Fork me on GitHub

source: svn/trunk/Delphes.cpp@ 24

Last change on this file since 24 was 24, checked in by Xavier Rouby, 16 years ago

minor change: appName

File size: 19.4 KB
RevLine 
[2]1/*
2 ---- Delphes ----
3 A Fast Simulator for general purpose LHC detector
4 S. Ovyn ~~~~ severine.ovyn@uclouvain.be
5
6 Center for Particle Physics and Phenomenology (CP3)
7 Universite Catholique de Louvain (UCL)
8 Louvain-la-Neuve, Belgium
9*/
10
11/// \file Delphes.cpp
12/// \brief executable for the Delphes
13
14#include "TChain.h"
15#include "TApplication.h"
16
17#include "Utilities/ExRootAnalysis/interface/ExRootTreeReader.h"
18#include "Utilities/ExRootAnalysis/interface/ExRootTreeWriter.h"
19#include "Utilities/ExRootAnalysis/interface/ExRootTreeBranch.h"
20
21#include "H_BeamParticle.h"
22#include "H_BeamLine.h"
23#include "H_RomanPot.h"
24
25#include "interface/DataConverter.h"
26#include "interface/HEPEVTConverter.h"
27#include "interface/LHEFConverter.h"
28#include "interface/STDHEPConverter.h"
29
30#include "interface/SmearUtil.h"
[11]31#include "Utilities/Fastjet/include/fastjet/PseudoJet.hh"
32#include "Utilities/Fastjet/include/fastjet/ClusterSequence.hh"
[2]33
[11]34// get info on how fastjet was configured
35#include "Utilities/Fastjet/include/fastjet/config.h"
36
37// make sure we have what is needed
38#ifdef ENABLE_PLUGIN_SISCONE
39# include "Utilities/Fastjet/plugins/SISCone/SISConePlugin.hh"
40#endif
41#ifdef ENABLE_PLUGIN_CDFCONES
42# include "Utilities/Fastjet/plugins/CDFCones/CDFMidPointPlugin.hh"
43# include "Utilities/Fastjet/plugins/CDFCones/CDFJetCluPlugin.hh"
44#endif
45
46#include<vector>
47#include<iostream>
48
49
50
[2]51using namespace std;
52
53//------------------------------------------------------------------------------
54void todo(string filename) {
55 ifstream infile(filename.c_str());
56 cout << "** TODO list ..." << endl;
57 while(infile.good()) {
58 string temp;
59 getline(infile,temp);
60 cout << "*" << temp << endl;
61 }
62 cout << "** done...\n";
63}
64
65//------------------------------------------------------------------------------
66
67int main(int argc, char *argv[])
68{
69 int appargc = 2;
[24]70 char appName[100]; sprintf(appName,argv[0]);
[2]71 char *appargv[] = {appName, "-b"};
72 TApplication app(appName, &appargc, appargv);
73
74 if(argc != 4 && argc != 3) {
75 cout << " Usage: " << argv[0] << " input_file" << " output_file" << " data_card " << endl;
76 cout << " input_list - list of files in Ntpl, StdHep of LHEF format," << endl;
77 cout << " output_file - output file." << endl;
78 cout << " data_card - Datacard containing resolution variables for the detector simulation (optional) "<<endl;
79 exit(1);
80 }
81
82 srand (time (NULL)); /* Initialisation du générateur */
83
84 //read the input TROOT file
85 string inputFileList(argv[1]), outputfilename(argv[2]);
86 if(outputfilename.find(".root") > outputfilename.length() ) {
87 cout << "output_file should be a .root file!\n";
88 exit(1);
89 }
90
91 TFile *outputFile = TFile::Open(outputfilename.c_str(), "RECREATE"); // Creates the file, but should be closed just after
92 outputFile->Close();
93
94 string line;
95 ifstream infile(inputFileList.c_str());
96 infile >> line; // the first line determines the type of input files
97
98 DataConverter *converter=0;
99
100 if(strstr(line.c_str(),".hep"))
101 {
102 cout<<"*************************************************************************"<<endl;
103 cout<<"************ StdHEP file format detected **************"<<endl;
104 cout<<"************ Starting convertion to TRoot format **************"<<endl;
105 cout<<"*************************************************************************"<<endl;
106 converter = new STDHEPConverter(inputFileList,outputfilename);//case ntpl file in input list
