Fork me on GitHub

source: git/modules/SimpleCalorimeter.cc@ d5cae2b

ImprovedOutputFile Timing dual_readout llp
Last change on this file since d5cae2b was 4e09c3a, checked in by Pavel Demin <pavel.demin@…>, 10 years ago

replace DitherTowerCenter with SmearTowerCenter

  • Property mode set to 100644
File size: 13.4 KB
Line 
1/*
2 * Delphes: a framework for fast simulation of a generic collider experiment
3 * Copyright (C) 2012-2014 Universite catholique de Louvain (UCL), Belgium
4 *
5 * This program is free software: you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation, either version 3 of the License, or
8 * (at your option) any later version.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program. If not, see <http://www.gnu.org/licenses/>.
17 */
18
19
20/** \class SimpleCalorimeter
21 *
22 * Fills SimpleCalorimeter towers, performs SimpleCalorimeter resolution smearing,
23 * and creates energy flow objects (tracks, photons, and neutral hadrons).
24 *
25 * \author P. Demin - UCL, Louvain-la-Neuve
26 *
27 */
28
29#include "modules/SimpleCalorimeter.h"
30
31#include "classes/DelphesClasses.h"
32#include "classes/DelphesFactory.h"
33#include "classes/DelphesFormula.h"
34
35#include "ExRootAnalysis/ExRootResult.h"
36#include "ExRootAnalysis/ExRootFilter.h"
37#include "ExRootAnalysis/ExRootClassifier.h"
38
39#include "TMath.h"
40#include "TString.h"
41#include "TFormula.h"
42#include "TRandom3.h"
43#include "TObjArray.h"
44#include "TDatabasePDG.h"
45#include "TLorentzVector.h"
46
47#include <algorithm>
48#include <stdexcept>
49#include <iostream>
50#include <sstream>
51
52using namespace std;
53
54//------------------------------------------------------------------------------
55
56SimpleCalorimeter::SimpleCalorimeter() :
57 fResolutionFormula(0),
58 fItParticleInputArray(0), fItTrackInputArray(0),
59 fTowerTrackArray(0), fItTowerTrackArray(0)
60{
61 fResolutionFormula = new DelphesFormula;
62
63 fTowerTrackArray = new TObjArray;
64 fItTowerTrackArray = fTowerTrackArray->MakeIterator();
65}
66
67//------------------------------------------------------------------------------
68
69SimpleCalorimeter::~SimpleCalorimeter()
70{
71 if(fResolutionFormula) delete fResolutionFormula;
72
73 if(fTowerTrackArray) delete fTowerTrackArray;
74 if(fItTowerTrackArray) delete fItTowerTrackArray;
75}
76
77//------------------------------------------------------------------------------
78
79void SimpleCalorimeter::Init()
80{
81 ExRootConfParam param, paramEtaBins, paramPhiBins, paramFractions;
82 Long_t i, j, k, size, sizeEtaBins, sizePhiBins;
83 Double_t fraction;
84 TBinMap::iterator itEtaBin;
85 set< Double_t >::iterator itPhiBin;
86 vector< Double_t > *phiBins;
87
88 // read eta and phi bins
89 param = GetParam("EtaPhiBins");
90 size = param.GetSize();
91 fBinMap.clear();
92 fEtaBins.clear();
93 fPhiBins.clear();
94 for(i = 0; i < size/2; ++i)
95 {
96 paramEtaBins = param[i*2];
97 sizeEtaBins = paramEtaBins.GetSize();
98 paramPhiBins = param[i*2 + 1];
99 sizePhiBins = paramPhiBins.GetSize();
100
101 for(j = 0; j < sizeEtaBins; ++j)
102 {
103 for(k = 0; k < sizePhiBins; ++k)
104 {
105 fBinMap[paramEtaBins[j].GetDouble()].insert(paramPhiBins[k].GetDouble());
106 }
107 }
108 }
109
110 // for better performance we transform map of sets to parallel vectors:
111 // vector< double > and vector< vector< double >* >
112 for(itEtaBin = fBinMap.begin(); itEtaBin != fBinMap.end(); ++itEtaBin)
113 {
114 fEtaBins.push_back(itEtaBin->first);
115 phiBins = new vector< double >(itEtaBin->second.size());
116 fPhiBins.push_back(phiBins);
