Fork me on GitHub

source: svn/trunk/Delphes.cpp@ 12

Last change on this file since 12 was 11, checked in by severine ovyn, 16 years ago

Fastjet added; CDFCones directory has been changed

File size: 19.4 KB
RevLine 
[2]1/*
2 ---- Delphes ----
3 A Fast Simulator for general purpose LHC detector
4 S. Ovyn ~~~~ severine.ovyn@uclouvain.be
5
6 Center for Particle Physics and Phenomenology (CP3)
7 Universite Catholique de Louvain (UCL)
8 Louvain-la-Neuve, Belgium
9*/
10
11/// \file Delphes.cpp
12/// \brief executable for the Delphes
13
14#include "TChain.h"
15#include "TApplication.h"
16
17#include "Utilities/ExRootAnalysis/interface/ExRootTreeReader.h"
18#include "Utilities/ExRootAnalysis/interface/ExRootTreeWriter.h"
19#include "Utilities/ExRootAnalysis/interface/ExRootTreeBranch.h"
20
21#include "H_BeamParticle.h"
22#include "H_BeamLine.h"
23#include "H_RomanPot.h"
24
25#include "interface/DataConverter.h"
26#include "interface/HEPEVTConverter.h"
27#include "interface/LHEFConverter.h"
28#include "interface/STDHEPConverter.h"
29
30#include "interface/SmearUtil.h"
[11]31#include "Utilities/Fastjet/include/fastjet/PseudoJet.hh"
32#include "Utilities/Fastjet/include/fastjet/ClusterSequence.hh"
[2]33
[11]34// get info on how fastjet was configured
35#include "Utilities/Fastjet/include/fastjet/config.h"
36
37// make sure we have what is needed
38#ifdef ENABLE_PLUGIN_SISCONE
39# include "Utilities/Fastjet/plugins/SISCone/SISConePlugin.hh"
40#endif
41#ifdef ENABLE_PLUGIN_CDFCONES
42# include "Utilities/Fastjet/plugins/CDFCones/CDFMidPointPlugin.hh"
43# include "Utilities/Fastjet/plugins/CDFCones/CDFJetCluPlugin.hh"
44#endif
45
46#include<vector>
47#include<iostream>
48
49
50
[2]51using namespace std;
52
53//------------------------------------------------------------------------------
54void todo(string filename) {
55 ifstream infile(filename.c_str());
56 cout << "** TODO list ..." << endl;
57 while(infile.good()) {
58 string temp;
59 getline(infile,temp);
60 cout << "*" << temp << endl;
61 }
62 cout << "** done...\n";
63}
64
65//------------------------------------------------------------------------------
66
67int main(int argc, char *argv[])
68{
69 int appargc = 2;
70 char *appName = "JetsSim";
71 char *appargv[] = {appName, "-b"};
72 TApplication app(appName, &appargc, appargv);
73
74 if(argc != 4 && argc != 3) {
75 cout << " Usage: " << argv[0] << " input_file" << " output_file" << " data_card " << endl;
76 cout << " input_list - list of files in Ntpl, StdHep of LHEF format," << endl;
77 cout << " output_file - output file." << endl;
78 cout << " data_card - Datacard containing resolution variables for the detector simulation (optional) "<<endl;
79 exit(1);
80 }
81
82 srand (time (NULL)); /* Initialisation du générateur */
83
84 //read the input TROOT file
85 string inputFileList(argv[1]), outputfilename(argv[2]);
86 if(outputfilename.find(".root") > outputfilename.length() ) {
87 cout << "output_file should be a .root file!\n";
88 exit(1);
89 }
90
91 TFile *outputFile = TFile::Open(outputfilename.c_str(), "RECREATE"); // Creates the file, but should be closed just after
92 outputFile->Close();
93
94 string line;
95 ifstream infile(inputFileList.c_str());
96 infile >> line; // the first line determines the type of input files
97
98 DataConverter *converter=0;
