Fork me on GitHub

source: svn/trunk/Delphes.cpp@ 529

Last change on this file since 529 was 494, checked in by Xavier Rouby, 15 years ago

new: calorimeter endcaps

File size: 35.6 KB
RevLine 
[260]1/***********************************************************************
2** **
3** /----------------------------------------------\ **
4** | Delphes, a framework for the fast simulation | **
5** | of a generic collider experiment | **
[401]6** \------------- arXiv:0903.2225v1 ------------/ **
[260]7** **
8** **
9** This package uses: **
10** ------------------ **
[429]11** ROOT: Nucl. Inst. & Meth. in Phys. Res. A389 (1997) 81-86 **
[260]12** FastJet algorithm: Phys. Lett. B641 (2006) [hep-ph/0512210] **
[429]13** Hector: JINST 2:P09005 (2007) [physics.acc-ph:0707.1198v2] **
[260]14** FROG: [hep-ex/0901.2718v1] **
[429]15** HepMC: Comput. Phys. Commun.134 (2001) 41 **
[260]16** **
17** ------------------------------------------------------------------ **
18** **
19** Main authors: **
20** ------------- **
21** **
22** Severine Ovyn Xavier Rouby **
23** severine.ovyn@uclouvain.be xavier.rouby@cern **
24** **
25** Center for Particle Physics and Phenomenology (CP3) **
[429]26** Universite catholique de Louvain (UCL) **
27** Louvain-la-Neuve, Belgium **
[260]28** **
29** Copyright (C) 2008-2009, **
[429]30** All rights reserved. **
[260]31** **
32***********************************************************************/
[2]33
34/// \file Delphes.cpp
[264]35/// \brief Executable for Delphes
[2]36
37#include "TChain.h"
38#include "TApplication.h"
[191]39#include "TStopwatch.h"
[228]40#include "TFile.h"
[2]41
[228]42#include "ExRootTreeReader.h"
43#include "ExRootTreeWriter.h"
44#include "ExRootTreeBranch.h"
[264]45#include "ExRootProgressBar.h"
[2]46
[228]47#include "DataConverter.h"
48#include "LHEFConverter.h"
[350]49#include "HepMCConverter.h"
[353]50#include "HEPEVTConverter.h"
[228]51#include "STDHEPConverter.h"
[307]52#include "LHCOConverter.h"
[457]53#include "DelphesRootConverter.h"
[2]54
[228]55#include "SmearUtil.h"
[264]56#include "CaloUtil.h"
[228]57#include "BFieldProp.h"
58#include "TriggerUtil.h"
59#include "VeryForward.h"
60#include "JetsUtil.h"
61#include "FrogUtil.h"
[2]62
[55]63#include <vector>
64#include <iostream>
[11]65
[2]66using namespace std;
67
68//------------------------------------------------------------------------------
69
70int main(int argc, char *argv[])
71{
[463]72
[2]73 int appargc = 2;
[228]74 char *appName= new char[20];
75 char *appOpt= new char[20];
76 sprintf(appName,"Delphes");
77 sprintf(appOpt,"-b");
78 char *appargv[] = {appName,appOpt};
[2]79 TApplication app(appName, &appargc, appargv);
[228]80 delete [] appName;
81 delete [] appOpt;
[307]82
[249]83 if(argc != 3 && argc != 4 && argc != 5) {
[94]84 cout << " Usage: " << argv[0] << " input_file output_file [detector_card] [trigger_card] " << endl;
[429]85 cout << " input_list - list of files in Ntpl, StdHep, HepMC or LHEF format," << endl;
[94]86 cout << " output_file - output file." << endl;
87 cout << " detector_card - Datacard containing resolution variables for the detector simulation (optional) "<<endl;
88 cout << " trigger_card - Datacard containing the trigger algorithms (optional) "<<endl;
89 exit(1);
[2]90 }
[401]91
92 print_header();
[228]93
[307]94 // 1. ********** initialisation ***********
95
[2]96 srand (time (NULL)); /* Initialisation du générateur */
[313]97 TStopwatch globalwatch, loopwatch, triggerwatch, frogwatch, lhcowatch;
[191]98 globalwatch.Start();
[2]99
[307]100
[249]101 //read the output TROOT file
[2]102 string inputFileList(argv[1]), outputfilename(argv[2]);
[249]103 if(outputfilename.find(".root") > outputfilename.length()) {
104 cout <<"** ERROR: 'output_file' should be a .root file. Exiting... **"<< endl;
[94]105 exit(1);
[2]106 }
[44]107 //create output log-file name
[45]108 string forLog = outputfilename;
109 string LogName = forLog.erase(forLog.find(".root"));
[44]110 LogName = LogName+"_run.log";
[94]111
[2]112 TFile *outputFile = TFile::Open(outputfilename.c_str(), "RECREATE"); // Creates the file, but should be closed just after
113 outputFile->Close();
[94]114
[2]115 string line;
116 ifstream infile(inputFileList.c_str());
[384]117 if(!infile.good()) {
118 cout << "** ERROR: Input list (" << left << setw(13) << inputFileList << ") not found. Exiting... **"<< endl;