117 phiBins->clear();
118 for(itPhiBin = itEtaBin->second.begin(); itPhiBin != itEtaBin->second.end(); ++itPhiBin)
119 {
120 phiBins->push_back(*itPhiBin);
121 }
122 }
123
124 // read energy fractions for different particles
125 param = GetParam("EnergyFraction");
126 size = param.GetSize();
127
128 // set default energy fractions values
129 fFractionMap.clear();
130 fFractionMap[0] = 1.0;
131
132 for(i = 0; i < size/2; ++i)
133 {
134 paramFractions = param[i*2 + 1];
135 fraction = paramFractions[0].GetDouble();
136 fFractionMap[param[i*2].GetInt()] = fraction;
137 }
138
139/*
140 TFractionMap::iterator itFractionMap;
141 for(itFractionMap = fFractionMap.begin(); itFractionMap != fFractionMap.end(); ++itFractionMap)
142 {
143 cout << itFractionMap->first << " " << itFractionMap->second.first << " " << itFractionMap->second.second << endl;
144 }
145*/
146
147 // read min E value for towers to be saved
148 fEnergyMin = GetDouble("EnergyMin", 0.0);
149
150 fEnergySignificanceMin = GetDouble("EnergySignificanceMin", 0.0);
151
152 // switch on or off the dithering of the center of calorimeter towers
153 fSmearTowerCenter = GetBool("SmearTowerCenter", true);
154
155 // read resolution formulas
156 fResolutionFormula->Compile(GetString("ResolutionFormula", "0"));
157
158 // import array with output from other modules
159 fParticleInputArray = ImportArray(GetString("ParticleInputArray", "ParticlePropagator/particles"));
160 fItParticleInputArray = fParticleInputArray->MakeIterator();
161
162 fTrackInputArray = ImportArray(GetString("TrackInputArray", "ParticlePropagator/tracks"));
163 fItTrackInputArray = fTrackInputArray->MakeIterator();
164
165 // create output arrays
166 fTowerOutputArray = ExportArray(GetString("TowerOutputArray", "towers"));
167 fEFlowTowerOutputArray = ExportArray(GetString("EFlowTowerOutputArray", "eflowTowers"));
168}
169
170//------------------------------------------------------------------------------
171
172void SimpleCalorimeter::Finish()
173{
174 vector< vector< Double_t >* >::iterator itPhiBin;
175 if(fItParticleInputArray) delete fItParticleInputArray;
176 if(fItTrackInputArray) delete fItTrackInputArray;
177 for(itPhiBin = fPhiBins.begin(); itPhiBin != fPhiBins.end(); ++itPhiBin)
178 {
179 delete *itPhiBin;
180 }
181}
182
183//------------------------------------------------------------------------------
184
185void SimpleCalorimeter::Process()
186{
187 Candidate *particle, *track;
188 TLorentzVector position, momentum;
189 Short_t etaBin, phiBin, flags;
190 Int_t number;
191 Long64_t towerHit, towerEtaPhi, hitEtaPhi;
192 Double_t fraction;
193 Double_t energy;
194 Int_t pdgCode;
195
196 TFractionMap::iterator itFractionMap;
197
198 vector< Double_t >::iterator itEtaBin;
199 vector< Double_t >::iterator itPhiBin;
200 vector< Double_t > *phiBins;
201
202 vector< Long64_t >::iterator itTowerHits;
203
204 DelphesFactory *factory = GetFactory();
205 fTowerHits.clear();
206 fTowerFractions.clear();
207 fTrackFractions.clear();
208
209 // loop over all particles
210 fItParticleInputArray->Reset();
211 number = -1;
212 while((particle = static_cast<Candidate*>(fItParticleInputArray->Next())))
213 {
214 const TLorentzVector &particlePosition = particle->Position;
215 ++number;
216
217 pdgCode = TMath::Abs(particle->PID);
218
219 itFractionMap = fFractionMap.find(pdgCode);
220 if(itFractionMap == fFractionMap.end())
221 {
222 itFractionMap = fFractionMap.find(0);
223 }
224
225 fraction = itFractionMap->second;
226 fTowerFractions.push_back(fraction);
227
228 if(fraction < 1.0E-9) continue;
229