99
100 if(strstr(line.c_str(),".hep"))
101 {
102 cout<<"*************************************************************************"<<endl;
103 cout<<"************ StdHEP file format detected **************"<<endl;
104 cout<<"************ Starting convertion to TRoot format **************"<<endl;
105 cout<<"*************************************************************************"<<endl;
106 converter = new STDHEPConverter(inputFileList,outputfilename);//case ntpl file in input list
107 }
108 else if(strstr(line.c_str(),".lhe"))
109 {
110 cout<<"*************************************************************************"<<endl;
111 cout<<"************ LHEF file format detected **************"<<endl;
112 cout<<"************ Starting convertion to TRoot format **************"<<endl;
113 cout<<"*************************************************************************"<<endl;
114 converter = new LHEFConverter(inputFileList,outputfilename);//case ntpl file in input list
115 }
116 else if(strstr(line.c_str(),".root"))
117 {
118 cout<<"*************************************************************************"<<endl;
119 cout<<"************ h2root file format detected **************"<<endl;
120 cout<<"************ Starting convertion to TRoot format **************"<<endl;
121 cout<<"*************************************************************************"<<endl;
122 converter = new HEPEVTConverter(inputFileList,outputfilename);//case ntpl file in input list
123 }
124 else { cout << "*** " << line.c_str() << "\n*** file format not identified\n*** Exiting\n"; return -1;};
125
126 TChain chain("GEN");
127 chain.Add(outputfilename.c_str());
128 ExRootTreeReader *treeReader = new ExRootTreeReader(&chain);
129 const TClonesArray *branchGen = treeReader->UseBranch("Particle");
130 TIter itGen((TCollection*)branchGen);
131
132 //write the output root file
133 ExRootTreeWriter *treeWriter = new ExRootTreeWriter(outputfilename, "Analysis");
134 ExRootTreeBranch *branchJet = treeWriter->NewBranch("Jet", TRootJet::Class());
135 ExRootTreeBranch *branchTauJet = treeWriter->NewBranch("TauJet", TRootTauJet::Class());
136 ExRootTreeBranch *branchElectron = treeWriter->NewBranch("Electron", TRootElectron::Class());
137 ExRootTreeBranch *branchMuon = treeWriter->NewBranch("Muon", TRootMuon::Class());
138 ExRootTreeBranch *branchPhoton = treeWriter->NewBranch("Photon", TRootPhoton::Class());
139 ExRootTreeBranch *branchTracks = treeWriter->NewBranch("Tracks", TRootTracks::Class());
140 ExRootTreeBranch *branchETmis = treeWriter->NewBranch("ETmis", TRootETmis::Class());
141 ExRootTreeBranch *branchCalo = treeWriter->NewBranch("CaloTower", TRootCalo::Class());
142 ExRootTreeBranch *branchZDC = treeWriter->NewBranch("ZDChits", TRootZdcHits::Class());
143 ExRootTreeBranch *branchRP220 = treeWriter->NewBranch("RP220hits", TRootRomanPotHits::Class());
144 ExRootTreeBranch *branchFP420 = treeWriter->NewBranch("FP420hits", TRootRomanPotHits::Class());
145
146
147 TRootGenParticle *particle;
148 TRootETmis *elementEtmis;
149 TRootElectron *elementElec;
150 TRootMuon *elementMu;
151 TRootPhoton *elementPhoton;
152 TRootJet *elementJet;
153 TRootTauJet *elementTauJet;
154 TRootTracks *elementTracks;
155 TRootCalo *elementCalo;
156 TRootZdcHits *elementZdc;
