1 | /*
|
---|
2 | * Delphes: a framework for fast simulation of a generic collider experiment
|
---|
3 | * Copyright (C) 2012-2014 Universite catholique de Louvain (UCL), Belgium
|
---|
4 | *
|
---|
5 | * This program is free software: you can redistribute it and/or modify
|
---|
6 | * it under the terms of the GNU General Public License as published by
|
---|
7 | * the Free Software Foundation, either version 3 of the License, or
|
---|
8 | * (at your option) any later version.
|
---|
9 | *
|
---|
10 | * This program is distributed in the hope that it will be useful,
|
---|
11 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
12 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
13 | * GNU General Public License for more details.
|
---|
14 | *
|
---|
15 | * You should have received a copy of the GNU General Public License
|
---|
16 | * along with this program. If not, see <http://www.gnu.org/licenses/>.
|
---|
17 | */
|
---|
18 |
|
---|
19 |
|
---|
20 | /** \class ParticlePropagator
|
---|
21 | *
|
---|
22 | * Propagates charged and neutral particles
|
---|
23 | * from a given vertex to a cylinder defined by its radius,
|
---|
24 | * its half-length, centered at (0,0,0) and with its axis
|
---|
25 | * oriented along the z-axis.
|
---|
26 | *
|
---|
27 | * \author P. Demin - UCL, Louvain-la-Neuve
|
---|
28 | *
|
---|
29 | */
|
---|
30 |
|
---|
31 | #include "modules/ParticlePropagator.h"
|
---|
32 |
|
---|
33 | #include "classes/DelphesClasses.h"
|
---|
34 | #include "classes/DelphesFactory.h"
|
---|
35 | #include "classes/DelphesFormula.h"
|
---|
36 |
|
---|
37 | #include "ExRootAnalysis/ExRootResult.h"
|
---|
38 | #include "ExRootAnalysis/ExRootFilter.h"
|
---|
39 | #include "ExRootAnalysis/ExRootClassifier.h"
|
---|
40 |
|
---|
41 | #include "TMath.h"
|
---|
42 | #include "TString.h"
|
---|
43 | #include "TFormula.h"
|
---|
44 | #include "TRandom3.h"
|
---|
45 | #include "TObjArray.h"
|
---|
46 | #include "TDatabasePDG.h"
|
---|
47 | #include "TLorentzVector.h"
|
---|
48 |
|
---|
49 | #include <algorithm>
|
---|
50 | #include <stdexcept>
|
---|
51 | #include <iostream>
|
---|
52 | #include <sstream>
|
---|
53 |
|
---|
54 | using namespace std;
|
---|
55 |
|
---|
56 | //------------------------------------------------------------------------------
|
---|
57 |
|
---|
58 | ParticlePropagator::ParticlePropagator() :
|
---|
59 | fItInputArray(0)
|
---|
60 | {
|
---|
61 | }
|
---|
62 |
|
---|
63 | //------------------------------------------------------------------------------
|
---|
64 |
|
---|
65 | ParticlePropagator::~ParticlePropagator()
|
---|
66 | {
|
---|
67 | }
|
---|
68 |
|
---|
69 |
|
---|
70 | //------------------------------------------------------------------------------
|
---|
71 |
|
---|
72 | void ParticlePropagator::Init()
|
---|
73 | {
|
---|
74 | fRadius = GetDouble("Radius", 1.0);
|
---|
75 | fRadius2 = fRadius*fRadius;
|
---|
76 | fHalfLength = GetDouble("HalfLength", 3.0);
|
---|
77 | fBz = GetDouble("Bz", 0.0);
|
---|
78 | if(fRadius < 1.0E-2)
|
---|
79 | {
|
---|
80 | cout << "ERROR: magnetic field radius is too low\n";
|
---|
81 | return;
|
---|
82 | }
|
---|
83 | if(fHalfLength < 1.0E-2)
|
---|
84 | {
|
---|