107 }
108 else if(strstr(line.c_str(),".lhe"))
109 {
110 cout<<"*************************************************************************"<<endl;
111 cout<<"************ LHEF file format detected **************"<<endl;
112 cout<<"************ Starting convertion to TRoot format **************"<<endl;
113 cout<<"*************************************************************************"<<endl;
114 converter = new LHEFConverter(inputFileList,outputfilename);//case ntpl file in input list
115 }
116 else if(strstr(line.c_str(),".root"))
117 {
118 cout<<"*************************************************************************"<<endl;
119 cout<<"************ h2root file format detected **************"<<endl;
120 cout<<"************ Starting convertion to TRoot format **************"<<endl;
121 cout<<"*************************************************************************"<<endl;
122 converter = new HEPEVTConverter(inputFileList,outputfilename);//case ntpl file in input list
123 }
124 else { cout << "*** " << line.c_str() << "\n*** file format not identified\n*** Exiting\n"; return -1;};
125
126 TChain chain("GEN");
127 chain.Add(outputfilename.c_str());
128 ExRootTreeReader *treeReader = new ExRootTreeReader(&chain);
129 const TClonesArray *branchGen = treeReader->UseBranch("Particle");
130 TIter itGen((TCollection*)branchGen);
131
132 //write the output root file
133 ExRootTreeWriter *treeWriter = new ExRootTreeWriter(outputfilename, "Analysis");
134 ExRootTreeBranch *branchJet = treeWriter->NewBranch("Jet", TRootJet::Class());
135 ExRootTreeBranch *branchTauJet = treeWriter->NewBranch("TauJet", TRootTauJet::Class());
136 ExRootTreeBranch *branchElectron = treeWriter->NewBranch("Electron", TRootElectron::Class());
137 ExRootTreeBranch *branchMuon = treeWriter->NewBranch("Muon", TRootMuon::Class());
138 ExRootTreeBranch *branchPhoton = treeWriter->NewBranch("Photon", TRootPhoton::Class());
139 ExRootTreeBranch *branchTracks = treeWriter->NewBranch("Tracks", TRootTracks::Class());
140 ExRootTreeBranch *branchETmis = treeWriter->NewBranch("ETmis", TRootETmis::Class());
141 ExRootTreeBranch *branchCalo = treeWriter->NewBranch("CaloTower", TRootCalo::Class());
142 ExRootTreeBranch *branchZDC = treeWriter->NewBranch("ZDChits", TRootZdcHits::Class());
143 ExRootTreeBranch *branchRP220 = treeWriter->NewBranch("RP220hits", TRootRomanPotHits::Class());
144 ExRootTreeBranch *branchFP420 = treeWriter->NewBranch("FP420hits", TRootRomanPotHits::Class());
145
146
147 TRootGenParticle *particle;
148 TRootETmis *elementEtmis;
149 TRootElectron *elementElec;
150 TRootMuon *elementMu;
151 TRootPhoton *elementPhoton;
152 TRootJet *elementJet;
153 TRootTauJet *elementTauJet;
154 TRootTracks *elementTracks;
155 TRootCalo *elementCalo;
156 TRootZdcHits *elementZdc;
157 TRootRomanPotHits *elementRP220, *elementFP420;
158
159 //read the datacard input file
160 string DetDatacard("");
161 if(argc==4) DetDatacard =argv[3];
162 RESOLution *DET = new RESOLution();
163 DET->ReadDataCard(DetDatacard);
164
165
166 TLorentzVector genMomentum(0,0,0,0);
167 LorentzVector jetMomentum;
168 vector<TLorentzVector> TrackCentral;
169 vector<PhysicsTower> towers;
170
[11]171 vector<fastjet::PseudoJet> input_particles;//for FastJet algorithm
172 vector<fastjet::PseudoJet> inclusive_jets;
173 vector<fastjet::PseudoJet> sorted_jets;
174
[2]175 //Initialisation of Hector
176 extern bool relative_energy;
177 relative_energy = true; // should always be true
178 extern int kickers_on;
179 kickers_on = 1; // should always be 1
[11]180
181 // user should provide : (1) optics file for each beamline, and IPname,
182 // and offset data (s,x) for optical elements
[2]183 H_BeamLine* beamline1 = new H_BeamLine(1,500.);