230 // find eta bin [1, fEtaBins.size - 1]
231 itEtaBin = lower_bound(fEtaBins.begin(), fEtaBins.end(), particlePosition.Eta());
232 if(itEtaBin == fEtaBins.begin() || itEtaBin == fEtaBins.end()) continue;
233 etaBin = distance(fEtaBins.begin(), itEtaBin);
234
235 // phi bins for given eta bin
236 phiBins = fPhiBins[etaBin];
237
238 // find phi bin [1, phiBins.size - 1]
239 itPhiBin = lower_bound(phiBins->begin(), phiBins->end(), particlePosition.Phi());
240 if(itPhiBin == phiBins->begin() || itPhiBin == phiBins->end()) continue;
241 phiBin = distance(phiBins->begin(), itPhiBin);
242
243 flags = 0;
244 flags |= (pdgCode == 11 || pdgCode == 22) << 1;
245
246 // make tower hit {16-bits for eta bin number, 16-bits for phi bin number, 8-bits for flags, 24-bits for particle number}
247 towerHit = (Long64_t(etaBin) << 48) | (Long64_t(phiBin) << 32) | (Long64_t(flags) << 24) | Long64_t(number);
248
249 fTowerHits.push_back(towerHit);
250 }
251
252 // loop over all tracks
253 fItTrackInputArray->Reset();
254 number = -1;
255 while((track = static_cast<Candidate*>(fItTrackInputArray->Next())))
256 {
257 const TLorentzVector &trackPosition = track->Position;
258 ++number;
259
260 pdgCode = TMath::Abs(track->PID);
261
262 itFractionMap = fFractionMap.find(pdgCode);
263 if(itFractionMap == fFractionMap.end())
264 {
265 itFractionMap = fFractionMap.find(0);
266 }
267
268 fraction = itFractionMap->second;
269
270 fTrackFractions.push_back(fraction);
271
272 // find eta bin [1, fEtaBins.size - 1]
273 itEtaBin = lower_bound(fEtaBins.begin(), fEtaBins.end(), trackPosition.Eta());
274 if(itEtaBin == fEtaBins.begin() || itEtaBin == fEtaBins.end()) continue;
275 etaBin = distance(fEtaBins.begin(), itEtaBin);
276
277 // phi bins for given eta bin
278 phiBins = fPhiBins[etaBin];
279
280 // find phi bin [1, phiBins.size - 1]
281 itPhiBin = lower_bound(phiBins->begin(), phiBins->end(), trackPosition.Phi());
282 if(itPhiBin == phiBins->begin() || itPhiBin == phiBins->end()) continue;
283 phiBin = distance(phiBins->begin(), itPhiBin);
284
285 flags = 1;
286
287 // make tower hit {16-bits for eta bin number, 16-bits for phi bin number, 8-bits for flags, 24-bits for track number}
288 towerHit = (Long64_t(etaBin) << 48) | (Long64_t(phiBin) << 32) | (Long64_t(flags) << 24) | Long64_t(number);
289
290 fTowerHits.push_back(towerHit);
291 }
292
293 // all hits are sorted first by eta bin number, then by phi bin number,
294 // then by flags and then by particle or track number
295 sort(fTowerHits.begin(), fTowerHits.end());
296
297 // loop over all hits
298 towerEtaPhi = 0;
299 fTower = 0;
300 for(itTowerHits = fTowerHits.begin(); itTowerHits != fTowerHits.end(); ++itTowerHits)
301 {
302 towerHit = (*itTowerHits);
303 flags = (towerHit >> 24) & 0x00000000000000FFLL;
304 number = (towerHit) & 0x0000000000FFFFFFLL;
305 hitEtaPhi = towerHit >> 32;
306
307 if(towerEtaPhi != hitEtaPhi)
308 {
309 // switch to next tower
310 towerEtaPhi = hitEtaPhi;
311
312 // finalize previous tower
313 FinalizeTower();
314
315 // create new tower
316 fTower = factory->NewCandidate();
317
318 phiBin = (towerHit >> 32) & 0x000000000000FFFFLL;
319 etaBin = (towerHit >> 48) & 0x000000000000FFFFLL;
320
321 // phi bins for given eta bin
322 phiBins = fPhiBins[etaBin];
323
324 // calculate eta and phi of the tower's center
325 fTowerEta = 0.5*(fEtaBins[etaBin - 1] + fEtaBins[etaBin]);
326 fTowerPhi = 0.5*((*phiBins)[phiBin - 1] + (*phiBins)[phiBin]);
327
328 fTowerEdges[0] = fEtaBins[etaBin - 1];
329 fTowerEdges[1] = fEtaBins[etaBin];
330 fTowerEdges[2] = (*phiBins)[phiBin - 1];
