Fork me on GitHub

source: svn/trunk/Delphes.cpp@ 547

Last change on this file since 547 was 547, checked in by severine ovyn, 15 years ago

bug fix(jet Ntracks), 3-prong taus, vertex coordinates for tracks

File size: 35.9 KB
RevLine 
[260]1/***********************************************************************
2** **
3** /----------------------------------------------\ **
4** | Delphes, a framework for the fast simulation | **
5** | of a generic collider experiment | **
[401]6** \------------- arXiv:0903.2225v1 ------------/ **
[260]7** **
8** **
9** This package uses: **
10** ------------------ **
[429]11** ROOT: Nucl. Inst. & Meth. in Phys. Res. A389 (1997) 81-86 **
[260]12** FastJet algorithm: Phys. Lett. B641 (2006) [hep-ph/0512210] **
[429]13** Hector: JINST 2:P09005 (2007) [physics.acc-ph:0707.1198v2] **
[260]14** FROG: [hep-ex/0901.2718v1] **
[429]15** HepMC: Comput. Phys. Commun.134 (2001) 41 **
[260]16** **
17** ------------------------------------------------------------------ **
18** **
19** Main authors: **
20** ------------- **
21** **
22** Severine Ovyn Xavier Rouby **
23** severine.ovyn@uclouvain.be xavier.rouby@cern **
24** **
25** Center for Particle Physics and Phenomenology (CP3) **
[429]26** Universite catholique de Louvain (UCL) **
27** Louvain-la-Neuve, Belgium **
[260]28** **
29** Copyright (C) 2008-2009, **
[429]30** All rights reserved. **
[260]31** **
32***********************************************************************/
[2]33
34/// \file Delphes.cpp
[264]35/// \brief Executable for Delphes
[2]36
37#include "TChain.h"
38#include "TApplication.h"
[191]39#include "TStopwatch.h"
[228]40#include "TFile.h"
[2]41
[228]42#include "ExRootTreeReader.h"
43#include "ExRootTreeWriter.h"
44#include "ExRootTreeBranch.h"
[264]45#include "ExRootProgressBar.h"
[2]46
[228]47#include "DataConverter.h"
48#include "LHEFConverter.h"
[350]49#include "HepMCConverter.h"
[353]50#include "HEPEVTConverter.h"
[228]51#include "STDHEPConverter.h"
[307]52#include "LHCOConverter.h"
[457]53#include "DelphesRootConverter.h"
[2]54
[228]55#include "SmearUtil.h"
[264]56#include "CaloUtil.h"
[228]57#include "BFieldProp.h"
58#include "TriggerUtil.h"
59#include "VeryForward.h"
60#include "JetsUtil.h"
61#include "FrogUtil.h"
[2]62
[55]63#include <vector>
64#include <iostream>
[547]65#include <cstdlib> // abs(int)
[11]66
[2]67using namespace std;
68
69//------------------------------------------------------------------------------
70
71int main(int argc, char *argv[])
72{
[463]73
[2]74 int appargc = 2;
[228]75 char *appName= new char[20];
76 char *appOpt= new char[20];
77 sprintf(appName,"Delphes");
78 sprintf(appOpt,"-b");
79 char *appargv[] = {appName,appOpt};
[2]80 TApplication app(appName, &appargc, appargv);
[228]81 delete [] appName;
82 delete [] appOpt;
[307]83
[249]84 if(argc != 3 && argc != 4 && argc != 5) {
[94]85 cout << " Usage: " << argv[0] << " input_file output_file [detector_card] [trigger_card] " << endl;
[429]86 cout << " input_list - list of files in Ntpl, StdHep, HepMC or LHEF format," << endl;
[94]87 cout << " output_file - output file." << endl;
88 cout << " detector_card - Datacard containing resolution variables for the detector simulation (optional) "<<endl;
89 cout << " trigger_card - Datacard containing the trigger algorithms (optional) "<<endl;
90 exit(1);
[2]91 }
[401]92
93 print_header();
[228]94
[307]95 // 1. ********** initialisation ***********
96
[2]97 srand (time (NULL)); /* Initialisation du générateur */
[530]98 TRandom3 * grandom = new TRandom3();
[313]99 TStopwatch globalwatch, loopwatch, triggerwatch, frogwatch, lhcowatch;
[191]100 globalwatch.Start();
[2]101
[307]102
[249]103 //read the output TROOT file
[2]104 string inputFileList(argv[1]), outputfilename(argv[2]);
[249]105 if(outputfilename.find(".root") > outputfilename.length()) {
106 cout <<"** ERROR: 'output_file' should be a .root file. Exiting... **"<< endl;
[94]107 exit(1);
[2]108 }
[44]109 //create output log-file name
[45]110 string forLog = outputfilename;
111 string LogName = forLog.erase(forLog.find(".root"));
[44]112 LogName = LogName+"_run.log";
[94]113
[2]114 TFile *outputFile = TFile::Open(outputfilename.c_str(), "RECREATE"); // Creates the file, but should be closed just after
115 outputFile->Close();
[94]116
[2]117 string line;
118 ifstream infile(inputFileList.c_str());
[384]119 if(!infile.good()) {
120 cout << "** ERROR: Input list (" << left << setw(13) << inputFileList << ") not found. Exiting... **"<< endl;
121 cout <<"*********************************************************************"<< endl;