184 beamline1->fill("data/LHCB1IR5_v6.500.tfs",1,"IP5");
185 beamline1->offsetElements(120,-0.097);
186 H_RomanPot * rp220_1 = new H_RomanPot("rp220_1",220,2000); // RP 220m, 2mm, beam 1
187 H_RomanPot * rp420_1 = new H_RomanPot("rp420_1",420,4000); // RP 420m, 4mm, beam 1
188 beamline1->add(rp220_1);
189 beamline1->add(rp420_1);
[11]190
[2]191 H_BeamLine* beamline2 = new H_BeamLine(1,500.);
192 beamline2->fill("data/LHCB1IR5_v6.500.tfs",-1,"IP5");
193 beamline2->offsetElements(120,+0.097);
194 H_RomanPot * rp220_2 = new H_RomanPot("rp220_2",220,2000);// RP 220m, 2mm, beam 2
195 H_RomanPot * rp420_2 = new H_RomanPot("rp420_2",420,4000);// RP 420m, 4mm, beam 2
196 beamline2->add(rp220_2);
197 beamline2->add(rp420_2);
198
[19]199 // we will have four jet definitions, and the first three will be
200 // plugins
201 fastjet::JetDefinition jet_def;
202 fastjet::JetDefinition::Plugin * plugins;
203
204 switch(DET->JETALGO) {
205 default:
206 case 1: {
207
208 // set up a CDF midpoint jet definition
209 #ifdef ENABLE_PLUGIN_CDFCONES
210 plugins = new fastjet::CDFJetCluPlugin(DET->C_SEEDTHRESHOLD,DET->CONERADIUS,DET->C_ADJACENCYCUT,DET->C_MAXITERATIONS,DET->C_IRATCH,DET->C_OVERLAPTHRESHOLD);
211 jet_def = fastjet::JetDefinition(plugins);
212 #else
213 plugins = NULL;
214 #endif
215 }
216 break;
217
218 case 2: {
219
220 // set up a CDF midpoint jet definition
221 #ifdef ENABLE_PLUGIN_CDFCONES
222 plugins = new fastjet::CDFMidPointPlugin (DET->M_SEEDTHRESHOLD,DET->CONERADIUS,DET->M_CONEAREAFRACTION,DET->M_MAXPAIRSIZE,DET->M_MAXPAIRSIZE,DET->C_OVERLAPTHRESHOLD);
223 jet_def = fastjet::JetDefinition(plugins);
224 #else
225 plugins = NULL;
226 #endif
227 }
228 break;
229 case 3: {
230 // set up a siscone jet definition
231 #ifdef ENABLE_PLUGIN_SISCONE
232 int npass = 0; // do infinite number of passes
233 double protojet_ptmin = 0.0; // use all protojets
234 plugins = new fastjet::SISConePlugin (DET->CONERADIUS,DET->C_OVERLAPTHRESHOLD,npass, protojet_ptmin);
235 jet_def = fastjet::JetDefinition(plugins);
236 #else
237 plugins = NULL;
238 #endif
239 }
240 break;
241
242 case 4: {
243 jet_def = fastjet::JetDefinition(fastjet::kt_algorithm, DET->CONERADIUS);
244 //jet_defs[4] = fastjet::JetDefinition(fastjet::cambridge_algorithm,jet_radius);
245 //jet_defs[5] = fastjet::JetDefinition(fastjet::antikt_algorithm,jet_radius);
246 }
247 break;
248 }
[2]249
[19]250 // Loop over all events
[2]251 Long64_t entry, allEntries = treeReader->GetEntries();
252 cout << "** Chain contains " << allEntries << " events" << endl;
253 for(entry = 0; entry < allEntries; ++entry)
254 {
255 TLorentzVector PTmis(0,0,0,0);
256 treeReader->ReadEntry(entry);
257 treeWriter->Clear();
258
259 if((entry % 100) == 0 && entry > 0 ) cout << "** Processing element # " << entry << endl;
260
261 TSimpleArray<TRootGenParticle> bGen;
262 itGen.Reset();
263 TrackCentral.clear();
264 towers.clear();
[11]265 input_particles.clear();
[2]266 TSimpleArray<TRootGenParticle> NFCentralQ;
[15]267 inclusive_jets.clear();
268 sorted_jets.clear();
[2]269
270 // Loop over all particles in event
271 while( (particle = (TRootGenParticle*) itGen.Next()) )
272 {
273 genMomentum.SetPxPyPzE(particle->Px, particle->Py, particle->Pz, particle->E);
274
275 int pid = abs(particle->PID);
276 float eta = fabs(particle->Eta);
277
278 //subarray of the quarks (i.e. not final particles, i.e status not equal to 1)
279 // in the tracker (i.e. for those we know the tracks)
280 // with enough p_T
281 //// This subarray is needed for the B-jet algorithm
282 // optimization for speed : put first PID condition, then ETA condition, then either pt or status
283 if( (pid <= pB || pid == pGLUON) &&// is it a light quark or a gluon, i.e. is it one of these : u,d,c,s,b,g ?