157 TRootRomanPotHits *elementRP220, *elementFP420;
158
159 //read the datacard input file
160 string DetDatacard("");
161 if(argc==4) DetDatacard =argv[3];
162 RESOLution *DET = new RESOLution();
163 DET->ReadDataCard(DetDatacard);
164
165
166 TLorentzVector genMomentum(0,0,0,0);
167 LorentzVector jetMomentum;
168 vector<TLorentzVector> TrackCentral;
169 vector<PhysicsTower> towers;
170
[11]171 vector<fastjet::PseudoJet> input_particles;//for FastJet algorithm
172 vector<fastjet::PseudoJet> inclusive_jets;
173 vector<fastjet::PseudoJet> sorted_jets;
174
[2]175 //Initialisation of Hector
176 extern bool relative_energy;
177 relative_energy = true; // should always be true
178 extern int kickers_on;
179 kickers_on = 1; // should always be 1
[11]180
181 // user should provide : (1) optics file for each beamline, and IPname,
182 // and offset data (s,x) for optical elements
[2]183 H_BeamLine* beamline1 = new H_BeamLine(1,500.);
184 beamline1->fill("data/LHCB1IR5_v6.500.tfs",1,"IP5");
185 beamline1->offsetElements(120,-0.097);
186 H_RomanPot * rp220_1 = new H_RomanPot("rp220_1",220,2000); // RP 220m, 2mm, beam 1
187 H_RomanPot * rp420_1 = new H_RomanPot("rp420_1",420,4000); // RP 420m, 4mm, beam 1
188 beamline1->add(rp220_1);
189 beamline1->add(rp420_1);
[11]190
[2]191 H_BeamLine* beamline2 = new H_BeamLine(1,500.);
192 beamline2->fill("data/LHCB1IR5_v6.500.tfs",-1,"IP5");
193 beamline2->offsetElements(120,+0.097);
194 H_RomanPot * rp220_2 = new H_RomanPot("rp220_2",220,2000);// RP 220m, 2mm, beam 2
195 H_RomanPot * rp420_2 = new H_RomanPot("rp420_2",420,4000);// RP 420m, 4mm, beam 2
196 beamline2->add(rp220_2);
197 beamline2->add(rp420_2);
198
199
200
201 // Loop over all events
202 Long64_t entry, allEntries = treeReader->GetEntries();
203 cout << "** Chain contains " << allEntries << " events" << endl;
204 for(entry = 0; entry < allEntries; ++entry)
205 {
206 TLorentzVector PTmis(0,0,0,0);
207 treeReader->ReadEntry(entry);
208 treeWriter->Clear();
209
210 if((entry % 100) == 0 && entry > 0 ) cout << "** Processing element # " << entry << endl;
211
212 TSimpleArray<TRootGenParticle> bGen;
213 itGen.Reset();
214 TrackCentral.clear();
215 towers.clear();
[11]216 input_particles.clear();
[2]217 TSimpleArray<TRootGenParticle> NFCentralQ;
218
219
220 // Loop over all particles in event
221 while( (particle = (TRootGenParticle*) itGen.Next()) )
222 {
223 genMomentum.SetPxPyPzE(particle->Px, particle->Py, particle->Pz, particle->E);
224
225 int pid = abs(particle->PID);
226 float eta = fabs(particle->Eta);
227
228 //subarray of the quarks (i.e. not final particles, i.e status not equal to 1)
229 // in the tracker (i.e. for those we know the tracks)
230 // with enough p_T
231 //// This subarray is needed for the B-jet algorithm
232 // optimization for speed : put first PID condition, then ETA condition, then either pt or status
233 if( (pid <= pB || pid == pGLUON) &&// is it a light quark or a gluon, i.e. is it one of these : u,d,c,s,b,g ?
234 eta < DET->MAX_TRACKER &&
235 particle->Status != 1 &&
236 particle->PT > DET->PT_QUARKS_MIN ) {
237 NFCentralQ.Add(particle);
238 }
239
240
241 // keeps only final particles, visible by the central detector, including the fiducial volume
242 // the ordering of conditions have been optimised for speed : put first the STATUS condition