122 exit(1);
123 }
[2]124 infile >> line; // the first line determines the type of input files
[94]125
[44]126 //read the datacard input file
[304]127 string DetDatacard("data/DetectorCard.dat"); //for detector smearing parameters
128 string TrigDatacard("data/TriggerCard.dat"); //for trigger selection
[307]129
[249]130 string lineCard1,lineCard2;
131 bool detecCard=false,trigCard=false;
132 if(argv[3])
133 {
134 ifstream infile1(argv[3]);
135 infile1 >> lineCard1; // the first line determines the type of input files
136 if(strstr(lineCard1.c_str(),"DETECTOR") && detecCard==true)
[307]137 cerr <<"** ERROR: A DETECTOR card has already been loaded **"<< endl;
[249]138 else if(strstr(lineCard1.c_str(),"DETECTOR") && detecCard==false){DetDatacard =argv[3]; detecCard=true;}
139 else if(strstr(lineCard1.c_str(),"TRIGGER") && trigCard==true)
[307]140 cerr <<"** ERROR: A TRIGGER card has already been loaded **"<< endl;
[249]141 else if(strstr(lineCard1.c_str(),"TRIGGER") && trigCard==false){TrigDatacard =argv[3]; trigCard=true;}
142 }
143 if(argv[4])
144 {
145 ifstream infile2(argv[4]);
146 infile2 >> lineCard2; // the first line determines the type of input files
147 if(strstr(lineCard2.c_str(),"DETECTOR") && detecCard==true)
[307]148 cerr <<"** ERROR: A DETECTOR card has already been loaded **"<< endl;
[249]149 else if(strstr(lineCard2.c_str(),"DETECTOR") && detecCard==false){DetDatacard =argv[4]; detecCard=true;}
150 else if(strstr(lineCard2.c_str(),"TRIGGER") && trigCard==true)
[307]151 cerr <<"** ERROR: A TRIGGER card has already been loaded **"<< endl;
[249]152 else if(strstr(lineCard2.c_str(),"TRIGGER") && trigCard==false){TrigDatacard =argv[4]; trigCard=true;}
153 }
[94]154
[55]155 //Smearing information
[44]156 RESOLution *DET = new RESOLution();
[380]157
[212]158 cout <<"** **"<< endl;
159 cout <<"** ####### Start reading DETECTOR parameters ####### **"<< endl;
160 cout << left << setw(40) <<"** Opening configuration card: "<<""
[258]161 << left << setw(27) << DetDatacard <<""
162 << right << setw(2) <<"**"<<""<<endl;
[44]163 DET->ReadDataCard(DetDatacard);
[304]164 cout << left << setw(40) <<"** Parameters summarised in: "<<""
[258]165 << left << setw(27) << LogName <<""
166 << right << setw(2) <<"**"<<""<<endl;
[212]167 cout <<"** **"<< endl;
[380]168 DET->ReadParticleDataGroupTable();
[474]169 //DET->PDGtable.print();
[494]170
[55]171 //Trigger information
[249]172 cout <<"** ########### Start reading TRIGGER card ########## **"<< endl;
173 if(trigCard==false)
[307]174 {
175 cout <<"** WARNING: Datacard not found, use default card **" << endl;
176 TrigDatacard="data/TriggerCard.dat";
177 }
[72]178 TriggerTable *TRIGT = new TriggerTable();
[80]179 TRIGT->TriggerCardReader(TrigDatacard.c_str());
[72]180 TRIGT->PrintTriggerTable(LogName);
[212]181 if(DET->FLAG_trigger == 1)
182 {
183 cout << left << setw(40) <<"** Opening configuration card: "<<""
[258]184 << left << setw(27) << TrigDatacard <<""
185 << right << setw(2) <<"**"<<""<<endl;
[212]186 cout <<"** **"<< endl;
187 }
[453]188
189 // Logfile
190 DET->setNames(inputFileList,DetDatacard,TrigDatacard);
191 DET->Logfile(LogName);
192
[55]193 //Propagation of tracks in the B field
[228]194 TrackPropagation *TRACP = new TrackPropagation(DET);
[94]195
[55]196 //Jet information
[228]197 JetsUtil *JETRUN = new JetsUtil(DET);
[94]198
[55]199 //VFD information
[228]200 VeryForward * VFD = new VeryForward(DET);
[307]201
[178]202 // data converters
[212]203 cout <<"** **"<<endl;
[415]204 cout <<"** ####### Start conversion to TRoot format ######## **"<< endl;
[418]205
206 if(line.rfind(".hepmc") < line.length())
207 {
208 cout <<"** HepMC ASCII file format detected **"<<endl;
209 cout <<"** This can take several minutes **"<< endl;
210 HepMCConverter converter(inputFileList,outputfilename,DET->PDGtable,DET->NEvents);
211 }
212 else if(line.rfind(".hep") < line.length())
[2]213 {
[212]214 cout <<"** StdHEP file format detected **"<<endl;
215 cout <<"** This can take several minutes **"<< endl;
[418]216 STDHEPConverter converter(inputFileList,outputfilename,DET->PDGtable,DET->NEvents);
[2]217 }
[418]218 else if(line.rfind(".lhe") < line.length())
[2]219 {
[212]220 cout <<"** LHEF file format detected **"<<endl;
221 cout <<"** This can take several minutes **"<< endl;
[418]222 LHEFConverter converter(inputFileList,outputfilename,DET->PDGtable,DET->NEvents);
[2]223 }
[418]224 else if(line.rfind(".root") < line.length())
[457]225 // can be either a root file from h2root (i.e. with "h101" tree)
