulation... **"<< endl;
[94]761
[72]762 treeWriterT->Write();
763 delete treeWriterT;
[228]764 delete treeReaderT;
[178]765 } // trigger
[307]766 triggerwatch.Stop();
767
768
[178]769 // 3.2 ************** FROG display
[191]770 frogwatch.Start();
[228]771 if(DET->FLAG_frog == 1) {
[307]772 cout <<"** **"<<endl;
773 cout <<"** ################## Start FROG ################# **"<< endl;
774
775 FrogDisplay *FROG = new FrogDisplay(DET);
776 FROG->BuildEvents(outputfilename);
777 FROG->BuildGeom();
778 delete FROG;
[313]779 cout <<"** Exiting FROG preparation... **"<< endl;
[228]780 }
781 frogwatch.Stop();
[94]782
[307]783 // 3.3 *************** LHCO output
[313]784 lhcowatch.Start();
[307]785 if(DET->FLAG_lhco == 1){
786 cout <<"** **"<<endl;
[415]787 cout <<"** ############ Start LHCO conversion ############ **"<< endl;
[307]788
789 //LHCOConverter *LHCO = new LHCOConverter(outputfilename,LogNameLHCO);
790 LHCOConverter *LHCO = new LHCOConverter(outputfilename,"");
791 LHCO->CopyRunLogFile();
792 LHCO->ConvertExRootAnalysisToLHCO();
793 delete LHCO;
[416]794 cout <<"** Exiting LHCO conversion... **"<< endl;
[307]795 }
[313]796 lhcowatch.Stop();
[307]797
798
799
800 // 4. ********** End & Exit ***********
801
[191]802 globalwatch.Stop();
[397]803 time_report(globalwatch,loopwatch,triggerwatch,frogwatch,lhcowatch,DET->FLAG_frog,DET->FLAG_trigger,DET->FLAG_lhco,LogName,allEntries);
[474]804
805 cout << left << setw(16) << "** " << ""
806 << left << setw(51) << get_time_date() << "**" << endl;
807
[307]808 cout <<"** **"<< endl;
809 cout <<"** Exiting Delphes ... **"<< endl;
810 cout <<"** **"<< endl;
811 cout <<"*********************************************************************"<< endl;
812 cout <<"*********************************************************************"<< endl;
813
[2]814 delete treeReader;
815 delete DET;
[264]816 delete TRIGT;
[74]817 delete TRACP;
818 delete JETRUN;
819 delete VFD;
[530]820 delete grandom; // TRandom3
[94]821
[2]822}
Note: See TracBrowser for help on using the repository browser.