243 if( (particle->Status == 1) &&
244 (
245 (pid == pMU && eta < DET->MAX_MU) ||
246 (pid != pMU && (pid != pNU1) && (pid != pNU2) && (pid != pNU3) && eta < DET->MAX_CALO_FWD)
247 )
248 ) {
249 switch(pid) {
250
251 case pE: // all electrons with eta < DET->MAX_CALO_FWD
252 DET->SmearElectron(genMomentum);
253 if(genMomentum.E()!=0 && eta < DET->MAX_TRACKER) {
254 elementElec = (TRootElectron*) branchElectron->NewEntry();
255 elementElec->Set(genMomentum);
256 elementElec->Charge = sign(particle->PID);
257 }
258 break; // case pE
259
260 case pGAMMA: // all photons with eta < DET->MAX_CALO_FWD
261 DET->SmearElectron(genMomentum);
262 if(genMomentum.E()!=0 && eta < DET->MAX_TRACKER) {
263 elementPhoton = (TRootPhoton*) branchPhoton->NewEntry();
264 elementPhoton->Set(genMomentum);
265 }
266 break; // case pGAMMA
267
268 case pMU: // all muons with eta < DET->MAX_MU
269 DET->SmearMu(genMomentum);
270 if(genMomentum.E() !=0 ) {
271 elementMu = (TRootMuon*) branchMuon->NewEntry();
272 elementMu->Charge = sign(particle->PID);
273 elementMu->Set(genMomentum);
274 }
275 break; // case pMU
276
277 case pLAMBDA: // all lambdas with eta < DET->MAX_CALO_FWD
278 case pK0S: // all K0s with eta < DET->MAX_CALO_FWD
279 DET->SmearHadron(genMomentum, 0.7);
280 break; // case hadron
281
282 default: // all other final particles with eta < DET->MAX_CALO_FWD
283 DET->SmearHadron(genMomentum, 1.0);
284 break;
285 } // switch (pid)
[11]286
[2]287 // all final particles but muons and neutrinos
288 // for calorimetric towers and mission PT
289 if(genMomentum.E()!=0) {
[11]290 PTmis = PTmis + genMomentum;//ptmis
291 if(pid !=pMU) {
292 towers.push_back(PhysicsTower(LorentzVector(genMomentum.Px(),genMomentum.Py(),genMomentum.Pz(), genMomentum.E())));
293 // create a fastjet::PseudoJet with these components and put it onto
294 // back of the input_particles vector
295 input_particles.push_back(fastjet::PseudoJet(genMomentum.Px(),genMomentum.Py(),genMomentum.Pz(), genMomentum.E()));
296 elementCalo = (TRootCalo*) branchCalo->NewEntry();
297 elementCalo->Set(genMomentum);
298 }
[2]299 }
[11]300
301
[2]302 // all final charged particles
303 if(
[11]304 ((rand()%100) < DET->TRACKING_EFF) &&
305 (genMomentum.E()!=0) &&
306 (fabs(particle->Eta) < DET->MAX_TRACKER) &&
307 (genMomentum.Pt() > DET->PT_TRACKS_MIN ) && // pt too small to be taken into account
308 (pid != pGAMMA) &&
309 (pid != pPI0) &&
310 (pid != pK0L) &&
311 (pid != pN) &&
312 (pid != pSIGMA0) &&
313 (pid != pDELTA0) &&
314 (pid != pK0S) // not charged particles : invisible by tracker
315 )
316 {
317 elementTracks = (TRootTracks*) branchTracks->NewEntry();
318 elementTracks->Set(genMomentum);
319 TrackCentral.push_back(genMomentum);
320 }
321 } // switch
322
[2]323 // Forward particles in CASTOR ?
[11]324 /* if (particle->Status == 1 && (fabs(particle->Eta) > DET->MIN_CALO_VFWD)
325 && (fabs(particle->Eta) < DET->MAX_CALO_VFWD)) {
326
327
328 } // CASTOR
329 */
[2]330 // Zero degree calorimeter, for forward neutrons and photons
331 if (particle->Status ==1 && (pid == pN || pid == pGAMMA ) && eta > DET->MIN_ZDC ) {
[11]332 // !!!!!!!!! vérifier que particle->Z est bien en micromÚtres!!!
333 // !!!!!!!!! vérifier que particle->T est bien en secondes!!!
334 // !!!!!!!!! pas de smearing ! on garde trop d'info !
