[b443089] | 1 | /*
|
---|
| 2 | * Delphes: a framework for fast simulation of a generic collider experiment
|
---|
| 3 | * Copyright (C) 2012-2014 Universite catholique de Louvain (UCL), Belgium
|
---|
[1fa50c2] | 4 | *
|
---|
[b443089] | 5 | * This program is free software: you can redistribute it and/or modify
|
---|
| 6 | * it under the terms of the GNU General Public License as published by
|
---|
| 7 | * the Free Software Foundation, either version 3 of the License, or
|
---|
| 8 | * (at your option) any later version.
|
---|
[1fa50c2] | 9 | *
|
---|
[b443089] | 10 | * This program is distributed in the hope that it will be useful,
|
---|
| 11 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 12 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 13 | * GNU General Public License for more details.
|
---|
[1fa50c2] | 14 | *
|
---|
[b443089] | 15 | * You should have received a copy of the GNU General Public License
|
---|
| 16 | * along with this program. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 17 | */
|
---|
| 18 |
|
---|
[d7d2da3] | 19 |
|
---|
| 20 | /** \class ParticlePropagator
|
---|
| 21 | *
|
---|
| 22 | * Propagates charged and neutral particles
|
---|
[d41ba4a] | 23 | * from a given vertex to a cylinder defined by its radius,
|
---|
[d7d2da3] | 24 | * its half-length, centered at (0,0,0) and with its axis
|
---|
| 25 | * oriented along the z-axis.
|
---|
| 26 | *
|
---|
| 27 | * \author P. Demin - UCL, Louvain-la-Neuve
|
---|
| 28 | *
|
---|
| 29 | */
|
---|
| 30 |
|
---|
| 31 | #include "modules/ParticlePropagator.h"
|
---|
| 32 |
|
---|
| 33 | #include "classes/DelphesClasses.h"
|
---|
| 34 | #include "classes/DelphesFactory.h"
|
---|
| 35 | #include "classes/DelphesFormula.h"
|
---|
| 36 |
|
---|
| 37 | #include "ExRootAnalysis/ExRootResult.h"
|
---|
| 38 | #include "ExRootAnalysis/ExRootFilter.h"
|
---|
| 39 | #include "ExRootAnalysis/ExRootClassifier.h"
|
---|
| 40 |
|
---|
| 41 | #include "TMath.h"
|
---|
| 42 | #include "TString.h"
|
---|
| 43 | #include "TFormula.h"
|
---|
| 44 | #include "TRandom3.h"
|
---|
| 45 | #include "TObjArray.h"
|
---|
| 46 | #include "TDatabasePDG.h"
|
---|
| 47 | #include "TLorentzVector.h"
|
---|
| 48 |
|
---|
[d41ba4a] | 49 | #include <algorithm>
|
---|
[d7d2da3] | 50 | #include <stdexcept>
|
---|
| 51 | #include <iostream>
|
---|
| 52 | #include <sstream>
|
---|
| 53 |
|
---|
| 54 | using namespace std;
|
---|
| 55 |
|
---|
| 56 | //------------------------------------------------------------------------------
|
---|
| 57 |
|
---|
| 58 | ParticlePropagator::ParticlePropagator() :
|
---|
| 59 | fItInputArray(0)
|
---|
| 60 | {
|
---|
| 61 | }
|
---|
| 62 |
|
---|
| 63 | //------------------------------------------------------------------------------
|
---|
| 64 |
|
---|
| 65 | ParticlePropagator::~ParticlePropagator()
|
---|
| 66 | {
|
---|
| 67 | }
|
---|
| 68 |
|
---|
[48f7a77] | 69 |
|
---|
[d7d2da3] | 70 | //------------------------------------------------------------------------------
|
---|
| 71 |
|
---|
| 72 | void ParticlePropagator::Init()
|
---|
| 73 | {
|
---|