226 // or a root file from Delphes (i.e. with "GEN" tree)
[2]227 {
[457]228 TFile f(line.c_str());
229 if (f.FindKey("GEN")) {
230 cout <<"** Delphes ROOT file format detected **"<<endl;
231 cout <<"** This can take several minutes **"<< endl;
232 DelphesRootConverter converter(inputFileList,outputfilename,DET->NEvents);
233 }
234 else
235 if (f.FindKey("h101")) {
236 cout <<"** h2root file format detected **"<<endl;
237 cout <<"** This can take several minutes **"<< endl;
238 HEPEVTConverter converter(inputFileList,outputfilename,DET->PDGtable,DET->NEvents);
239 }
240 else {
241 cerr << left << setw(4) <<"** "<<""
242 << left << setw(63) << line.c_str() <<""
243 << right << setw(2) <<"**"<<endl;
244 cerr <<"** ERROR: File format not identified -- Exiting... **"<< endl;
245 cout <<"** **"<< endl;
246 cout <<"*********************************************************************"<< endl;
247 return -1;
248 } // not found any interesting input tree
249 f.Close();
250 } // .root file
[212]251 else {
[307]252 cerr << left << setw(4) <<"** "<<""
253 << left << setw(63) << line.c_str() <<""
254 << right << setw(2) <<"**"<<endl;
255 cerr <<"** ERROR: File format not identified -- Exiting... **"<< endl;
256 cout <<"** **"<< endl;
257 cout <<"*********************************************************************"<< endl;
258 return -1;};
[212]259 cout <<"** Exiting conversion... **"<< endl;
[307]260
[2]261 TChain chain("GEN");
262 chain.Add(outputfilename.c_str());
263 ExRootTreeReader *treeReader = new ExRootTreeReader(&chain);
264 const TClonesArray *branchGen = treeReader->UseBranch("Particle");
[307]265
[2]266 TIter itGen((TCollection*)branchGen);
267
[178]268 //Output file : contents of the analysis object data
[2]269 ExRootTreeWriter *treeWriter = new ExRootTreeWriter(outputfilename, "Analysis");
[267]270 ExRootTreeBranch *branchTauJet = treeWriter->NewBranch("TauJet", TRootTauJet::Class());
[2]271 ExRootTreeBranch *branchJet = treeWriter->NewBranch("Jet", TRootJet::Class());
272 ExRootTreeBranch *branchElectron = treeWriter->NewBranch("Electron", TRootElectron::Class());
273 ExRootTreeBranch *branchMuon = treeWriter->NewBranch("Muon", TRootMuon::Class());
274 ExRootTreeBranch *branchPhoton = treeWriter->NewBranch("Photon", TRootPhoton::Class());
[268]275 ExRootTreeBranch *branchTrack = treeWriter->NewBranch("Tracks", TRootTracks::Class());
[2]276 ExRootTreeBranch *branchETmis = treeWriter->NewBranch("ETmis", TRootETmis::Class());
277 ExRootTreeBranch *branchCalo = treeWriter->NewBranch("CaloTower", TRootCalo::Class());
278 ExRootTreeBranch *branchZDC = treeWriter->NewBranch("ZDChits", TRootZdcHits::Class());
279 ExRootTreeBranch *branchRP220 = treeWriter->NewBranch("RP220hits", TRootRomanPotHits::Class());
[380]280 //ExRootTreeBranch *branchFP420 = treeWriter->NewBranch("FP420hits", TRootForwardTaggerHits::Class());
281 ExRootTreeBranch *branchFP420 = treeWriter->NewBranch("FP420hits", TRootRomanPotHits::Class());
[30]282
[2]283 TRootETmis *elementEtmis;
284 TRootElectron *elementElec;
285 TRootMuon *elementMu;
286 TRootPhoton *elementPhoton;
[268]287 TRootTracks * elementTrack;
[2]288 TRootCalo *elementCalo;
289
[184]290 TLorentzVector genMomentum(0,0,0,0); // four-momentum at the vertex
291 TLorentzVector genMomentumBfield(0,0,0,0); // four-momentum at the exit of the tracks
292 TLorentzVector momentumCaloSegmentation(0,0,0,0); // four-momentum in the calo, after applying the calo segmentation
[2]293 LorentzVector jetMomentum;
[94]294
[55]295 vector<fastjet::PseudoJet> input_particles;//for FastJet algorithm
296 vector<fastjet::PseudoJet> sorted_jets;
[290]297 vector<TRootTracks> TrackCentral;
[2]298 vector<PhysicsTower> towers;
[264]299 vector<D_Particle> electron;
300 vector<D_Particle> muon;
301 vector<D_Particle> gamma;
[307]302
303 vector<int> NTrackJet;
[98]304
[350]305 TSimpleArray<TRootC::GenParticle> NFCentralQ;
[307]306
307 D_CaloList list_of_calorimeters;
308 D_CaloElement CentralCalo("centralcalo",
309 -DET->CEN_max_calo_cen, DET->CEN_max_calo_cen,
310 DET->ELG_Ccen, DET->ELG_Ncen, DET->ELG_Scen,
[494]311 DET->HAD_Ccen, DET->HAD_Ncen, DET->HAD_Scen);
312 D_CaloElement ForwardECCalo("forwardendcapcalo",
313 DET->CEN_max_calo_cen, DET->CEN_max_calo_ec,
314 DET->ELG_Cec, DET->ELG_Nec, DET->ELG_Sec,
315 DET->HAD_Cec, DET->HAD_Nec, DET->HAD_Sec );
316 D_CaloElement BackwardECCalo("backwardendcapcalo",
317 -DET->CEN_max_calo_ec, -DET->CEN_max_calo_cen,
318 DET->ELG_Cec, DET->ELG_Nec, DET->ELG_Sec,
319 DET->HAD_Cec, DET->HAD_Nec, DET->HAD_Sec );
[307]320 D_CaloElement ForwardCalo("forwardcalo",