85 | cout << "ERROR: magnetic field length is too low\n";
|
---|
86 | return;
|
---|
87 | }
|
---|
88 |
|
---|
89 | fRadiusMax = GetDouble("RadiusMax", fRadius);
|
---|
90 | fHalfLengthMax = GetDouble("HalfLengthMax", fHalfLength);
|
---|
91 |
|
---|
92 | // import array with output from filter/classifier module
|
---|
93 |
|
---|
94 | fInputArray = ImportArray(GetString("InputArray", "Delphes/stableParticles"));
|
---|
95 | fItInputArray = fInputArray->MakeIterator();
|
---|
96 |
|
---|
97 | // import beamspot
|
---|
98 | try
|
---|
99 | {
|
---|
100 | fBeamSpotInputArray = ImportArray(GetString("BeamSpotInputArray", "BeamSpotFilter/beamSpotParticle"));
|
---|
101 | }
|
---|
102 | catch(runtime_error &e)
|
---|
103 | {
|
---|
104 | fBeamSpotInputArray = 0;
|
---|
105 | }
|
---|
106 | // create output arrays
|
---|
107 |
|
---|
108 | fOutputArray = ExportArray(GetString("OutputArray", "stableParticles"));
|
---|
109 | fNeutralOutputArray = ExportArray(GetString("NeutralOutputArray", "neutralParticles"));
|
---|
110 | fChargedHadronOutputArray = ExportArray(GetString("ChargedHadronOutputArray", "chargedHadrons"));
|
---|
111 | fElectronOutputArray = ExportArray(GetString("ElectronOutputArray", "electrons"));
|
---|
112 | fMuonOutputArray = ExportArray(GetString("MuonOutputArray", "muons"));
|
---|
113 | }
|
---|
114 |
|
---|
115 | //------------------------------------------------------------------------------
|
---|
116 |
|
---|
117 | void ParticlePropagator::Finish()
|
---|
118 | {
|
---|
119 | if(fItInputArray) delete fItInputArray;
|
---|
120 | }
|
---|
121 |
|
---|
122 | //------------------------------------------------------------------------------
|
---|
123 |
|
---|
124 | void ParticlePropagator::Process()
|
---|
125 | {
|
---|
126 | Candidate *candidate, *mother, *particle;
|
---|
127 | TLorentzVector particlePosition, particleMomentum, beamSpotPosition;
|
---|
128 | Double_t px, py, pz, pt, pt2, e, q;
|
---|
129 | Double_t x, y, z, t, r, phi;
|
---|
130 | Double_t x_c, y_c, r_c, phi_c, phi_0;
|
---|
131 | Double_t x_t, y_t, z_t, r_t;
|
---|
132 | Double_t t1, t2, t3, t4, t5, t6;
|
---|
133 | Double_t t_z, t_r, t_ra, t_rb;
|
---|
134 | Double_t tmp, discr, discr2;
|
---|
135 | Double_t delta, gammam, omega, asinrho;
|
---|
136 | Double_t rcu, rc2, xd, yd, zd;
|
---|
137 | Double_t l, d0, dz, p, ctgTheta, phip, etap, alpha;
|
---|
138 | Double_t bsx, bsy, bsz;
|
---|
139 |
|
---|
140 | const Double_t c_light = 2.99792458E8;
|
---|
141 |
|
---|
142 | if (!fBeamSpotInputArray || fBeamSpotInputArray->GetSize () == 0)
|
---|
143 | beamSpotPosition.SetXYZT(0.0, 0.0, 0.0, 0.0);
|
---|
144 | else
|
---|
145 | {
|
---|
146 | Candidate &beamSpotCandidate = *((Candidate *) fBeamSpotInputArray->At(0));
|
---|
147 | beamSpotPosition = beamSpotCandidate.Position;
|
---|
148 | }
|
---|
149 |
|
---|
150 | fItInputArray->Reset();
|
---|
151 | while((candidate = static_cast<Candidate*>(fItInputArray->Next())))
|
---|
152 | {
|
---|
153 | if(candidate->GetCandidates()->GetEntriesFast() == 0)
|
---|
154 | {
|
---|
155 | particle = candidate;
|
---|
156 | }
|
---|
157 | else
|
---|
158 | {
|
---|
159 | particle = static_cast<Candidate*>(candidate->GetCandidates()->At(0));
|
---|
160 | }