| 74 | fRadius = GetDouble("Radius", 1.0);
|
---|
| 75 | fRadius2 = fRadius*fRadius;
|
---|
| 76 | fHalfLength = GetDouble("HalfLength", 3.0);
|
---|
| 77 | fBz = GetDouble("Bz", 0.0);
|
---|
| 78 | if(fRadius < 1.0E-2)
|
---|
[d41ba4a] | 79 | {
|
---|
[d7d2da3] | 80 | cout << "ERROR: magnetic field radius is too low\n";
|
---|
| 81 | return;
|
---|
| 82 | }
|
---|
| 83 | if(fHalfLength < 1.0E-2)
|
---|
| 84 | {
|
---|
| 85 | cout << "ERROR: magnetic field length is too low\n";
|
---|
| 86 | return;
|
---|
| 87 | }
|
---|
| 88 |
|
---|
| 89 | // import array with output from filter/classifier module
|
---|
| 90 |
|
---|
| 91 | fInputArray = ImportArray(GetString("InputArray", "Delphes/stableParticles"));
|
---|
| 92 | fItInputArray = fInputArray->MakeIterator();
|
---|
| 93 |
|
---|
[187fc41] | 94 | // import beamspot
|
---|
| 95 |
|
---|
| 96 | fBeamSpotInputArray = ImportArray(GetString("BeamSpotInputArray", "BeamSpotFilter/beamSpotParticle"));
|
---|
| 97 |
|
---|
[d7d2da3] | 98 | // create output arrays
|
---|
| 99 |
|
---|
| 100 | fOutputArray = ExportArray(GetString("OutputArray", "stableParticles"));
|
---|
| 101 | fChargedHadronOutputArray = ExportArray(GetString("ChargedHadronOutputArray", "chargedHadrons"));
|
---|
| 102 | fElectronOutputArray = ExportArray(GetString("ElectronOutputArray", "electrons"));
|
---|
| 103 | fMuonOutputArray = ExportArray(GetString("MuonOutputArray", "muons"));
|
---|
| 104 | }
|
---|
| 105 |
|
---|
| 106 | //------------------------------------------------------------------------------
|
---|
| 107 |
|
---|
| 108 | void ParticlePropagator::Finish()
|
---|
| 109 | {
|
---|
| 110 | if(fItInputArray) delete fItInputArray;
|
---|
| 111 | }
|
---|
| 112 |
|
---|
| 113 | //------------------------------------------------------------------------------
|
---|
| 114 |
|
---|
| 115 | void ParticlePropagator::Process()
|
---|
| 116 | {
|
---|
| 117 | Candidate *candidate, *mother;
|
---|
[187fc41] | 118 | TLorentzVector candidatePosition, candidateMomentum, beamSpotPosition;
|
---|
[d7d2da3] | 119 | Double_t px, py, pz, pt, pt2, e, q;
|
---|
| 120 | Double_t x, y, z, t, r, phi;
|
---|
| 121 | Double_t x_c, y_c, r_c, phi_c, phi_0;
|
---|
| 122 | Double_t x_t, y_t, z_t, r_t;
|
---|
| 123 | Double_t t1, t2, t3, t4, t5, t6;
|
---|
| 124 | Double_t t_z, t_r, t_ra, t_rb;
|
---|
| 125 | Double_t tmp, discr, discr2;
|
---|
| 126 | Double_t delta, gammam, omega, asinrho;
|
---|
[187fc41] | 127 | Double_t rcu, rc2, xd, yd, zd;
|
---|
| 128 | Double_t l, d0, dz, p, ctgTheta, phip, etap, alpha;
|
---|
| 129 | Double_t bsx, bsy, bsz;
|
---|
| 130 |
|
---|
[d7d2da3] | 131 | const Double_t c_light = 2.99792458E8;
|
---|
[187fc41] | 132 |
|
---|
| 133 | if (!fBeamSpotInputArray->GetSize () || !fBeamSpotInputArray->At(0))
|
---|
| 134 | beamSpotPosition.SetXYZT(0.0, 0.0, 0.0, 0.0);
|
---|
| 135 | else
|
---|
| 136 | {
|
---|
| 137 | Candidate &beamSpotCandidate = *((Candidate *) fBeamSpotInputArray->At(0));
|
---|
| 138 | beamSpotPosition = beamSpotCandidate.Position;
|
---|
| 139 | }
|
---|
| 140 |
|
---|
[d7d2da3] | 141 | fItInputArray->Reset();
|