284 eta < DET->MAX_TRACKER &&
285 particle->Status != 1 &&
286 particle->PT > DET->PT_QUARKS_MIN ) {
287 NFCentralQ.Add(particle);
288 }
289
290
291 // keeps only final particles, visible by the central detector, including the fiducial volume
292 // the ordering of conditions have been optimised for speed : put first the STATUS condition
293 if( (particle->Status == 1) &&
294 (
295 (pid == pMU && eta < DET->MAX_MU) ||
296 (pid != pMU && (pid != pNU1) && (pid != pNU2) && (pid != pNU3) && eta < DET->MAX_CALO_FWD)
297 )
298 ) {
299 switch(pid) {
300
301 case pE: // all electrons with eta < DET->MAX_CALO_FWD
302 DET->SmearElectron(genMomentum);
303 if(genMomentum.E()!=0 && eta < DET->MAX_TRACKER) {
304 elementElec = (TRootElectron*) branchElectron->NewEntry();
305 elementElec->Set(genMomentum);
306 elementElec->Charge = sign(particle->PID);
307 }
308 break; // case pE
309
310 case pGAMMA: // all photons with eta < DET->MAX_CALO_FWD
311 DET->SmearElectron(genMomentum);
312 if(genMomentum.E()!=0 && eta < DET->MAX_TRACKER) {
313 elementPhoton = (TRootPhoton*) branchPhoton->NewEntry();
314 elementPhoton->Set(genMomentum);
315 }
316 break; // case pGAMMA
317
318 case pMU: // all muons with eta < DET->MAX_MU
319 DET->SmearMu(genMomentum);
320 if(genMomentum.E() !=0 ) {
321 elementMu = (TRootMuon*) branchMuon->NewEntry();
322 elementMu->Charge = sign(particle->PID);
323 elementMu->Set(genMomentum);
324 }
325 break; // case pMU
326
327 case pLAMBDA: // all lambdas with eta < DET->MAX_CALO_FWD
328 case pK0S: // all K0s with eta < DET->MAX_CALO_FWD
329 DET->SmearHadron(genMomentum, 0.7);
330 break; // case hadron
331
332 default: // all other final particles with eta < DET->MAX_CALO_FWD
333 DET->SmearHadron(genMomentum, 1.0);
334 break;
335 } // switch (pid)
[11]336
[2]337 // all final particles but muons and neutrinos
338 // for calorimetric towers and mission PT
339 if(genMomentum.E()!=0) {
[11]340 PTmis = PTmis + genMomentum;//ptmis
341 if(pid !=pMU) {
342 towers.push_back(PhysicsTower(LorentzVector(genMomentum.Px(),genMomentum.Py(),genMomentum.Pz(), genMomentum.E())));
343 // create a fastjet::PseudoJet with these components and put it onto
344 // back of the input_particles vector
345 input_particles.push_back(fastjet::PseudoJet(genMomentum.Px(),genMomentum.Py(),genMomentum.Pz(), genMomentum.E()));
346 elementCalo = (TRootCalo*) branchCalo->NewEntry();
347 elementCalo->Set(genMomentum);
348 }
[2]349 }
[11]350
351
[2]352 // all final charged particles
353 if(
[11]354 ((rand()%100) < DET->TRACKING_EFF) &&
355 (genMomentum.E()!=0) &&
356 (fabs(particle->Eta) < DET->MAX_TRACKER) &&
357 (genMomentum.Pt() > DET->PT_TRACKS_MIN ) && // pt too small to be taken into account
358 (pid != pGAMMA) &&
359 (pid != pPI0) &&
360 (pid != pK0L) &&
361 (pid != pN) &&
362 (pid != pSIGMA0) &&
363 (pid != pDELTA0) &&
364 (pid != pK0S) // not charged particles : invisible by tracker
365 )
366 {
367 elementTracks = (TRootTracks*) branchTracks->NewEntry();
368 elementTracks->Set(genMomentum);
369 TrackCentral.push_back(genMomentum);
370 }
371 } // switch
372
[2]373 // Forward particles in CASTOR ?