|
---|
161 |
|
---|
162 | particlePosition = particle->Position;
|
---|
163 | particleMomentum = particle->Momentum;
|
---|
164 | x = particlePosition.X()*1.0E-3;
|
---|
165 | y = particlePosition.Y()*1.0E-3;
|
---|
166 | z = particlePosition.Z()*1.0E-3;
|
---|
167 |
|
---|
168 | bsx = beamSpotPosition.X()*1.0E-3;
|
---|
169 | bsy = beamSpotPosition.Y()*1.0E-3;
|
---|
170 | bsz = beamSpotPosition.Z()*1.0E-3;
|
---|
171 |
|
---|
172 | q = particle->Charge;
|
---|
173 |
|
---|
174 | // check that particle position is inside the cylinder
|
---|
175 | if(TMath::Hypot(x, y) > fRadiusMax || TMath::Abs(z) > fHalfLengthMax)
|
---|
176 | {
|
---|
177 | continue;
|
---|
178 | }
|
---|
179 |
|
---|
180 | px = particleMomentum.Px();
|
---|
181 | py = particleMomentum.Py();
|
---|
182 | pz = particleMomentum.Pz();
|
---|
183 | pt = particleMomentum.Pt();
|
---|
184 | pt2 = particleMomentum.Perp2();
|
---|
185 | e = particleMomentum.E();
|
---|
186 |
|
---|
187 | if(pt2 < 1.0E-9)
|
---|
188 | {
|
---|
189 | continue;
|
---|
190 | }
|
---|
191 |
|
---|
192 | if(TMath::Hypot(x, y) > fRadius || TMath::Abs(z) > fHalfLength)
|
---|
193 | {
|
---|
194 | mother = candidate;
|
---|
195 | candidate = static_cast<Candidate*>(candidate->Clone());
|
---|
196 |
|
---|
197 | candidate->InitialPosition = particlePosition;
|
---|
198 | candidate->Position = particlePosition;
|
---|
199 | candidate->L = 0.0;
|
---|
200 |
|
---|
201 | candidate->Momentum = particleMomentum;
|
---|
202 | candidate->AddCandidate(mother);
|
---|
203 |
|
---|
204 | fOutputArray->Add(candidate);
|
---|
205 | }
|
---|
206 | else if(TMath::Abs(q) < 1.0E-9 || TMath::Abs(fBz) < 1.0E-9)
|
---|
207 | {
|
---|
208 | // solve pt2*t^2 + 2*(px*x + py*y)*t - (fRadius2 - x*x - y*y) = 0
|
---|
209 | tmp = px*y - py*x;
|
---|
210 | discr2 = pt2*fRadius2 - tmp*tmp;
|
---|
211 |
|
---|
212 | if(discr2 < 0.0)
|
---|
213 | {
|
---|
214 | // no solutions
|
---|
215 | continue;
|
---|
216 | }
|
---|
217 |
|
---|
218 | tmp = px*x + py*y;
|
---|
219 | discr = TMath::Sqrt(discr2);
|
---|
220 | t1 = (-tmp + discr)/pt2;
|
---|
221 | t2 = (-tmp - discr)/pt2;
|
---|
222 | t = (t1 < 0.0) ? t2 : t1;
|
---|
223 |
|
---|
224 | z_t = z + pz*t;
|
---|
225 | if(TMath::Abs(z_t) > fHalfLength)
|
---|
226 | {
|
---|
227 | t3 = (+fHalfLength - z) / pz;
|
---|
228 | t4 = (-fHalfLength - z) / pz;
|
---|
229 | t = (t3 < 0.0) ? t4 : t3;
|
---|
230 | }
|
---|
231 |
|
---|
232 | x_t = x + px*t;
|
---|
233 | y_t = y + py*t;
|
---|
234 | z_t = z + pz*t;
|
---|
235 |
|
---|
236 | l = TMath::Sqrt( (x_t - x)*(x_t - x) + (y_t - y)*(y_t - y) + (z_t - z)*(z_t - z));
|
---|
237 |
|
---|
238 | mother = candidate;
|
---|
239 | candidate = static_cast<Candidate*>(candidate->Clone());
|
---|
240 |
|
---|
241 | candidate->InitialPosition = particlePosition;
|
---|
242 | candidate->Position.SetXYZT(x_t*1.0E3, y_t*1.0E3, z_t*1.0E3, particlePosition.T() + t*e*1.0E3);
|
---|
243 | candidate->L = l*1.0E3;
|
---|
244 |
|
---|
245 | candidate->Momentum = particleMomentum;
|
---|
246 | candidate->AddCandidate(mother);
|
---|
247 |
|
---|
248 | fOutputArray->Add(candidate);
|
---|
249 | if(TMath::Abs(q) > 1.0E-9)
|
---|
250 | {
|
---|
251 | switch(TMath::Abs(candidate->PID))