[494]321 DET->CEN_max_calo_ec, DET->CEN_max_calo_fwd,
[307]322 DET->ELG_Cfwd, DET->ELG_Nfwd, DET->ELG_Sfwd,
[494]323 DET->HAD_Cfwd, DET->HAD_Nfwd, DET->HAD_Sfwd );
[307]324 D_CaloElement BackwardCalo("backwardcalo",
[494]325 -DET->CEN_max_calo_fwd, -DET->CEN_max_calo_ec,
[307]326 DET->ELG_Cfwd, DET->ELG_Nfwd, DET->ELG_Sfwd,
[494]327 DET->HAD_Cfwd, DET->HAD_Nfwd, DET->HAD_Sfwd );
[307]328 //D_CaloElement CastorCalo("castor",5.5,6.6,1,0,0,1,0,0);
329 list_of_calorimeters.addElement(CentralCalo);
[494]330 list_of_calorimeters.addElement(ForwardECCalo);
[307]331 list_of_calorimeters.addElement(ForwardCalo);
[494]332 list_of_calorimeters.addElement(BackwardECCalo);
[307]333 list_of_calorimeters.addElement(BackwardCalo);
334 //list_of_calorimeters.addElement(CastorCalo);
335 list_of_calorimeters.sortElements();
336
337
338 // 2. ********** Loop over all events ***********
[2]339 Long64_t entry, allEntries = treeReader->GetEntries();
[212]340 cout <<"** **"<<endl;
341 cout <<"** ####### Start fast detector simulation ######## **"<< endl;
342 cout << left << setw(52) <<"** Total number of events to run: "<<""
343 << left << setw(15) << allEntries <<""
344 << right << setw(2) <<"**"<<endl;
[307]345
[251]346 ExRootProgressBar *Progress = new ExRootProgressBar(allEntries);
[307]347
[191]348 loopwatch.Start();
[307]349
[178]350 // loop on all events
351 for(entry = 0; entry < allEntries; ++entry)
[2]352 {
[251]353 Progress->Update(entry);
[2]354 TLorentzVector PTmis(0,0,0,0);
355 treeReader->ReadEntry(entry);
356 treeWriter->Clear();
357
[30]358 electron.clear();
359 muon.clear();
[74]360 gamma.clear();
[30]361 NFCentralQ.Clear();
362
[2]363 TrackCentral.clear();
364 towers.clear();
[11]365 input_particles.clear();
[307]366 NTrackJet.clear();
[310]367
[384]368 // 'list_of_active_towers' contains the exact list of calorimetric towers which have some deposits inside (E>0).
369 // The towers of this list will be smeared according to the calo resolution, afterwards
[310]370 D_CaloTowerList list_of_active_towers;
[384]371
372 // 'list_of_towers_with_photon' and 'list_of_centowers_with_neutrals' are list of towers, whose energy is **not** computed.
373 // They are only used to store the eta/phi of some towers, in order to search later inside 'list_of_active_towers'.
374 // 'list_of_towers_with_photon' contains the towers hit by photons only
375 // 'list_of_centowers_with_neutrals' is used to the jet-E-flow calculation: contains the towers with eta < CEN_max_tracker,
376 // i.e. towers behind the tracker.
[310]377 D_CaloTowerList list_of_towers_with_photon; // to speed up the code: will only look in interesting towers for gamma candidates
[384]378
379 D_CaloTowerList list_of_centowers_with_neutrals; // list of towers with neutral particles : for jet E-flow
380 float etamax_calocoverage_behindtracker = DET->CEN_max_tracker; // finds the extension in eta of the furthest
381 for (unsigned int i=1; i< DET->TOWER_number+1; i++) { // cell (at least) partially behind the tracker
382 if(DET->TOWER_eta_edges[i] > DET->CEN_max_tracker) break;
383 etamax_calocoverage_behindtracker = DET->TOWER_eta_edges[i];
384 }
[310]385 // 2.1a Loop over all particles in event, to fill the towers
386 itGen.Reset();
[350]387 TRootC::GenParticle *particleG;
388 while( (particleG = (TRootC::GenParticle*) itGen.Next()) )
[310]389 {
[307]390 TRootGenParticle *particle = new TRootGenParticle(particleG);
[380]391 PdgParticle pdg_part = DET->PDGtable[particle->PID];
392 particle->Charge = pdg_part.charge();
393 particle->M = pdg_part.mass();
394 //particle->Charge=ChargeVal(particle->PID);
395 particle->setFractions(); // init
[307]396 int pid = abs(particle->PID);
397
[264]398 // 2.1a.1********************* preparation for the b-tagging
399 //// This subarray is needed for the B-jet algorithm
400 // optimization for speed : put first PID condition, then ETA condition, then either pt or status
401 if( (pid <= pB || pid == pGLUON) &&// is it a light quark or a gluon, i.e. is it one of these : u,d,c,s,b,g ?
402 fabs(particle->Eta) < DET->CEN_max_tracker &&
403 particle->Status != 1 &&
[310]404 particle->PT > DET->PT_QUARKS_MIN )
405 {
[319]406 NFCentralQ.Add(particleG);
[310]407 }
[307]408
[264]409 // 2.1a.2********************* visible particles only
[469]410 if( (particle->Status == 1) && (! pdg_part.invisible() ) )
[310]411 {
412 // 2.1a.2.1 Central solenoidal magnetic field
413 TRACP->bfield(particle); // fills in particle->EtaCalo et particle->PhiCalo
414 // 2.1a.2.2 Filling the calorimetric towers -- includes also forward detectors ?