335 elementZdc = (TRootZdcHits*) branchZDC->NewEntry();
336 elementZdc->Set(genMomentum);
337
338 // time of flight t is t = T + d/[ cos(theta) v ]
339 //double tx = acos(particle->Px/particle->Pz);
340 //double ty = acos(particle->Py/particle->Pz);
341 //double theta = (1E-6)*sqrt( pow(tx,2) + pow(ty,2) );
342 //double flight_distance = (DET->ZDC_S - particle->Z*(1E-6))/cos(theta) ; // assumes that Z is in micrometers
343 double flight_distance = (DET->ZDC_S - particle->Z*(1E-6));
344 // assumes also that the emission angle is so small that 1/(cos theta) = 1
345 elementZdc->T = 0*particle->T + flight_distance/speed_of_light; // assumes highly relativistic particles
346 elementZdc->side = sign(particle->Eta);
347
[2]348 }
[11]349
[2]350 // if forward proton
351 if( (pid == pP) && (particle->Status == 1) && (fabs(particle->Eta) > DET->MAX_CALO_FWD) )
352 {
[11]353 // !!!!!!!! put here particle->CHARGE and particle->MASS
354 H_BeamParticle p1; /// put here particle->CHARGE and particle->MASS
355 p1.smearAng();
356 p1.smearPos();
357 p1.setPosition(p1.getX()-500.,p1.getY(),p1.getTX()-1*kickers_on*CRANG,p1.getTY(),0);
358 p1.set4Momentum(particle->Px,particle->Py,particle->Pz,particle->E);
359
360 H_BeamLine *beamline;
361 if(particle->Eta >0) beamline = beamline1;
362 else beamline = beamline2;
363
364 p1.computePath(beamline,1);
365
366 if(p1.stopped(beamline)) {
367 if (p1.getStoppingElement()->getName()=="rp220_1" || p1.getStoppingElement()->getName()=="rp220_2") {
368 p1.propagate(DET->RP220_S);
369 elementRP220 = (TRootRomanPotHits*) branchRP220->NewEntry();
370 elementRP220->X = (1E-6)*p1.getX(); // [m]
371 elementRP220->Y = (1E-6)*p1.getY(); // [m]
372 elementRP220->Tx = (1E-6)*p1.getTX(); // [rad]
373 elementRP220->Ty = (1E-6)*p1.getTY(); // [rad]
374 elementRP220->S = p1.getS(); // [m]
375 elementRP220->T = -1; // not yet implemented
376 elementRP220->E = p1.getE(); // not yet implemented
377 elementRP220->q2 = -1; // not yet implemented
378 elementRP220->side = sign(particle->Eta);
379
380 } else if (p1.getStoppingElement()->getName()=="rp420_1" || p1.getStoppingElement()->getName()=="rp420_2") {
381 p1.propagate(DET->FP420_S);
382 elementFP420 = (TRootRomanPotHits*) branchFP420->NewEntry();
383 elementFP420->X = (1E-6)*p1.getX(); // [m]
384 elementFP420->Y = (1E-6)*p1.getY(); // [m]
385 elementFP420->Tx = (1E-6)*p1.getTX(); // [rad]
386 elementFP420->Ty = (1E-6)*p1.getTY(); // [rad]
387 elementFP420->S = p1.getS(); // [m]
388 elementFP420->T = -1; // not yet implemented
389 elementFP420->E = p1.getE(); // not yet implemented
390 elementFP420->q2 = -1; // not yet implemented
391 elementFP420->side = sign(particle->Eta);
[2]392 }
[11]393 }
394
395 // if(p1.stopped(beamline) && (p1.getStoppingElement()->getS() > 100))
396 // cout << "Eloss =" << 7000.-p1.getE() << " ; " << p1.getStoppingElement()->getName() << endl;
[2]397 } // if forward proton
[11]398
[2]399 } // while
[11]400
[2]401 // computes the Missing Transverse Momentum
402 elementEtmis = (TRootETmis*) branchETmis->NewEntry();
403 elementEtmis->ET = (-PTmis).Pt();
404 elementEtmis->Phi = (-PTmis).Phi();
405 elementEtmis->Px = (-PTmis).Px();
406 elementEtmis->Py = (-PTmis).Py();
[11]407
408 //*****************************
[2]409
[11]410 // we will have four jet definitions, and the first three will be
411 // plugins
412 fastjet::JetDefinition jet_def;