|
---|
252 | {
|
---|
253 | case 11:
|
---|
254 | fElectronOutputArray->Add(candidate);
|
---|
255 | break;
|
---|
256 | case 13:
|
---|
257 | fMuonOutputArray->Add(candidate);
|
---|
258 | break;
|
---|
259 | default:
|
---|
260 | fChargedHadronOutputArray->Add(candidate);
|
---|
261 | }
|
---|
262 | }
|
---|
263 | else
|
---|
264 | {
|
---|
265 | fNeutralOutputArray->Add(candidate);
|
---|
266 | }
|
---|
267 | }
|
---|
268 | else
|
---|
269 | {
|
---|
270 |
|
---|
271 | // 1. initial transverse momentum p_{T0}: Part->pt
|
---|
272 | // initial transverse momentum direction phi_0 = -atan(p_X0/p_Y0)
|
---|
273 | // relativistic gamma: gamma = E/mc^2; gammam = gamma * m
|
---|
274 | // gyration frequency omega = q/(gamma m) fBz
|
---|
275 | // helix radius r = p_{T0} / (omega gamma m)
|
---|
276 |
|
---|
277 | gammam = e*1.0E9 / (c_light*c_light); // gammam in [eV/c^2]
|
---|
278 | omega = q * fBz / (gammam); // omega is here in [89875518/s]
|
---|
279 | r = pt / (q * fBz) * 1.0E9/c_light; // in [m]
|
---|
280 |
|
---|
281 | phi_0 = TMath::ATan2(py, px); // [rad] in [-pi, pi]
|
---|
282 |
|
---|
283 | // 2. helix axis coordinates
|
---|
284 | x_c = x + r*TMath::Sin(phi_0);
|
---|
285 | y_c = y - r*TMath::Cos(phi_0);
|
---|
286 | r_c = TMath::Hypot(x_c, y_c);
|
---|
287 | phi_c = TMath::ATan2(y_c, x_c);
|
---|
288 | phi = phi_c;
|
---|
289 | if(x_c < 0.0) phi += TMath::Pi();
|
---|
290 |
|
---|
291 | rcu = TMath::Abs(r);
|
---|
292 | rc2 = r_c*r_c;
|
---|
293 |
|
---|
294 | // calculate coordinates of closest approach to track circle in transverse plane xd, yd, zd
|
---|
295 | xd = x_c*x_c*x_c - x_c*rcu*r_c + x_c*y_c*y_c;
|
---|
296 | xd = (rc2 > 0.0) ? xd / rc2 : -999;
|
---|
297 | yd = y_c*(-rcu*r_c + rc2);
|
---|
298 | yd = (rc2 > 0.0) ? yd / rc2 : -999;
|
---|
299 | zd = z + (TMath::Sqrt(xd*xd + yd*yd) - TMath::Sqrt(x*x + y*y))*pz/pt;
|
---|
300 |
|
---|
301 | // use perigee momentum rather than original particle
|
---|
302 | // momentum, since the orignal particle momentum isn't known
|
---|
303 |
|
---|
304 | px = TMath::Sign(1.0, r) * pt * (-y_c / r_c);
|
---|
305 | py = TMath::Sign(1.0, r) * pt * (x_c / r_c);
|
---|
306 | etap = particleMomentum.Eta();
|
---|
307 | phip = TMath::ATan2(py, px);
|
---|
308 |
|
---|
309 | particleMomentum.SetPtEtaPhiE(pt, etap, phip, particleMomentum.E());
|
---|
310 |
|
---|
311 | // calculate additional track parameters (correct for beamspot position)
|
---|
312 |
|
---|
313 | d0 = ((x - bsx) * py - (y - bsy) * px) / pt;
|
---|
314 | dz = z - ((x - bsx) * px + (y - bsy) * py) / pt * (pz / pt);
|
---|
315 | p = particleMomentum.P();
|
---|
316 | ctgTheta = 1.0 / TMath::Tan (particleMomentum.Theta());
|
---|
317 |
|
---|
318 |
|
---|
319 | // 3. time evaluation t = TMath::Min(t_r, t_z)
|
---|
320 | // t_r : time to exit from the sides
|
---|
321 | // t_z : time to exit from the front or the back
|
---|
322 | t_r = 0.0; // in [ns]
|
---|
323 | int sign_pz = (pz > 0.0) ? 1 : -1;
|
---|
324 | if(pz == 0.0) t_z = 1.0E99;
|
---|
325 | else t_z = gammam / (pz*1.0E9/c_light) * (-z + fHalfLength*sign_pz);
|
---|
326 |
|
---|
327 | if(r_c + TMath::Abs(r) < fRadius)
|
---|
328 | {
|
---|
329 | // helix does not cross the cylinder sides