415 // first checks if the charged particles reach the calo!
416 if( DET->FLAG_bfield ||
417 particle->Charge==0 ||
418 (!DET->FLAG_bfield && particle->Charge!=0 && particle->PT > DET->TRACK_ptmin))
419 if(
420 (particle->EtaCalo > list_of_calorimeters.getEtamin() ) &&
421 (particle->EtaCalo < list_of_calorimeters.getEtamax() )
422 )
[307]423 {
[310]424 float iEta=UNDEFINED, iPhi=UNDEFINED;
425 DET->BinEtaPhi(particle->PhiCalo,particle->EtaCalo,iPhi,iEta); // fills in iPhi and iEta
426 if (iEta != UNDEFINED && iPhi != UNDEFINED)
427 {
428 D_CaloTower tower(iEta,iPhi); // new tower
429 tower.Set_Eem_Ehad_E_ET(particle->E*particle->getFem() , particle->E*particle->getFhad() );
430 list_of_active_towers.addTower(tower);
431 // this list may contain several times the same calotower, as several particles
432 // may leave some energy in the same calotower
433 // After the loop on particles, identical cells in the list should be merged
434 } // iEta and iPhi must be defined
435 }
[307]436
[310]437 // 2.1a.2.3 charged particles in tracker: energy flow
438 // if bfield not simulated, pt should be high enough to be taken into account
439 // it is supposed here that DET->MAX_calo > DET->CEN_max_tracker > DET->CEN_max_mu > 0
440 if( particle->Charge !=0 &&
441 fabs(particle->EtaCalo)< DET->CEN_max_tracker && // stays in the tracker -> track available
442 ( DET->FLAG_bfield ||
443 (!DET->FLAG_bfield && particle->PT > DET->TRACK_ptmin)
444 )
445 )
446 {
447 // 2.1a.2.3.1 Filling the particle properties + smearing
448 // Hypothesis: the final eta/phi are the ones from the generator, thanks to the track reconstruction
449 // This is the EnergyFlow hypothesis
450 particle->SetEtaPhi(particle->Eta,particle->Phi);
451 float sET=UNDEFINED; // smeared ET, computed from the smeared E -> needed for the tracks
452
453 // 2.1a.2.3.2 Muons
454 if (pid == pMU && fabs(particle->EtaCalo)< DET->CEN_max_mu)
455 {
456 TLorentzVector p;
457 float sPT = gRandom->Gaus(particle->PT, DET->MU_SmearPt*particle->PT );
458 if (sPT > 0 && sPT > DET->PTCUT_muon)
459 {
460 p.SetPtEtaPhiE(sPT,particle->Eta,particle->Phi,sPT*cosh(particle->Eta));
[390]461 muon.push_back(D_Particle(p,particle->PID,particle->EtaCalo,particle->PhiCalo));
[310]462 }
463 sET = (sPT >0)? sPT : 0;
464 }
465 // 2.1a.2.3.3 Electrons
466 else if (pid == pE)
467 {
468 // Finds in which calorimeter the particle has gone, to know its resolution
469
470 D_CaloElement currentCalo = list_of_calorimeters.getElement(particle->EtaCalo);
471 if(currentCalo.getName() == dummyCalo.getName())
472 {
473 cout << "** Warning: the calo coverage behind the tracker is not complete! **" << endl;
474 }
475
476 // final smeared EM energy // electromagnetic fraction F_em =1 for electrons;
477 float sE = currentCalo.getElectromagneticResolution().Smear(particle->E);
478 if (sE>0)
479 {
480 sET = sE/cosh(particle->Eta);
481 // NB: ET is found via the calorimetry and not via the track curvature
482
483 TLorentzVector p;
484 p.SetPtEtaPhiE(sET,particle->Eta,particle->Phi,sE);
485 if (sET > DET->PTCUT_elec)
486 electron.push_back(D_Particle(p,particle->PID,particle->EtaCalo,particle->PhiCalo));
[384]487 //if(DET->JET_Eflow) input_particles.push_back(fastjet::PseudoJet(p.Px(),p.Py(),p.Pz(),p.E()));
[310]488 }
489 else { sET=0;} // if negative smeared energy -- needed for the tracks
490 }
491 // 2.1a.2.3.4 Other charged particles : smear them for the tracks!
492 else
493 { //other particles
494 D_CaloElement currentCalo = list_of_calorimeters.getElement(particle->EtaCalo);
495 float sEem = currentCalo.getElectromagneticResolution().Smear(particle->E * particle->getFem());
496 float sEhad = currentCalo.getHadronicResolution().Smear(particle->E * particle->getFhad());
497 float sE = ( (sEem>0)? sEem : 0 ) + ( (sEhad>0)? sEhad : 0 );
498 sET = sE/cosh(particle->EtaCalo);
499 }
[307]500
[310]501 // 2.1a.2.3.5 Tracks
[530]502 //if( (rand()%100) < DET->TRACK_eff && sET!=0)
503 if( (grandom->Uniform()*100.) < DET->TRACK_eff && sET!=0)
[310]504 {
505 elementTrack = (TRootTracks*) branchTrack->NewEntry();
506 elementTrack->Set(particle->Eta, particle->Phi, particle->EtaCalo, particle->PhiCalo, sET, particle->Charge);
[547]507 elementTrack->Vx=particle->X;
508 elementTrack->Vy=particle->Y;
509 elementTrack->Vz=particle->Z;
[310]510 TrackCentral.push_back(*elementTrack); // tracks at vertex!