119 cout <<"*********************************************************************"<< endl;
120 exit(1);
121 }
[2]122 infile >> line; // the first line determines the type of input files
[94]123
[44]124 //read the datacard input file
[304]125 string DetDatacard("data/DetectorCard.dat"); //for detector smearing parameters
126 string TrigDatacard("data/TriggerCard.dat"); //for trigger selection
[307]127
[249]128 string lineCard1,lineCard2;
129 bool detecCard=false,trigCard=false;
130 if(argv[3])
131 {
132 ifstream infile1(argv[3]);
133 infile1 >> lineCard1; // the first line determines the type of input files
134 if(strstr(lineCard1.c_str(),"DETECTOR") && detecCard==true)
[307]135 cerr <<"** ERROR: A DETECTOR card has already been loaded **"<< endl;
[249]136 else if(strstr(lineCard1.c_str(),"DETECTOR") && detecCard==false){DetDatacard =argv[3]; detecCard=true;}
137 else if(strstr(lineCard1.c_str(),"TRIGGER") && trigCard==true)
[307]138 cerr <<"** ERROR: A TRIGGER card has already been loaded **"<< endl;
[249]139 else if(strstr(lineCard1.c_str(),"TRIGGER") && trigCard==false){TrigDatacard =argv[3]; trigCard=true;}
140 }
141 if(argv[4])
142 {
143 ifstream infile2(argv[4]);
144 infile2 >> lineCard2; // the first line determines the type of input files
145 if(strstr(lineCard2.c_str(),"DETECTOR") && detecCard==true)
[307]146 cerr <<"** ERROR: A DETECTOR card has already been loaded **"<< endl;
[249]147 else if(strstr(lineCard2.c_str(),"DETECTOR") && detecCard==false){DetDatacard =argv[4]; detecCard=true;}
148 else if(strstr(lineCard2.c_str(),"TRIGGER") && trigCard==true)
[307]149 cerr <<"** ERROR: A TRIGGER card has already been loaded **"<< endl;
[249]150 else if(strstr(lineCard2.c_str(),"TRIGGER") && trigCard==false){TrigDatacard =argv[4]; trigCard=true;}
151 }
[94]152
[55]153 //Smearing information
[44]154 RESOLution *DET = new RESOLution();
[380]155
[212]156 cout <<"** **"<< endl;
157 cout <<"** ####### Start reading DETECTOR parameters ####### **"<< endl;
158 cout << left << setw(40) <<"** Opening configuration card: "<<""
[258]159 << left << setw(27) << DetDatacard <<""
160 << right << setw(2) <<"**"<<""<<endl;
[44]161 DET->ReadDataCard(DetDatacard);
[304]162 cout << left << setw(40) <<"** Parameters summarised in: "<<""
[258]163 << left << setw(27) << LogName <<""
164 << right << setw(2) <<"**"<<""<<endl;
[212]165 cout <<"** **"<< endl;
[380]166 DET->ReadParticleDataGroupTable();
[474]167 //DET->PDGtable.print();
[494]168
[55]169 //Trigger information
[249]170 cout <<"** ########### Start reading TRIGGER card ########## **"<< endl;
171 if(trigCard==false)
[307]172 {
173 cout <<"** WARNING: Datacard not found, use default card **" << endl;
174 TrigDatacard="data/TriggerCard.dat";
175 }
[72]176 TriggerTable *TRIGT = new TriggerTable();
[80]177 TRIGT->TriggerCardReader(TrigDatacard.c_str());
[72]178 TRIGT->PrintTriggerTable(LogName);
[212]179 if(DET->FLAG_trigger == 1)
180 {
181 cout << left << setw(40) <<"** Opening configuration card: "<<""
[258]182 << left << setw(27) << TrigDatacard <<""
183 << right << setw(2) <<"**"<<""<<endl;
[212]184 cout <<"** **"<< endl;
185 }
[453]186
187 // Logfile
188 DET->setNames(inputFileList,DetDatacard,TrigDatacard);
189 DET->Logfile(LogName);
190
[55]191 //Propagation of tracks in the B field
[228]192 TrackPropagation *TRACP = new TrackPropagation(DET);
[94]193
[55]194 //Jet information
[228]195 JetsUtil *JETRUN = new JetsUtil(DET);
[94]196
[55]197 //VFD information
[228]198 VeryForward * VFD = new VeryForward(DET);
[307]199
[178]200 // data converters
[212]201 cout <<"** **"<<endl;
[415]202 cout <<"** ####### Start conversion to TRoot format ######## **"<< endl;
[418]203
204 if(line.rfind(".hepmc") < line.length())
205 {
206 cout <<"** HepMC ASCII file format detected **"<<endl;
207 cout <<"** This can take several minutes **"<< endl;
208 HepMCConverter converter(inputFileList,outputfilename,DET->PDGtable,DET->NEvents);
209 }
210 else if(line.rfind(".hep") < line.length())
[2]211 {
[212]212 cout <<"** StdHEP file format detected **"<<endl;
213 cout <<"** This can take several minutes **"<< endl;
[418]214 STDHEPConverter converter(inputFileList,outputfilename,DET->PDGtable,DET->NEvents);
[2]215 }
[418]216 else if(line.rfind(".lhe") < line.length())
[2]217 {
[212]218 cout <<"** LHEF file format detected **"<<endl;
219 cout <<"** This can take several minutes **"<< endl;