|
---|
330 | t = t_z;
|
---|
331 | }
|
---|
332 | else
|
---|
333 | {
|
---|
334 | asinrho = TMath::ASin((fRadius*fRadius - r_c*r_c - r*r) / (2*TMath::Abs(r)*r_c));
|
---|
335 | delta = phi_0 - phi;
|
---|
336 | if(delta <-TMath::Pi()) delta += 2*TMath::Pi();
|
---|
337 | if(delta > TMath::Pi()) delta -= 2*TMath::Pi();
|
---|
338 | t1 = (delta + asinrho) / omega;
|
---|
339 | t2 = (delta + TMath::Pi() - asinrho) / omega;
|
---|
340 | t3 = (delta + TMath::Pi() + asinrho) / omega;
|
---|
341 | t4 = (delta - asinrho) / omega;
|
---|
342 | t5 = (delta - TMath::Pi() - asinrho) / omega;
|
---|
343 | t6 = (delta - TMath::Pi() + asinrho) / omega;
|
---|
344 |
|
---|
345 | if(t1 < 0.0) t1 = 1.0E99;
|
---|
346 | if(t2 < 0.0) t2 = 1.0E99;
|
---|
347 | if(t3 < 0.0) t3 = 1.0E99;
|
---|
348 | if(t4 < 0.0) t4 = 1.0E99;
|
---|
349 | if(t5 < 0.0) t5 = 1.0E99;
|
---|
350 | if(t6 < 0.0) t6 = 1.0E99;
|
---|
351 |
|
---|
352 | t_ra = TMath::Min(t1, TMath::Min(t2, t3));
|
---|
353 | t_rb = TMath::Min(t4, TMath::Min(t5, t6));
|
---|
354 | t_r = TMath::Min(t_ra, t_rb);
|
---|
355 | t = TMath::Min(t_r, t_z);
|
---|
356 | }
|
---|
357 |
|
---|
358 | // 4. position in terms of x(t), y(t), z(t)
|
---|
359 | x_t = x_c + r * TMath::Sin(omega * t - phi_0);
|
---|
360 | y_t = y_c + r * TMath::Cos(omega * t - phi_0);
|
---|
361 | z_t = z + pz*1.0E9 / c_light / gammam * t;
|
---|
362 | r_t = TMath::Hypot(x_t, y_t);
|
---|
363 |
|
---|
364 |
|
---|
365 | // compute path length for an helix
|
---|
366 |
|
---|
367 | alpha = pz*1.0E9 / c_light / gammam;
|
---|
368 | l = t * TMath::Sqrt(alpha*alpha + r*r*omega*omega);
|
---|
369 |
|
---|
370 | if(r_t > 0.0)
|
---|
371 | {
|
---|
372 |
|
---|
373 | // store these variables before cloning
|
---|
374 | if(particle == candidate)
|
---|
375 | {
|
---|
376 | particle->D0 = d0*1.0E3;
|
---|
377 | particle->DZ = dz*1.0E3;
|
---|
378 | particle->P = p;
|
---|
379 | particle->PT = pt;
|
---|
380 | particle->CtgTheta = ctgTheta;
|
---|
381 | particle->Phi = phip;
|
---|
382 | }
|
---|
383 |
|
---|
384 | mother = candidate;
|
---|
385 | candidate = static_cast<Candidate*>(candidate->Clone());
|
---|
386 |
|
---|
387 | candidate->InitialPosition = particlePosition;
|
---|
388 | candidate->Position.SetXYZT(x_t*1.0E3, y_t*1.0E3, z_t*1.0E3, particlePosition.T() + t*c_light*1.0E3);
|
---|
389 |
|
---|
390 | candidate->Momentum = particleMomentum;
|
---|
391 |
|
---|
392 | candidate->L = l*1.0E3;
|
---|
393 |
|
---|
394 | candidate->Xd = xd*1.0E3;
|
---|
395 | candidate->Yd = yd*1.0E3;
|
---|
396 | candidate->Zd = zd*1.0E3;
|
---|
397 |
|
---|
398 | candidate->AddCandidate(mother);
|
---|
399 |
|
---|
400 | fOutputArray->Add(candidate);
|
---|
401 | switch(TMath::Abs(candidate->PID))
|
---|
402 | {
|
---|
403 | case 11:
|
---|
404 | fElectronOutputArray->Add(candidate);
|
---|
405 | break;
|
---|
406 | case 13:
|
---|
407 | fMuonOutputArray->Add(candidate);
|
---|
408 | break;
|
---|
409 | default:
|
---|
410 | fChargedHadronOutputArray->Add(candidate);
|
---|
411 | }
|
---|
412 | }
|
---|
413 | }
|
---|
414 | }
|
---|
415 | }
|
---|
416 |
|
---|
417 | //------------------------------------------------------------------------------
|
---|
418 |
|
---|