413 fastjet::JetDefinition::Plugin * plugins;
414
[2]415 switch(DET->JETALGO) {
[11]416 default:
417 case 1: {
418
419 // set up a CDF midpoint jet definition
420 #ifdef ENABLE_PLUGIN_CDFCONES
421 plugins = new fastjet::CDFJetCluPlugin(DET->C_SEEDTHRESHOLD,DET->CONERADIUS,DET->C_ADJACENCYCUT,DET->C_MAXITERATIONS,DET->C_IRATCH,DET->C_OVERLAPTHRESHOLD);
422 jet_def = fastjet::JetDefinition(plugins);
423 #else
424 plugins = NULL;
425 #endif
426
427 }
428 break;
429
430 case 2: {
431
432 // set up a CDF midpoint jet definition
433 #ifdef ENABLE_PLUGIN_CDFCONES
434 plugins = new fastjet::CDFMidPointPlugin (DET->M_SEEDTHRESHOLD,DET->CONERADIUS,DET->M_CONEAREAFRACTION,DET->M_MAXPAIRSIZE,DET->M_MAXPAIRSIZE,DET->C_OVERLAPTHRESHOLD);
435 jet_def = fastjet::JetDefinition(plugins);
436 #else
437 plugins = NULL;
438 #endif
439 }
440 break;
441
442 case 3: {
443 // set up a siscone jet definition
444 #ifdef ENABLE_PLUGIN_SISCONE
445 int npass = 0; // do infinite number of passes
446 double protojet_ptmin = 0.0; // use all protojets
447 plugins = new fastjet::SISConePlugin (DET->CONERADIUS,DET->C_OVERLAPTHRESHOLD,npass, protojet_ptmin);
448 jet_def = fastjet::JetDefinition(plugins);
449 #else
450 plugins = NULL;
451 #endif
452 }
453 break;
454
455 case 4: {
456 jet_def = fastjet::JetDefinition(fastjet::kt_algorithm, DET->CONERADIUS);
457 //jet_defs[4] = fastjet::JetDefinition(fastjet::cambridge_algorithm,jet_radius);
458 //jet_defs[5] = fastjet::JetDefinition(fastjet::antikt_algorithm,jet_radius);
459 }
460 break;
461 }
462 // run the jet clustering with the above jet definition
463 if(input_particles.size()!=0)
464 {
465 fastjet::ClusterSequence clust_seq(input_particles, jet_def);
466
467
468 // extract the inclusive jets with pt > 5 GeV
469 double ptmin = 5.0;
470 inclusive_jets = clust_seq.inclusive_jets(ptmin);
471
472 // sort jets into increasing pt
473 sorted_by_pt(inclusive_jets);
474 }
475
476 for (unsigned int i = 0; i < inclusive_jets.size(); i++) {
477 elementJet = (TRootJet*) branchJet->NewEntry();
478 TLorentzVector JET;
479 JET.SetPxPyPzE(inclusive_jets[i].px(),inclusive_jets[i].py(),inclusive_jets[i].pz(),inclusive_jets[i].E());
480 elementJet->Set(JET);
481 // b-jets
482 bool btag=false;
483 if((fabs(JET.Eta()) < DET->MAX_TRACKER && DET->Btaggedjet(JET, NFCentralQ)))btag=true;
484 elementJet->Btag = btag;
485
486 // Tau jet identification : 1! track and electromagnetic collimation
487 if(fabs(JET.Eta()) < (DET->MAX_TRACKER - DET->TAU_CONE_TRACKS)) {
488 double Energie_tau_central = DET->EnergySmallCone(towers,JET.Eta(),JET.Phi());
489 if(
490 ( Energie_tau_central/JET.E() > DET->TAU_EM_COLLIMATION ) &&
491 ( DET->NumTracks(TrackCentral,DET->PT_TRACK_TAU,JET.Eta(),JET.Phi()) == 1 )
492 ) {
493 elementTauJet = (TRootTauJet*) branchTauJet->NewEntry();
494 elementTauJet->Set(JET);
495 } // if tau jet
496 } // if JET.eta < tracker - tau_cone : Tau jet identification
497 } // for itJet : loop on all jets
498
[2]499 treeWriter->Fill();
500 // Add here the trigger
501 // Should test all the trigger table on the event, based on reconstructed objects
502 } // Loop over all events
503 treeWriter->Write();
504
505 cout << "** Exiting..." << endl;
506
507 delete treeWriter;
508 delete treeReader;
509 delete DET;
510 if(converter) delete converter;
511
512 todo("TODO");
513}
514
Note: See TracBrowser for help on using the repository browser.