[418]220 LHEFConverter converter(inputFileList,outputfilename,DET->PDGtable,DET->NEvents);
[2]221 }
[418]222 else if(line.rfind(".root") < line.length())
[457]223 // can be either a root file from h2root (i.e. with "h101" tree)
224 // or a root file from Delphes (i.e. with "GEN" tree)
[2]225 {
[457]226 TFile f(line.c_str());
227 if (f.FindKey("GEN")) {
228 cout <<"** Delphes ROOT file format detected **"<<endl;
229 cout <<"** This can take several minutes **"<< endl;
230 DelphesRootConverter converter(inputFileList,outputfilename,DET->NEvents);
231 }
232 else
233 if (f.FindKey("h101")) {
234 cout <<"** h2root file format detected **"<<endl;
235 cout <<"** This can take several minutes **"<< endl;
236 HEPEVTConverter converter(inputFileList,outputfilename,DET->PDGtable,DET->NEvents);
237 }
238 else {
239 cerr << left << setw(4) <<"** "<<""
240 << left << setw(63) << line.c_str() <<""
241 << right << setw(2) <<"**"<<endl;
242 cerr <<"** ERROR: File format not identified -- Exiting... **"<< endl;
243 cout <<"** **"<< endl;
244 cout <<"*********************************************************************"<< endl;
245 return -1;
246 } // not found any interesting input tree
247 f.Close();
248 } // .root file
[212]249 else {
[307]250 cerr << left << setw(4) <<"** "<<""
251 << left << setw(63) << line.c_str() <<""
252 << right << setw(2) <<"**"<<endl;
253 cerr <<"** ERROR: File format not identified -- Exiting... **"<< endl;
254 cout <<"** **"<< endl;
255 cout <<"*********************************************************************"<< endl;
256 return -1;};
[212]257 cout <<"** Exiting conversion... **"<< endl;
[307]258
[2]259 TChain chain("GEN");
260 chain.Add(outputfilename.c_str());
261 ExRootTreeReader *treeReader = new ExRootTreeReader(&chain);
262 const TClonesArray *branchGen = treeReader->UseBranch("Particle");
[307]263
[2]264 TIter itGen((TCollection*)branchGen);
265
[178]266 //Output file : contents of the analysis object data
[2]267 ExRootTreeWriter *treeWriter = new ExRootTreeWriter(outputfilename, "Analysis");
[267]268 ExRootTreeBranch *branchTauJet = treeWriter->NewBranch("TauJet", TRootTauJet::Class());
[2]269 ExRootTreeBranch *branchJet = treeWriter->NewBranch("Jet", TRootJet::Class());
270 ExRootTreeBranch *branchElectron = treeWriter->NewBranch("Electron", TRootElectron::Class());
271 ExRootTreeBranch *branchMuon = treeWriter->NewBranch("Muon", TRootMuon::Class());
272 ExRootTreeBranch *branchPhoton = treeWriter->NewBranch("Photon", TRootPhoton::Class());
[268]273 ExRootTreeBranch *branchTrack = treeWriter->NewBranch("Tracks", TRootTracks::Class());
[2]274 ExRootTreeBranch *branchETmis = treeWriter->NewBranch("ETmis", TRootETmis::Class());
275 ExRootTreeBranch *branchCalo = treeWriter->NewBranch("CaloTower", TRootCalo::Class());
276 ExRootTreeBranch *branchZDC = treeWriter->NewBranch("ZDChits", TRootZdcHits::Class());
277 ExRootTreeBranch *branchRP220 = treeWriter->NewBranch("RP220hits", TRootRomanPotHits::Class());
[380]278 //ExRootTreeBranch *branchFP420 = treeWriter->NewBranch("FP420hits", TRootForwardTaggerHits::Class());
279 ExRootTreeBranch *branchFP420 = treeWriter->NewBranch("FP420hits", TRootRomanPotHits::Class());
[30]280
[2]281 TRootETmis *elementEtmis;
282 TRootElectron *elementElec;
283 TRootMuon *elementMu;
284 TRootPhoton *elementPhoton;
[268]285 TRootTracks * elementTrack;
[2]286 TRootCalo *elementCalo;
287
[184]288 TLorentzVector genMomentum(0,0,0,0); // four-momentum at the vertex
289 TLorentzVector genMomentumBfield(0,0,0,0); // four-momentum at the exit of the tracks
290 TLorentzVector momentumCaloSegmentation(0,0,0,0); // four-momentum in the calo, after applying the calo segmentation
[2]291 LorentzVector jetMomentum;
[94]292
[55]293 vector<fastjet::PseudoJet> input_particles;//for FastJet algorithm
294 vector<fastjet::PseudoJet> sorted_jets;
[290]295 vector<TRootTracks> TrackCentral;
[2]296 vector<PhysicsTower> towers;
[264]297 vector<D_Particle> electron;
298 vector<D_Particle> muon;
299 vector<D_Particle> gamma;
[307]300
301 vector<int> NTrackJet;
[98]302
[350]303 TSimpleArray<TRootC::GenParticle> NFCentralQ;
[307]304
305 D_CaloList list_of_calorimeters;
306 D_CaloElement CentralCalo("centralcalo",
307 -DET->CEN_max_calo_cen, DET->CEN_max_calo_cen,
308 DET->ELG_Ccen, DET->ELG_Ncen, DET->ELG_Scen,
[494]309 DET->HAD_Ccen, DET->HAD_Ncen, DET->HAD_Scen);
310 D_CaloElement ForwardECCalo("forwardendcapcalo",