[11]374 /* if (particle->Status == 1 && (fabs(particle->Eta) > DET->MIN_CALO_VFWD)
375 && (fabs(particle->Eta) < DET->MAX_CALO_VFWD)) {
376
377
378 } // CASTOR
379 */
[2]380 // Zero degree calorimeter, for forward neutrons and photons
381 if (particle->Status ==1 && (pid == pN || pid == pGAMMA ) && eta > DET->MIN_ZDC ) {
[11]382 // !!!!!!!!! vérifier que particle->Z est bien en micromÚtres!!!
383 // !!!!!!!!! vérifier que particle->T est bien en secondes!!!
384 // !!!!!!!!! pas de smearing ! on garde trop d'info !
385 elementZdc = (TRootZdcHits*) branchZDC->NewEntry();
386 elementZdc->Set(genMomentum);
387
388 // time of flight t is t = T + d/[ cos(theta) v ]
389 //double tx = acos(particle->Px/particle->Pz);
390 //double ty = acos(particle->Py/particle->Pz);
391 //double theta = (1E-6)*sqrt( pow(tx,2) + pow(ty,2) );
392 //double flight_distance = (DET->ZDC_S - particle->Z*(1E-6))/cos(theta) ; // assumes that Z is in micrometers
393 double flight_distance = (DET->ZDC_S - particle->Z*(1E-6));
394 // assumes also that the emission angle is so small that 1/(cos theta) = 1
395 elementZdc->T = 0*particle->T + flight_distance/speed_of_light; // assumes highly relativistic particles
396 elementZdc->side = sign(particle->Eta);
397
[2]398 }
[11]399
[2]400 // if forward proton
401 if( (pid == pP) && (particle->Status == 1) && (fabs(particle->Eta) > DET->MAX_CALO_FWD) )
402 {
[11]403 // !!!!!!!! put here particle->CHARGE and particle->MASS
404 H_BeamParticle p1; /// put here particle->CHARGE and particle->MASS
405 p1.smearAng();
406 p1.smearPos();
407 p1.setPosition(p1.getX()-500.,p1.getY(),p1.getTX()-1*kickers_on*CRANG,p1.getTY(),0);
408 p1.set4Momentum(particle->Px,particle->Py,particle->Pz,particle->E);
409
410 H_BeamLine *beamline;
411 if(particle->Eta >0) beamline = beamline1;
412 else beamline = beamline2;
413
414 p1.computePath(beamline,1);
415
416 if(p1.stopped(beamline)) {
417 if (p1.getStoppingElement()->getName()=="rp220_1" || p1.getStoppingElement()->getName()=="rp220_2") {
418 p1.propagate(DET->RP220_S);
419 elementRP220 = (TRootRomanPotHits*) branchRP220->NewEntry();
420 elementRP220->X = (1E-6)*p1.getX(); // [m]
421 elementRP220->Y = (1E-6)*p1.getY(); // [m]
422 elementRP220->Tx = (1E-6)*p1.getTX(); // [rad]
423 elementRP220->Ty = (1E-6)*p1.getTY(); // [rad]
424 elementRP220->S = p1.getS(); // [m]
425 elementRP220->T = -1; // not yet implemented
426 elementRP220->E = p1.getE(); // not yet implemented
427 elementRP220->q2 = -1; // not yet implemented
428 elementRP220->side = sign(particle->Eta);
429
430 } else if (p1.getStoppingElement()->getName()=="rp420_1" || p1.getStoppingElement()->getName()=="rp420_2") {
431 p1.propagate(DET->FP420_S);
432 elementFP420 = (TRootRomanPotHits*) branchFP420->NewEntry();
433 elementFP420->X = (1E-6)*p1.getX(); // [m]
434 elementFP420->Y = (1E-6)*p1.getY(); // [m]