331 fTowerEdges[3] = (*phiBins)[phiBin];
332
333 fTowerEnergy = 0.0;
334 fTrackEnergy = 0.0;
335
336 fTowerTime = 0.0;
337 fTrackTime = 0.0;
338
339 fTowerTimeWeight = 0.0;
340
341 fTowerTrackHits = 0;
342 fTowerPhotonHits = 0;
343
344 fTowerTrackArray->Clear();
345 }
346
347 // check for track hits
348 if(flags & 1)
349 {
350 ++fTowerTrackHits;
351
352 track = static_cast<Candidate*>(fTrackInputArray->At(number));
353 momentum = track->Momentum;
354 position = track->Position;
355
356 energy = momentum.E() * fTrackFractions[number];
357
358 fTrackEnergy += energy;
359
360 fTrackTime += TMath::Sqrt(energy)*position.T();
361 fTrackTimeWeight += TMath::Sqrt(energy);
362
363 fTowerTrackArray->Add(track);
364
365 continue;
366 }
367
368 // check for photon and electron hits in current tower
369 if(flags & 2) ++fTowerPhotonHits;
370
371 particle = static_cast<Candidate*>(fParticleInputArray->At(number));
372 momentum = particle->Momentum;
373 position = particle->Position;
374
375 // fill current tower
376 energy = momentum.E() * fTowerFractions[number];
377
378 fTowerEnergy += energy;
379
380 fTowerTime += TMath::Sqrt(energy)*position.T();
381 fTowerTimeWeight += TMath::Sqrt(energy);
382
383 fTower->AddCandidate(particle);
384 }
385
386 // finalize last tower
387 FinalizeTower();
388}
389
390//------------------------------------------------------------------------------
391
392void SimpleCalorimeter::FinalizeTower()
393{
394 Candidate *tower;
395 Double_t energy, pt, eta, phi;
396 Double_t sigma;
397 Double_t time;
398
399 if(!fTower) return;
400
401 sigma = fResolutionFormula->Eval(0.0, fTowerEta, 0.0, fTowerEnergy);
402
403 energy = LogNormal(fTowerEnergy, sigma);
404
405 time = (fTowerTimeWeight < 1.0E-09 ) ? 0.0 : fTowerTime/fTowerTimeWeight;
406
407 sigma = fResolutionFormula->Eval(0.0, fTowerEta, 0.0, energy);
408
409 if(energy < fEnergyMin || energy < fEnergySignificanceMin*sigma) energy = 0.0;
410
411 if(fSmearTowerCenter)
412 {
413 eta = gRandom->Uniform(fTowerEdges[0], fTowerEdges[1]);
414 phi = gRandom->Uniform(fTowerEdges[2], fTowerEdges[3]);
415 }
416 else
417 {
418 eta = fTowerEta;
419 phi = fTowerPhi;
420 }
421
422 pt = energy / TMath::CosH(eta);
423
424 fTower->Position.SetPtEtaPhiE(1.0, eta, phi, time);
425 fTower->Momentum.SetPtEtaPhiE(pt, eta, phi, energy);
426
427 fTower->Edges[0] = fTowerEdges[0];
428 fTower->Edges[1] = fTowerEdges[1];
429 fTower->Edges[2] = fTowerEdges[2];
430 fTower->Edges[3] = fTowerEdges[3];
431
432 // fill SimpleCalorimeter towers
433 if(energy > 0.0) fTowerOutputArray->Add(fTower);
434
435 // fill energy flow candidates
436 energy -= fTrackEnergy;
437
438 sigma = fResolutionFormula->Eval(0.0, fTowerEta, 0.0, energy);
439
440 if(energy < fEnergyMin || energy < fEnergySignificanceMin*sigma) energy = 0.0;
441
442 // save energy excess as an energy flow tower
443 if(energy > 0.0)
444 {
445 // create new photon tower
446 tower = static_cast<Candidate*>(fTower->Clone());
447 pt = energy / TMath::CosH(eta);
448
449 tower->Momentum.SetPtEtaPhiE(pt, eta, phi, energy);
450 fEFlowTowerOutputArray->Add(tower);
451 }
452}
453
454//------------------------------------------------------------------------------
455
456Double_t SimpleCalorimeter::LogNormal(Double_t mean, Double_t sigma)
457{
458 Double_t a, b;
459
460 if(mean > 0.0)
461 {
462 b = TMath::Sqrt(TMath::Log((1.0 + (sigma*sigma)/(mean*mean))));
463 a = TMath::Log(mean) - 0.5*b*b;
464
465 return TMath::Exp(a + b*gRandom->Gaus(0.0, 1.0));
466 }
467 else
468 {
469 return 0.0;
470 }
471}
Note: See TracBrowser for help on using the repository browser.