311 DET->CEN_max_calo_cen, DET->CEN_max_calo_ec,
312 DET->ELG_Cec, DET->ELG_Nec, DET->ELG_Sec,
313 DET->HAD_Cec, DET->HAD_Nec, DET->HAD_Sec );
314 D_CaloElement BackwardECCalo("backwardendcapcalo",
315 -DET->CEN_max_calo_ec, -DET->CEN_max_calo_cen,
316 DET->ELG_Cec, DET->ELG_Nec, DET->ELG_Sec,
317 DET->HAD_Cec, DET->HAD_Nec, DET->HAD_Sec );
[307]318 D_CaloElement ForwardCalo("forwardcalo",
[494]319 DET->CEN_max_calo_ec, DET->CEN_max_calo_fwd,
[307]320 DET->ELG_Cfwd, DET->ELG_Nfwd, DET->ELG_Sfwd,
[494]321 DET->HAD_Cfwd, DET->HAD_Nfwd, DET->HAD_Sfwd );
[307]322 D_CaloElement BackwardCalo("backwardcalo",
[494]323 -DET->CEN_max_calo_fwd, -DET->CEN_max_calo_ec,
[307]324 DET->ELG_Cfwd, DET->ELG_Nfwd, DET->ELG_Sfwd,
[494]325 DET->HAD_Cfwd, DET->HAD_Nfwd, DET->HAD_Sfwd );
[307]326 //D_CaloElement CastorCalo("castor",5.5,6.6,1,0,0,1,0,0);
327 list_of_calorimeters.addElement(CentralCalo);
[494]328 list_of_calorimeters.addElement(ForwardECCalo);
[307]329 list_of_calorimeters.addElement(ForwardCalo);
[494]330 list_of_calorimeters.addElement(BackwardECCalo);
[307]331 list_of_calorimeters.addElement(BackwardCalo);
332 //list_of_calorimeters.addElement(CastorCalo);
333 list_of_calorimeters.sortElements();
334
335
336 // 2. ********** Loop over all events ***********
[2]337 Long64_t entry, allEntries = treeReader->GetEntries();
[212]338 cout <<"** **"<<endl;
339 cout <<"** ####### Start fast detector simulation ######## **"<< endl;
340 cout << left << setw(52) <<"** Total number of events to run: "<<""
341 << left << setw(15) << allEntries <<""
342 << right << setw(2) <<"**"<<endl;
[307]343
[251]344 ExRootProgressBar *Progress = new ExRootProgressBar(allEntries);
[307]345
[191]346 loopwatch.Start();
[307]347
[178]348 // loop on all events
349 for(entry = 0; entry < allEntries; ++entry)
[2]350 {
[251]351 Progress->Update(entry);
[2]352 TLorentzVector PTmis(0,0,0,0);
353 treeReader->ReadEntry(entry);
354 treeWriter->Clear();
355
[30]356 electron.clear();
357 muon.clear();
[74]358 gamma.clear();
[30]359 NFCentralQ.Clear();
360
[2]361 TrackCentral.clear();
362 towers.clear();
[11]363 input_particles.clear();
[307]364 NTrackJet.clear();
[310]365
[384]366 // 'list_of_active_towers' contains the exact list of calorimetric towers which have some deposits inside (E>0).
367 // The towers of this list will be smeared according to the calo resolution, afterwards
[310]368 D_CaloTowerList list_of_active_towers;
[384]369
370 // 'list_of_towers_with_photon' and 'list_of_centowers_with_neutrals' are list of towers, whose energy is **not** computed.
371 // They are only used to store the eta/phi of some towers, in order to search later inside 'list_of_active_towers'.
372 // 'list_of_towers_with_photon' contains the towers hit by photons only
373 // 'list_of_centowers_with_neutrals' is used to the jet-E-flow calculation: contains the towers with eta < CEN_max_tracker,
374 // i.e. towers behind the tracker.
[310]375 D_CaloTowerList list_of_towers_with_photon; // to speed up the code: will only look in interesting towers for gamma candidates
[384]376
377 D_CaloTowerList list_of_centowers_with_neutrals; // list of towers with neutral particles : for jet E-flow
378 float etamax_calocoverage_behindtracker = DET->CEN_max_tracker; // finds the extension in eta of the furthest
379 for (unsigned int i=1; i< DET->TOWER_number+1; i++) { // cell (at least) partially behind the tracker
380 if(DET->TOWER_eta_edges[i] > DET->CEN_max_tracker) break;
381 etamax_calocoverage_behindtracker = DET->TOWER_eta_edges[i];
382 }
[310]383 // 2.1a Loop over all particles in event, to fill the towers
384 itGen.Reset();
[350]385 TRootC::GenParticle *particleG;
386 while( (particleG = (TRootC::GenParticle*) itGen.Next()) )
[310]387 {
[307]388 TRootGenParticle *particle = new TRootGenParticle(particleG);
[380]389 PdgParticle pdg_part = DET->PDGtable[particle->PID];
390 particle->Charge = pdg_part.charge();
391 particle->M = pdg_part.mass();
392 //particle->Charge=ChargeVal(particle->PID);
393 particle->setFractions(); // init
[307]394 int pid = abs(particle->PID);
395
[264]396 // 2.1a.1********************* preparation for the b-tagging
397 //// This subarray is needed for the B-jet algorithm
398 // optimization for speed : put first PID condition, then ETA condition, then either pt or status
399 if( (pid <= pB || pid == pGLUON) &&// is it a light quark or a gluon, i.e. is it one of these : u,d,c,s,b,g ?