435 elementFP420->Tx = (1E-6)*p1.getTX(); // [rad]
436 elementFP420->Ty = (1E-6)*p1.getTY(); // [rad]
437 elementFP420->S = p1.getS(); // [m]
438 elementFP420->T = -1; // not yet implemented
439 elementFP420->E = p1.getE(); // not yet implemented
440 elementFP420->q2 = -1; // not yet implemented
441 elementFP420->side = sign(particle->Eta);
[2]442 }
[11]443 }
444
445 // if(p1.stopped(beamline) && (p1.getStoppingElement()->getS() > 100))
446 // cout << "Eloss =" << 7000.-p1.getE() << " ; " << p1.getStoppingElement()->getName() << endl;
[2]447 } // if forward proton
[11]448
[2]449 } // while
[11]450
[2]451 // computes the Missing Transverse Momentum
452 elementEtmis = (TRootETmis*) branchETmis->NewEntry();
453 elementEtmis->ET = (-PTmis).Pt();
454 elementEtmis->Phi = (-PTmis).Phi();
455 elementEtmis->Px = (-PTmis).Px();
456 elementEtmis->Py = (-PTmis).Py();
[11]457
458 //*****************************
[2]459
[11]460 // run the jet clustering with the above jet definition
461 if(input_particles.size()!=0)
462 {
463 fastjet::ClusterSequence clust_seq(input_particles, jet_def);
464
465
466 // extract the inclusive jets with pt > 5 GeV
467 double ptmin = 5.0;
468 inclusive_jets = clust_seq.inclusive_jets(ptmin);
469
470 // sort jets into increasing pt
[15]471 sorted_jets = sorted_by_pt(inclusive_jets);
[11]472 }
[15]473 for (unsigned int i = 0; i < sorted_jets.size(); i++) {
[11]474 elementJet = (TRootJet*) branchJet->NewEntry();
475 TLorentzVector JET;
[15]476 JET.SetPxPyPzE(sorted_jets[i].px(),sorted_jets[i].py(),sorted_jets[i].pz(),sorted_jets[i].E());
[21]477 //cout<<"Jet.Pt() "<<JET.Pt()<<endl;
[11]478 elementJet->Set(JET);
479 // b-jets
480 bool btag=false;
481 if((fabs(JET.Eta()) < DET->MAX_TRACKER && DET->Btaggedjet(JET, NFCentralQ)))btag=true;
482 elementJet->Btag = btag;
483
484 // Tau jet identification : 1! track and electromagnetic collimation
485 if(fabs(JET.Eta()) < (DET->MAX_TRACKER - DET->TAU_CONE_TRACKS)) {
486 double Energie_tau_central = DET->EnergySmallCone(towers,JET.Eta(),JET.Phi());
487 if(
488 ( Energie_tau_central/JET.E() > DET->TAU_EM_COLLIMATION ) &&
489 ( DET->NumTracks(TrackCentral,DET->PT_TRACK_TAU,JET.Eta(),JET.Phi()) == 1 )
490 ) {
491 elementTauJet = (TRootTauJet*) branchTauJet->NewEntry();
492 elementTauJet->Set(JET);
493 } // if tau jet
494 } // if JET.eta < tracker - tau_cone : Tau jet identification
495 } // for itJet : loop on all jets
496
[2]497 treeWriter->Fill();
498 // Add here the trigger
499 // Should test all the trigger table on the event, based on reconstructed objects
500 } // Loop over all events
501 treeWriter->Write();
502
503 cout << "** Exiting..." << endl;
504
505 delete treeWriter;
506 delete treeReader;
507 delete DET;
508 if(converter) delete converter;
509
510 todo("TODO");
511}
512
Note: See TracBrowser for help on using the repository browser.