[384]511 if(DET->JET_Eflow)
512 input_particles.push_back(fastjet::PseudoJet(particle->Px,particle->Py,particle->Pz,particle->E));
[310]513 // TODO!!! apply a smearing on the position of the origin of the track
514 // TODO!!! elementTracks->SetPositionOut(Xout,Yout,Zout);
515 }
516 } // 2.1a.2.3 : if tracker/energy-flow
517 // 2.1a.2.4 Photons
518 // stays in the tracker -> track available -> gamma ID
519 else if( (pid == pGAMMA) && fabs(particle->EtaCalo)< DET->CEN_max_tracker )
520 {
521 float iEta=UNDEFINED, iPhi=UNDEFINED;
522 DET->BinEtaPhi(particle->PhiCalo,particle->EtaCalo,iPhi,iEta); // fills in iPhi and iEta
523 D_CaloTower tower(iEta,iPhi);
524 // stores the list of towers where to apply the photon ID algorithm. Just a trick for a faster search
525 list_of_towers_with_photon.addTower(tower);
[307]526 }
[384]527 // 2.1a.2.5 Neutrals within tracker -- for jet energy flow
528 else if( particle->Charge ==0 && fabs(particle->EtaCalo)< etamax_calocoverage_behindtracker)
529 {
530 float iEta=UNDEFINED, iPhi=UNDEFINED;
531 DET->BinEtaPhi(particle->PhiCalo,particle->EtaCalo,iPhi,iEta); // fills in iPhi and iEta
532 D_CaloTower tower(iEta,iPhi);
533 list_of_centowers_with_neutrals.addTower(tower);
534 }
535 // 2.1a.2.6 : very forward detectors
[310]536 else
537 {
538 if (DET->FLAG_RP==1)
539 {
540 // for the moment, only protons are transported
541 // BUT !!! could be a beam of other particles! (heavy ions?)
542 // BUT ALSO !!! if very forward muons, or others!
543 VFD->RomanPots(treeWriter,branchRP220,branchFP420,particle);
544 }
545 // 2.1a.2.6: Zero degree calorimeter
546 if(DET->FLAG_vfd==1)
547 {
548 VFD->ZDC(treeWriter,branchZDC,particle);
549 }
550 }
[307]551
[310]552 } // 2.1a.2 : if visible particle
[307]553 delete particle;
[310]554 }// loop on all particles 2.1a
[384]555
[310]556 // 2.1b loop on all (activated) towers
557 // at this stage, list_of_active_towers may contain several times the same tower
558 // first step is to merge identical towers, by matching their (iEta,iPhi)
559
560 list_of_active_towers.sortElements();
561 list_of_active_towers.mergeDuplicates();
562
563 // Calotower smearing
564 list_of_active_towers.smearTowers(list_of_calorimeters);
565
566 for(unsigned int i=0; i<list_of_active_towers.size(); i++)
567 {
[307]568 float iEta = list_of_active_towers[i].getEta();
569 float iPhi = list_of_active_towers[i].getPhi();
570 float e = list_of_active_towers[i].getE();
[310]571 if(iEta != UNDEFINED && iPhi != UNDEFINED && e!=0)
572 {
573 elementCalo = (TRootCalo*) branchCalo->NewEntry();
574 elementCalo->set(list_of_active_towers[i]);
575 // not beautiful : should be improved!
576 TLorentzVector p;
577 p.SetPtEtaPhiE(list_of_active_towers[i].getET(), iEta, iPhi, e );
578 PhysicsTower Tower(LorentzVector(p.Px(),p.Py(),p.Pz(),p.E()));
579 towers.push_back(Tower);
580 }
[307]581 } // loop on towers
[310]582
[384]583 // 2.1c photon ID
584 // list_of_towers_with_photon is the list of towers with photon candidates
585 // already smeared !
586 // sorts the vector and smears duplicates
[310]587 list_of_towers_with_photon.mergeDuplicates();
[321]588 for(unsigned int i=0; i<list_of_towers_with_photon.size(); i++) {
[264]589 float eta = list_of_towers_with_photon[i].getEta();
590 float phi = list_of_towers_with_photon[i].getPhi();
[384]591 D_CaloTower cal(list_of_active_towers.getElement(eta,phi)); //// <---------- buh???????