400 fabs(particle->Eta) < DET->CEN_max_tracker &&
401 particle->Status != 1 &&
[310]402 particle->PT > DET->PT_QUARKS_MIN )
403 {
[319]404 NFCentralQ.Add(particleG);
[310]405 }
[307]406
[264]407 // 2.1a.2********************* visible particles only
[469]408 if( (particle->Status == 1) && (! pdg_part.invisible() ) )
[310]409 {
410 // 2.1a.2.1 Central solenoidal magnetic field
411 TRACP->bfield(particle); // fills in particle->EtaCalo et particle->PhiCalo
412 // 2.1a.2.2 Filling the calorimetric towers -- includes also forward detectors ?
413 // first checks if the charged particles reach the calo!
414 if( DET->FLAG_bfield ||
415 particle->Charge==0 ||
416 (!DET->FLAG_bfield && particle->Charge!=0 && particle->PT > DET->TRACK_ptmin))
417 if(
418 (particle->EtaCalo > list_of_calorimeters.getEtamin() ) &&
419 (particle->EtaCalo < list_of_calorimeters.getEtamax() )
420 )
[307]421 {
[310]422 float iEta=UNDEFINED, iPhi=UNDEFINED;
423 DET->BinEtaPhi(particle->PhiCalo,particle->EtaCalo,iPhi,iEta); // fills in iPhi and iEta
424 if (iEta != UNDEFINED && iPhi != UNDEFINED)
425 {
426 D_CaloTower tower(iEta,iPhi); // new tower
427 tower.Set_Eem_Ehad_E_ET(particle->E*particle->getFem() , particle->E*particle->getFhad() );
428 list_of_active_towers.addTower(tower);
429 // this list may contain several times the same calotower, as several particles
430 // may leave some energy in the same calotower
431 // After the loop on particles, identical cells in the list should be merged
432 } // iEta and iPhi must be defined
433 }
[307]434
[310]435 // 2.1a.2.3 charged particles in tracker: energy flow
436 // if bfield not simulated, pt should be high enough to be taken into account
437 // it is supposed here that DET->MAX_calo > DET->CEN_max_tracker > DET->CEN_max_mu > 0
438 if( particle->Charge !=0 &&
439 fabs(particle->EtaCalo)< DET->CEN_max_tracker && // stays in the tracker -> track available
440 ( DET->FLAG_bfield ||
441 (!DET->FLAG_bfield && particle->PT > DET->TRACK_ptmin)
442 )
443 )
444 {
445 // 2.1a.2.3.1 Filling the particle properties + smearing
446 // Hypothesis: the final eta/phi are the ones from the generator, thanks to the track reconstruction
447 // This is the EnergyFlow hypothesis
448 particle->SetEtaPhi(particle->Eta,particle->Phi);
449 float sET=UNDEFINED; // smeared ET, computed from the smeared E -> needed for the tracks
450
451 // 2.1a.2.3.2 Muons
452 if (pid == pMU && fabs(particle->EtaCalo)< DET->CEN_max_mu)
453 {
454 TLorentzVector p;
455 float sPT = gRandom->Gaus(particle->PT, DET->MU_SmearPt*particle->PT );
456 if (sPT > 0 && sPT > DET->PTCUT_muon)
457 {
458 p.SetPtEtaPhiE(sPT,particle->Eta,particle->Phi,sPT*cosh(particle->Eta));
[390]459 muon.push_back(D_Particle(p,particle->PID,particle->EtaCalo,particle->PhiCalo));
[310]460 }
461 sET = (sPT >0)? sPT : 0;
462 }
463 // 2.1a.2.3.3 Electrons
464 else if (pid == pE)
465 {
466 // Finds in which calorimeter the particle has gone, to know its resolution
467
468 D_CaloElement currentCalo = list_of_calorimeters.getElement(particle->EtaCalo);
469 if(currentCalo.getName() == dummyCalo.getName())
470 {
471 cout << "** Warning: the calo coverage behind the tracker is not complete! **" << endl;
472 }
473
474 // final smeared EM energy // electromagnetic fraction F_em =1 for electrons;
475 float sE = currentCalo.getElectromagneticResolution().Smear(particle->E);
476 if (sE>0)
477 {
478 sET = sE/cosh(particle->Eta);
479 // NB: ET is found via the calorimetry and not via the track curvature
480
481 TLorentzVector p;
482 p.SetPtEtaPhiE(sET,particle->Eta,particle->Phi,sE);
483 if (sET > DET->PTCUT_elec)
484 electron.push_back(D_Particle(p,particle->PID,particle->EtaCalo,particle->PhiCalo));
[384]485 //if(DET->JET_Eflow) input_particles.push_back(fastjet::PseudoJet(p.Px(),p.Py(),p.Pz(),p.E()));
[310]486 }
487 else { sET=0;} // if negative smeared energy -- needed for the tracks
488 }
489 // 2.1a.2.3.4 Other charged particles : smear them for the tracks!