---|
| 142 | while((candidate = static_cast<Candidate*>(fItInputArray->Next())))
|
---|
| 143 | {
|
---|
| 144 | candidatePosition = candidate->Position;
|
---|
| 145 | candidateMomentum = candidate->Momentum;
|
---|
| 146 | x = candidatePosition.X()*1.0E-3;
|
---|
| 147 | y = candidatePosition.Y()*1.0E-3;
|
---|
| 148 | z = candidatePosition.Z()*1.0E-3;
|
---|
[187fc41] | 149 |
|
---|
| 150 | bsx = beamSpotPosition.X()*1.0E-3;
|
---|
| 151 | bsy = beamSpotPosition.Y()*1.0E-3;
|
---|
| 152 | bsz = beamSpotPosition.Z()*1.0E-3;
|
---|
| 153 |
|
---|
[d7d2da3] | 154 | q = candidate->Charge;
|
---|
| 155 |
|
---|
| 156 | // check that particle position is inside the cylinder
|
---|
| 157 | if(TMath::Hypot(x, y) > fRadius || TMath::Abs(z) > fHalfLength)
|
---|
| 158 | {
|
---|
| 159 | continue;
|
---|
| 160 | }
|
---|
| 161 |
|
---|
| 162 | px = candidateMomentum.Px();
|
---|
| 163 | py = candidateMomentum.Py();
|
---|
| 164 | pz = candidateMomentum.Pz();
|
---|
| 165 | pt = candidateMomentum.Pt();
|
---|
| 166 | pt2 = candidateMomentum.Perp2();
|
---|
| 167 | e = candidateMomentum.E();
|
---|
| 168 |
|
---|
| 169 | if(pt2 < 1.0E-9)
|
---|
| 170 | {
|
---|
| 171 | continue;
|
---|
| 172 | }
|
---|
| 173 |
|
---|
| 174 | if(TMath::Abs(q) < 1.0E-9 || TMath::Abs(fBz) < 1.0E-9)
|
---|
| 175 | {
|
---|
[fcdb8bc] | 176 | // solve pt2*t^2 + 2*(px*x + py*y)*t - (fRadius2 - x*x - y*y) = 0
|
---|
[d7d2da3] | 177 | tmp = px*y - py*x;
|
---|
| 178 | discr2 = pt2*fRadius2 - tmp*tmp;
|
---|
[d41ba4a] | 179 |
|
---|
[b594101] | 180 | if(discr2 < 0.0)
|
---|
[d7d2da3] | 181 | {
|
---|
| 182 | // no solutions
|
---|
| 183 | continue;
|
---|
| 184 | }
|
---|
| 185 |
|
---|
| 186 | tmp = px*x + py*y;
|
---|
| 187 | discr = TMath::Sqrt(discr2);
|
---|
| 188 | t1 = (-tmp + discr)/pt2;
|
---|
| 189 | t2 = (-tmp - discr)/pt2;
|
---|
[b594101] | 190 | t = (t1 < 0.0) ? t2 : t1;
|
---|
[d7d2da3] | 191 |
|
---|
| 192 | z_t = z + pz*t;
|
---|
| 193 | if(TMath::Abs(z_t) > fHalfLength)
|
---|
| 194 | {
|
---|
| 195 | t3 = (+fHalfLength - z) / pz;
|
---|
| 196 | t4 = (-fHalfLength - z) / pz;
|
---|
[b594101] | 197 | t = (t3 < 0.0) ? t4 : t3;
|
---|
[d7d2da3] | 198 | }
|
---|
| 199 |
|
---|
| 200 | x_t = x + px*t;
|
---|
| 201 | y_t = y + py*t;
|
---|
| 202 | z_t = z + pz*t;
|
---|
[187fc41] | 203 |
|
---|
| 204 | l = TMath::Sqrt( (x_t - x)*(x_t - x) + (y_t - y)*(y_t - y) + (z_t - z)*(z_t - z));
|
---|
[d7d2da3] | 205 |
|
---|
| 206 | mother = candidate;
|
---|
| 207 | candidate = static_cast<Candidate*>(candidate->Clone());
|
---|
| 208 |
|
---|
[d41ba4a] | 209 | candidate->Position.SetXYZT(x_t*1.0E3, y_t*1.0E3, z_t*1.0E3, candidatePosition.T() + t*e*1.0E3);
|
---|
[187fc41] | 210 | candidate->L = l*1.0E3;
|
---|
| 211 |
|
---|
[d7d2da3] | 212 | candidate->Momentum = candidateMomentum;
|
---|
| 213 | candidate->AddCandidate(mother);
|
---|
[d41ba4a] | 214 |
|
---|
[d7d2da3] | 215 | fOutputArray->Add(candidate);
|
---|
[d41ba4a] | 216 | if(TMath::Abs(q) > 1.0E-9)
|
---|
[d7d2da3] | 217 | {
|
---|
| 218 | switch(TMath::Abs(candidate->PID))
|
---|
| 219 | {
|
---|
| 220 | case 11:
|
---|