[310]592 if(cal.getEta() != UNDEFINED && cal.getPhi() != UNDEFINED && cal.getE() > 0)
593 {
594 TLorentzVector p;
595 p.SetPtEtaPhiE(cal.getET(), eta,phi,cal.getE() );
596 if (cal.getET() > DET->PTCUT_gamma) { gamma.push_back(D_Particle(p,pGAMMA,p.Eta(),p.Phi())); }
597 }
[307]598 } // for -- list of photons
[384]599
600 // 2.1d jet-E-flow -- taking into account the neutrals within tracker
601 if(DET->JET_Eflow) {
602 list_of_centowers_with_neutrals.mergeDuplicates();
603 for(unsigned int i=0; i<list_of_centowers_with_neutrals.size(); i++) {
604 float eta = list_of_centowers_with_neutrals[i].getEta();
605 float phi = list_of_centowers_with_neutrals[i].getPhi();
606 D_CaloTower cal(list_of_active_towers.getElement(eta,phi));
607 if(cal.getEta() != UNDEFINED && cal.getPhi() != UNDEFINED && cal.getE() > 0)
608 {
609 TLorentzVector p;
610 p.SetPtEtaPhiE(cal.getET(), eta,phi,cal.getE() );
611 //cout << "**************list: " << p.Px() << " " << p.Py() << " " << p.Pz() << " " << p.E() << endl;
612 input_particles.push_back(fastjet::PseudoJet(p.Px(),p.Py(),p.Pz(),p.E()));
613 }
614 } // for - list_of_centowers
615 } // JET_Eflow
616
[178]617 // 2.2 ********** Output preparation & complex objects ***********
618 // 2.2.1 ********************* sorting collections by decreasing pt
[74]619 DET->SortedVector(electron);
[321]620 float iPhiEl=0,iEtaEl=0,ptisoEl=0;
[310]621 for(unsigned int i=0; i < electron.size(); i++)
622 {
623 elementElec = (TRootElectron*) branchElectron->NewEntry();
624 elementElec->Set(electron[i].Px(),electron[i].Py(),electron[i].Pz(),electron[i].E());
625 elementElec->EtaCalo = electron[i].EtaCalo();
626 elementElec->PhiCalo = electron[i].PhiCalo();
[536]627 elementElec->Charge = - sign(electron[i].PID());
[321]628 elementElec->IsolFlag = DET->Isolation(electron[i],TrackCentral,DET->ISOL_PT,DET->ISOL_Cone,ptisoEl);
629 elementElec->IsolPt = ptisoEl;
[312]630 DET->BinEtaPhi(elementElec->PhiCalo,elementElec->EtaCalo,iPhiEl,iEtaEl);
631 D_CaloTower calElec(list_of_active_towers.getElement(iEtaEl,iPhiEl));
[310]632 elementElec->EHoverEE = calElec.getEhad()/calElec.getEem();
[312]633 }
[310]634
[74]635 DET->SortedVector(muon);
[321]636 float iPhiMu=0,iEtaMu=0,ptisoMu=0;
[310]637 for(unsigned int i=0; i < muon.size(); i++)
638 {
639 elementMu = (TRootMuon*) branchMuon->NewEntry();
[536]640 elementMu->Charge = - sign(muon[i].PID());
[310]641 elementMu->Set(muon[i].Px(),muon[i].Py(),muon[i].Pz(),muon[i].E());
642 elementMu->EtaCalo = muon[i].EtaCalo();
643 elementMu->PhiCalo = muon[i].PhiCalo();
[321]644 elementMu->IsolFlag = DET->Isolation(muon[i],TrackCentral,DET->ISOL_PT,DET->ISOL_Cone,ptisoMu);
645 elementMu->IsolPt = ptisoMu;
646 DET->BinEtaPhi(elementMu->PhiCalo,elementMu->EtaCalo,iPhiMu,iEtaMu);
[312]647 D_CaloTower calMuon(list_of_active_towers.getElement(iEtaMu,iPhiMu));
[321]648 if( calMuon.getEem() !=0 ) elementMu->EHoverEE = calMuon.getEhad()/calMuon.getEem();
649 else elementMu->EHoverEE = UNDEFINED;
[395]650 elementMu->EtRatio = DET->CaloIsolation(muon[i], list_of_active_towers,iPhiMu,iEtaMu);
[310]651 }
652
[74]653 DET->SortedVector(gamma);
[310]654 for(unsigned int i=0; i < gamma.size(); i++)
655 {
656 elementPhoton = (TRootPhoton*) branchPhoton->NewEntry();
657 elementPhoton->Set(gamma[i].Px(),gamma[i].Py(),gamma[i].Pz(),gamma[i].E());
658 D_CaloTower calGamma(list_of_active_towers.getElement(gamma[i].EtaCalo(),gamma[i].PhiCalo()));
659 elementPhoton->EHoverEE = calGamma.getEhad()/calGamma.getEem();
660 }
[30]661
[178]662 // 2.2.2 ************* computes the Missing Transverse Momentum
[71]663 TLorentzVector Att(0.,0.,0.,0.);
664 for(unsigned int i=0; i < towers.size(); i++)
665 {
[107]666 Att.SetPxPyPzE(towers[i].fourVector.px, towers[i].fourVector.py, towers[i].fourVector.pz, towers[i].fourVector.E);
667 if(fabs(Att.Eta()) < DET->CEN_max_calo_fwd)
[307]668 {
669 PTmis = PTmis + Att;
670 // create a fastjet::PseudoJet with these components and put it onto
671 // back of the input_particles vector
[384]672 if(!DET->JET_Eflow)
673 input_particles.push_back(fastjet::PseudoJet(towers[i].fourVector.px,towers[i].fourVector.py,towers[i].fourVector.pz,towers[i].fourVector.E));
674 else { if(fabs(Att.Eta()) > DET->CEN_max_tracker)
675 input_particles.push_back(fastjet::PseudoJet(towers[i].fourVector.px,towers[i].fourVector.py,towers[i].fourVector.pz,towers[i].fourVector.E));
676 }
[307]677 }
[71]678 }
679 elementEtmis = (TRootETmis*) branchETmis->NewEntry();
680 elementEtmis->ET = (PTmis).Pt();