490 else
491 { //other particles
492 D_CaloElement currentCalo = list_of_calorimeters.getElement(particle->EtaCalo);
493 float sEem = currentCalo.getElectromagneticResolution().Smear(particle->E * particle->getFem());
494 float sEhad = currentCalo.getHadronicResolution().Smear(particle->E * particle->getFhad());
495 float sE = ( (sEem>0)? sEem : 0 ) + ( (sEhad>0)? sEhad : 0 );
496 sET = sE/cosh(particle->EtaCalo);
497 }
[307]498
[310]499 // 2.1a.2.3.5 Tracks
500 if( (rand()%100) < DET->TRACK_eff && sET!=0)
501 {
502 elementTrack = (TRootTracks*) branchTrack->NewEntry();
503 elementTrack->Set(particle->Eta, particle->Phi, particle->EtaCalo, particle->PhiCalo, sET, particle->Charge);
504 TrackCentral.push_back(*elementTrack); // tracks at vertex!
[384]505 if(DET->JET_Eflow)
506 input_particles.push_back(fastjet::PseudoJet(particle->Px,particle->Py,particle->Pz,particle->E));
[310]507 // TODO!!! apply a smearing on the position of the origin of the track
508 // TODO!!! elementTracks->SetPositionOut(Xout,Yout,Zout);
509 }
510 } // 2.1a.2.3 : if tracker/energy-flow
511 // 2.1a.2.4 Photons
512 // stays in the tracker -> track available -> gamma ID
513 else if( (pid == pGAMMA) && fabs(particle->EtaCalo)< DET->CEN_max_tracker )
514 {
515 float iEta=UNDEFINED, iPhi=UNDEFINED;
516 DET->BinEtaPhi(particle->PhiCalo,particle->EtaCalo,iPhi,iEta); // fills in iPhi and iEta
517 D_CaloTower tower(iEta,iPhi);
518 // stores the list of towers where to apply the photon ID algorithm. Just a trick for a faster search
519 list_of_towers_with_photon.addTower(tower);
[307]520 }
[384]521 // 2.1a.2.5 Neutrals within tracker -- for jet energy flow
522 else if( particle->Charge ==0 && fabs(particle->EtaCalo)< etamax_calocoverage_behindtracker)
523 {
524 float iEta=UNDEFINED, iPhi=UNDEFINED;
525 DET->BinEtaPhi(particle->PhiCalo,particle->EtaCalo,iPhi,iEta); // fills in iPhi and iEta
526 D_CaloTower tower(iEta,iPhi);
527 list_of_centowers_with_neutrals.addTower(tower);
528 }
529 // 2.1a.2.6 : very forward detectors
[310]530 else
531 {
532 if (DET->FLAG_RP==1)
533 {
534 // for the moment, only protons are transported
535 // BUT !!! could be a beam of other particles! (heavy ions?)
536 // BUT ALSO !!! if very forward muons, or others!
537 VFD->RomanPots(treeWriter,branchRP220,branchFP420,particle);
538 }
539 // 2.1a.2.6: Zero degree calorimeter
540 if(DET->FLAG_vfd==1)
541 {
542 VFD->ZDC(treeWriter,branchZDC,particle);
543 }
544 }
[307]545
[310]546 } // 2.1a.2 : if visible particle
[307]547 delete particle;
[310]548 }// loop on all particles 2.1a
[384]549
[310]550 // 2.1b loop on all (activated) towers
551 // at this stage, list_of_active_towers may contain several times the same tower
552 // first step is to merge identical towers, by matching their (iEta,iPhi)
553
554 list_of_active_towers.sortElements();
555 list_of_active_towers.mergeDuplicates();
556
557 // Calotower smearing
558 list_of_active_towers.smearTowers(list_of_calorimeters);
559
560 for(unsigned int i=0; i<list_of_active_towers.size(); i++)
561 {
[307]562 float iEta = list_of_active_towers[i].getEta();
563 float iPhi = list_of_active_towers[i].getPhi();
564 float e = list_of_active_towers[i].getE();
[310]565 if(iEta != UNDEFINED && iPhi != UNDEFINED && e!=0)
566 {
567 elementCalo = (TRootCalo*) branchCalo->NewEntry();
568 elementCalo->set(list_of_active_towers[i]);
569 // not beautiful : should be improved!
570 TLorentzVector p;
571 p.SetPtEtaPhiE(list_of_active_towers[i].getET(), iEta, iPhi, e );
572 PhysicsTower Tower(LorentzVector(p.Px(),p.Py(),p.Pz(),p.E()));
573 towers.push_back(Tower);
574 }
[307]575 } // loop on towers
[310]576
[384]577 // 2.1c photon ID
578 // list_of_towers_with_photon is the list of towers with photon candidates
579 // already smeared !
580 // sorts the vector and smears duplicates
[310]581 list_of_towers_with_photon.mergeDuplicates();
[321]582 for(unsigned int i=0; i<list_of_towers_with_photon.size(); i++) {
[264]583 float eta = list_of_towers_with_photon[i].getEta();
584 float phi = list_of_towers_with_photon[i].getPhi();
[384]585 D_CaloTower cal(list_of_active_towers.getElement(eta,phi)); //// <---------- buh???????
[310]586 if(cal.getEta() != UNDEFINED && cal.getPhi() != UNDEFINED && cal.getE() > 0)
587 {
588 TLorentzVector p;
589 p.SetPtEtaPhiE(cal.getET(), eta,phi,cal.getE() );
590 if (cal.getET() > DET->PTCUT_gamma) { gamma.push_back(D_Particle(p,pGAMMA,p.Eta(),p.Phi())); }
591 }
[307]592 } // for -- list of photons
[384]593
594 // 2.1d jet-E-flow -- taking into account the neutrals within tracker
595 if(DET->JET_Eflow) {
596 list_of_centowers_with_neutrals.mergeDuplicates();
597 for(unsigned int i=0; i<list_of_centowers_with_neutrals.size(); i++) {
598 float eta = list_of_centowers_with_neutrals[i].getEta();
599 float phi = list_of_centowers_with_neutrals[i].getPhi();
600 D_CaloTower cal(list_of_active_towers.getElement(eta,phi));
601 if(cal.getEta() != UNDEFINED && cal.getPhi() != UNDEFINED && cal.getE() > 0)
602 {
603 TLorentzVector p;
604 p.SetPtEtaPhiE(cal.getET(), eta,phi,cal.getE() );
605 //cout << "**************list: " << p.Px() << " " << p.Py() << " " << p.Pz() << " " << p.E() << endl;
606 input_particles.push_back(fastjet::PseudoJet(p.Px(),p.Py(),p.Pz(),p.E()));
607 }
608 } // for - list_of_centowers
609 } // JET_Eflow
610
[178]611 // 2.2 ********** Output preparation & complex objects ***********
612 // 2.2.1 ********************* sorting collections by decreasing pt
[74]613 DET->SortedVector(electron);
[321]614 float iPhiEl=0,iEtaEl=0,ptisoEl=0;
[310]615 for(unsigned int i=0; i < electron.size(); i++)
616 {
617 elementElec = (TRootElectron*) branchElectron->NewEntry();
618 elementElec->Set(electron[i].Px(),electron[i].Py(),electron[i].Pz(),electron[i].E());
619 elementElec->EtaCalo = electron[i].EtaCalo();
620 elementElec->PhiCalo = electron[i].PhiCalo();
621 elementElec->Charge = sign(electron[i].PID());
[321]622 elementElec->IsolFlag = DET->Isolation(electron[i],TrackCentral,DET->ISOL_PT,DET->ISOL_Cone,ptisoEl);
623 elementElec->IsolPt = ptisoEl;
[312]624 DET->BinEtaPhi(elementElec->PhiCalo,elementElec->EtaCalo,iPhiEl,iEtaEl);
625 D_CaloTower calElec(list_of_active_towers.getElement(iEtaEl,iPhiEl));
[310]626 elementElec->EHoverEE = calElec.getEhad()/calElec.getEem();
[312]627 }
[310]628
[74]629 DET->SortedVector(muon);
[321]630 float iPhiMu=0,iEtaMu=0,ptisoMu=0;
[310]631 for(unsigned int i=0; i < muon.size(); i++)
632 {
633 elementMu = (TRootMuon*) branchMuon->NewEntry();
634 elementMu->Charge = sign(muon[i].PID());
635 elementMu->Set(muon[i].Px(),muon[i].Py(),muon[i].Pz(),muon[i].E());
636 elementMu->EtaCalo = muon[i].EtaCalo();
637 elementMu->PhiCalo = muon[i].PhiCalo();
[321]638 elementMu->IsolFlag = DET->Isolation(muon[i],TrackCentral,DET->ISOL_PT,DET->ISOL_Cone,ptisoMu);
639 elementMu->IsolPt = ptisoMu;
640 DET->BinEtaPhi(elementMu->PhiCalo,elementMu->EtaCalo,iPhiMu,iEtaMu);
[312]641 D_CaloTower calMuon(list_of_active_towers.getElement(iEtaMu,iPhiMu));
[321]642 if( calMuon.getEem() !=0 ) elementMu->EHoverEE = calMuon.getEhad()/calMuon.getEem();
643 else elementMu->EHoverEE = UNDEFINED;
[395]644 elementMu->EtRatio = DET->CaloIsolation(muon[i], list_of_active_towers,iPhiMu,iEtaMu);
[310]645 }
646
[74]647 DET->SortedVector(gamma);
[310]648 for(unsigned int i=0; i < gamma.size(); i++)
649 {
650 elementPhoton = (TRootPhoton*) branchPhoton->NewEntry();
651 elementPhoton->Set(gamma[i].Px(),gamma[i].Py(),gamma[i].Pz(),gamma[i].E());
652 D_CaloTower calGamma(list_of_active_towers.getElement(gamma[i].EtaCalo(),gamma[i].PhiCalo()));
653 elementPhoton->EHoverEE = calGamma.getEhad()/calGamma.getEem();
654 }
[30]655
[178]656 // 2.2.2 ************* computes the Missing Transverse Momentum
[71]657 TLorentzVector Att(0.,0.,0.,0.);
658 for(unsigned int i=0; i < towers.size(); i++)
659 {
[107]660 Att.SetPxPyPzE(towers[i].fourVector.px, towers[i].fourVector.py, towers[i].fourVector.pz, towers[i].fourVector.E);
661 if(fabs(Att.Eta()) < DET->CEN_max_calo_fwd)
[307]662 {
663 PTmis = PTmis + Att;
664 // create a fastjet::PseudoJet with these components and put it onto
665 // back of the input_particles vector
[384]666 if(!DET->JET_Eflow)
667 input_particles.push_back(fastjet::PseudoJet(towers[i].fourVector.px,towers[i].fourVector.py,towers[i].fourVector.pz,towers[i].fourVector.E));
668 else { if(fabs(Att.Eta()) > DET->CEN_max_tracker)
669 input_particles.push_back(fastjet::PseudoJet(towers[i].fourVector.px,towers[i].fourVector.py,towers[i].fourVector.pz,towers[i].fourVector.E));
670 }
[307]671 }
[71]672 }
673 elementEtmis = (TRootETmis*) branchETmis->NewEntry();
674 elementEtmis->ET = (PTmis).Pt();