681 elementEtmis->Phi = (-PTmis).Phi();
682 elementEtmis->Px = (-PTmis).Px();
683 elementEtmis->Py = (-PTmis).Py();
[74]684
[264]685 // 2.2.3 ************* jets, B-tag, tau jets
[310]686 vector<int> NTrackJet; //for number of tracks
687 vector<float> EHADEEM; //for energyHad over energyEm
688 sorted_jets=JETRUN->RunJets(input_particles, TrackCentral,NTrackJet,EHADEEM,list_of_active_towers);
689 JETRUN->RunJetBtagging(treeWriter, branchJet,sorted_jets,NFCentralQ,NTrackJet,EHADEEM);
690 JETRUN->RunTauJets(treeWriter,branchTauJet,sorted_jets,towers, TrackCentral,NTrackJet,EHADEEM);
[74]691
[72]692 treeWriter->Fill();
[178]693 } // 2. Loop over all events ('for' loop)
[307]694
[212]695 cout <<"** Exiting detector simulation... **"<< endl;
[307]696
697
[2]698 treeWriter->Write();
[77]699 delete treeWriter;
[191]700 loopwatch.Stop();
[307]701
702
703
[212]704 // 3. ********** Trigger & Frog ***********
[178]705 // 3.1 ************ running the trigger in case the FLAG trigger is put to 1 in the datacard
[191]706 triggerwatch.Start();
[94]707 if(DET->FLAG_trigger == 1)
[72]708 {
[307]709 cout <<"** **"<<endl;
710 cout <<"** ########### Start Trigger selection ########### **"<< endl;
711
[178]712 // input
[72]713 TChain chainT("Analysis");
714 chainT.Add(outputfilename.c_str());
715 ExRootTreeReader *treeReaderT = new ExRootTreeReader(&chainT);
[74]716
[178]717 // output
[72]718 TClonesArray *branchElecTrig = treeReaderT->UseBranch("Electron");
719 TClonesArray *branchMuonTrig = treeReaderT->UseBranch("Muon");
720 TClonesArray *branchJetTrig = treeReaderT->UseBranch("Jet");
721 TClonesArray *branchTauJetTrig = treeReaderT->UseBranch("TauJet");
722 TClonesArray *branchPhotonTrig = treeReaderT->UseBranch("Photon");
723 TClonesArray *branchETmisTrig = treeReaderT->UseBranch("ETmis");
[74]724
[72]725 ExRootTreeWriter *treeWriterT = new ExRootTreeWriter(outputfilename, "Trigger");
726 ExRootTreeBranch *branchTrigger = treeWriterT->NewBranch("TrigResult", TRootTrigger::Class());
[307]727
728
[72]729 Long64_t entryT, allEntriesT = treeReaderT->GetEntries();
[178]730 // loop on all entries
731 for(entryT = 0; entryT < allEntriesT; ++entryT) {
[307]732 treeWriterT->Clear();
733 treeReaderT->ReadEntry(entryT);
734 TRIGT->GetGlobalResult(branchElecTrig, branchMuonTrig,branchJetTrig, branchTauJetTrig,branchPhotonTrig, branchETmisTrig,branchTrigger);
735 treeWriterT->Fill();
[178]736 } // loop on all entries
[212]737 cout <<"** Exiting trigger simulation... **"<< endl;
[94]738
[72]739 treeWriterT->Write();
740 delete treeWriterT;
[228]741 delete treeReaderT;
[178]742 } // trigger
[307]743 triggerwatch.Stop();
744
745
[178]746 // 3.2 ************** FROG display
[191]747 frogwatch.Start();
[228]748 if(DET->FLAG_frog == 1) {
[307]749 cout <<"** **"<<endl;
750 cout <<"** ################## Start FROG ################# **"<< endl;
751
752 FrogDisplay *FROG = new FrogDisplay(DET);
753 FROG->BuildEvents(outputfilename);
754 FROG->BuildGeom();
755 delete FROG;
[313]756 cout <<"** Exiting FROG preparation... **"<< endl;
[228]757 }
758 frogwatch.Stop();
[94]759
[307]760 // 3.3 *************** LHCO output
[313]761 lhcowatch.Start();
[307]762 if(DET->FLAG_lhco == 1){
763 cout <<"** **"<<endl;
[415]764 cout <<"** ############ Start LHCO conversion ############ **"<< endl;
[307]765
766 //LHCOConverter *LHCO = new LHCOConverter(outputfilename,LogNameLHCO);
767 LHCOConverter *LHCO = new LHCOConverter(outputfilename,"");
768 LHCO->CopyRunLogFile();
769 LHCO->ConvertExRootAnalysisToLHCO();
770 delete LHCO;
[416]771 cout <<"** Exiting LHCO conversion... **"<< endl;
[307]772 }
[313]773 lhcowatch.Stop();
[307]774
775
776
777 // 4. ********** End & Exit ***********
778
[191]779 globalwatch.Stop();
[397]780 time_report(globalwatch,loopwatch,triggerwatch,frogwatch,lhcowatch,DET->FLAG_frog,DET->FLAG_trigger,DET->FLAG_lhco,LogName,allEntries);
[474]781
782 cout << left << setw(16) << "** " << ""
783 << left << setw(51) << get_time_date() << "**" << endl;
784
[307]785 cout <<"** **"<< endl;
786 cout <<"** Exiting Delphes ... **"<< endl;
787 cout <<"** **"<< endl;
788 cout <<"*********************************************************************"<< endl;
789 cout <<"*********************************************************************"<< endl;
790
[2]791 delete treeReader;
792 delete DET;
[264]793 delete TRIGT;
[74]794 delete TRACP;
795 delete JETRUN;
796 delete VFD;
[530]797 delete grandom; // TRandom3
[94]798
[2]799}
Note: See TracBrowser for help on using the repository browser.