675 elementEtmis->Phi = (-PTmis).Phi();
676 elementEtmis->Px = (-PTmis).Px();
677 elementEtmis->Py = (-PTmis).Py();
[74]678
[264]679 // 2.2.3 ************* jets, B-tag, tau jets
[310]680 vector<int> NTrackJet; //for number of tracks
681 vector<float> EHADEEM; //for energyHad over energyEm
682 sorted_jets=JETRUN->RunJets(input_particles, TrackCentral,NTrackJet,EHADEEM,list_of_active_towers);
683 JETRUN->RunJetBtagging(treeWriter, branchJet,sorted_jets,NFCentralQ,NTrackJet,EHADEEM);
684 JETRUN->RunTauJets(treeWriter,branchTauJet,sorted_jets,towers, TrackCentral,NTrackJet,EHADEEM);
[74]685
[72]686 treeWriter->Fill();
[178]687 } // 2. Loop over all events ('for' loop)
[307]688
[212]689 cout <<"** Exiting detector simulation... **"<< endl;
[307]690
691
[2]692 treeWriter->Write();
[77]693 delete treeWriter;
[191]694 loopwatch.Stop();
[307]695
696
697
[212]698 // 3. ********** Trigger & Frog ***********
[178]699 // 3.1 ************ running the trigger in case the FLAG trigger is put to 1 in the datacard
[191]700 triggerwatch.Start();
[94]701 if(DET->FLAG_trigger == 1)
[72]702 {
[307]703 cout <<"** **"<<endl;
704 cout <<"** ########### Start Trigger selection ########### **"<< endl;
705
[178]706 // input
[72]707 TChain chainT("Analysis");
708 chainT.Add(outputfilename.c_str());
709 ExRootTreeReader *treeReaderT = new ExRootTreeReader(&chainT);
[74]710
[178]711 // output
[72]712 TClonesArray *branchElecTrig = treeReaderT->UseBranch("Electron");
713 TClonesArray *branchMuonTrig = treeReaderT->UseBranch("Muon");
714 TClonesArray *branchJetTrig = treeReaderT->UseBranch("Jet");
715 TClonesArray *branchTauJetTrig = treeReaderT->UseBranch("TauJet");
716 TClonesArray *branchPhotonTrig = treeReaderT->UseBranch("Photon");
717 TClonesArray *branchETmisTrig = treeReaderT->UseBranch("ETmis");
[74]718
[72]719 ExRootTreeWriter *treeWriterT = new ExRootTreeWriter(outputfilename, "Trigger");
720 ExRootTreeBranch *branchTrigger = treeWriterT->NewBranch("TrigResult", TRootTrigger::Class());
[307]721
722
[72]723 Long64_t entryT, allEntriesT = treeReaderT->GetEntries();
[178]724 // loop on all entries
725 for(entryT = 0; entryT < allEntriesT; ++entryT) {
[307]726 treeWriterT->Clear();
727 treeReaderT->ReadEntry(entryT);
728 TRIGT->GetGlobalResult(branchElecTrig, branchMuonTrig,branchJetTrig, branchTauJetTrig,branchPhotonTrig, branchETmisTrig,branchTrigger);
729 treeWriterT->Fill();
[178]730 } // loop on all entries
[212]731 cout <<"** Exiting trigger simulation... **"<< endl;
[94]732
[72]733 treeWriterT->Write();
734 delete treeWriterT;
[228]735 delete treeReaderT;
[178]736 } // trigger
[307]737 triggerwatch.Stop();
738
739
[178]740 // 3.2 ************** FROG display
[191]741 frogwatch.Start();
[228]742 if(DET->FLAG_frog == 1) {
[307]743 cout <<"** **"<<endl;
744 cout <<"** ################## Start FROG ################# **"<< endl;
745
746 FrogDisplay *FROG = new FrogDisplay(DET);
747 FROG->BuildEvents(outputfilename);
748 FROG->BuildGeom();
749 delete FROG;
[313]750 cout <<"** Exiting FROG preparation... **"<< endl;
[228]751 }
752 frogwatch.Stop();
[94]753
[307]754 // 3.3 *************** LHCO output
[313]755 lhcowatch.Start();
[307]756 if(DET->FLAG_lhco == 1){
757 cout <<"** **"<<endl;
[415]758 cout <<"** ############ Start LHCO conversion ############ **"<< endl;
[307]759
760 //LHCOConverter *LHCO = new LHCOConverter(outputfilename,LogNameLHCO);
761 LHCOConverter *LHCO = new LHCOConverter(outputfilename,"");
762 LHCO->CopyRunLogFile();
763 LHCO->ConvertExRootAnalysisToLHCO();
764 delete LHCO;
[416]765 cout <<"** Exiting LHCO conversion... **"<< endl;
[307]766 }
[313]767 lhcowatch.Stop();
[307]768
769
770
771 // 4. ********** End & Exit ***********
772
[191]773 globalwatch.Stop();
[397]774 time_report(globalwatch,loopwatch,triggerwatch,frogwatch,lhcowatch,DET->FLAG_frog,DET->FLAG_trigger,DET->FLAG_lhco,LogName,allEntries);
[474]775
776 cout << left << setw(16) << "** " << ""
777 << left << setw(51) << get_time_date() << "**" << endl;
778
[307]779 cout <<"** **"<< endl;
780 cout <<"** Exiting Delphes ... **"<< endl;
781 cout <<"** **"<< endl;
782 cout <<"*********************************************************************"<< endl;
783 cout <<"*********************************************************************"<< endl;
784
[2]785 delete treeReader;
786 delete DET;
[264]787 delete TRIGT;
[74]788 delete TRACP;
789 delete JETRUN;
790 delete VFD;
[94]791
[2]792}
Note: See TracBrowser for help on using the repository browser.