| 221 | fElectronOutputArray->Add(candidate);
|
---|
| 222 | break;
|
---|
| 223 | case 13:
|
---|
| 224 | fMuonOutputArray->Add(candidate);
|
---|
| 225 | break;
|
---|
| 226 | default:
|
---|
| 227 | fChargedHadronOutputArray->Add(candidate);
|
---|
| 228 | }
|
---|
| 229 | }
|
---|
| 230 | }
|
---|
| 231 | else
|
---|
| 232 | {
|
---|
| 233 |
|
---|
[b594101] | 234 | // 1. initial transverse momentum p_{T0}: Part->pt
|
---|
| 235 | // initial transverse momentum direction phi_0 = -atan(p_X0/p_Y0)
|
---|
| 236 | // relativistic gamma: gamma = E/mc^2; gammam = gamma * m
|
---|
| 237 | // gyration frequency omega = q/(gamma m) fBz
|
---|
| 238 | // helix radius r = p_{T0} / (omega gamma m)
|
---|
[d7d2da3] | 239 |
|
---|
[b594101] | 240 | gammam = e*1.0E9 / (c_light*c_light); // gammam in [eV/c^2]
|
---|
| 241 | omega = q * fBz / (gammam); // omega is here in [89875518/s]
|
---|
[d41ba4a] | 242 | r = pt / (q * fBz) * 1.0E9/c_light; // in [m]
|
---|
[d7d2da3] | 243 |
|
---|
[b594101] | 244 | phi_0 = TMath::ATan2(py, px); // [rad] in [-pi, pi]
|
---|
[d7d2da3] | 245 |
|
---|
| 246 | // 2. helix axis coordinates
|
---|
| 247 | x_c = x + r*TMath::Sin(phi_0);
|
---|
| 248 | y_c = y - r*TMath::Cos(phi_0);
|
---|
| 249 | r_c = TMath::Hypot(x_c, y_c);
|
---|
| 250 | phi_c = TMath::ATan2(y_c, x_c);
|
---|
| 251 | phi = phi_c;
|
---|
| 252 | if(x_c < 0.0) phi += TMath::Pi();
|
---|
| 253 |
|
---|
[a0431dc] | 254 | rcu = TMath::Abs(r);
|
---|
| 255 | rc2 = r_c*r_c;
|
---|
[b594101] | 256 |
|
---|
[a0431dc] | 257 | // calculate coordinates of closest approach to track circle in transverse plane xd, yd, zd
|
---|
[b594101] | 258 | xd = x_c*x_c*x_c - x_c*rcu*r_c + x_c*y_c*y_c;
|
---|
| 259 | xd = (rc2 > 0.0) ? xd / rc2 : -999;
|
---|
| 260 | yd = y_c*(-rcu*r_c + rc2);
|
---|
| 261 | yd = (rc2 > 0.0) ? yd / rc2 : -999;
|
---|
| 262 | zd = z + (TMath::Sqrt(xd*xd + yd*yd) - TMath::Sqrt(x*x + y*y))*pz/pt;
|
---|
[187fc41] | 263 |
|
---|
| 264 | // use perigee momentum rather than original particle
|
---|
| 265 | // momentum, since the orignal particle momentum isn't known
|
---|
| 266 |
|
---|
| 267 | px = TMath::Sign(1.0,r) * pt * (-y_c / r_c);
|
---|
| 268 | py = TMath::Sign(1.0,r) * pt * (x_c / r_c);
|
---|
| 269 | etap = candidateMomentum.Eta();
|
---|
| 270 | phip = TMath::ATan2(py, px);
|
---|
| 271 |
|
---|
| 272 | candidateMomentum.SetPtEtaPhiE(pt, etap, phip, candidateMomentum.E());
|
---|
| 273 |
|
---|
| 274 | // calculate additional track parameters (correct for beamspot position)
|
---|
| 275 |
|
---|
| 276 | d0 = ( (x - bsx) * py - (y - bsy) * px) / pt;
|
---|
| 277 | dz = z - ((x - bsx) * px + (py - bsy) * py) / pt * (pz / pt);
|
---|
| 278 | p = candidateMomentum.P();
|
---|
| 279 | ctgTheta = 1.0 / TMath::Tan (candidateMomentum.Theta ());
|
---|
| 280 |
|
---|
[d7d2da3] | 281 | // 3. time evaluation t = TMath::Min(t_r, t_z)
|
---|
| 282 | // t_r : time to exit from the sides
|
---|
| 283 | // t_z : time to exit from the front or the back
|
---|
| 284 | t_r = 0.0; // in [ns]
|
---|
| 285 | int sign_pz = (pz > 0.0) ? 1 : -1;
|
---|
| 286 | if(pz == 0.0) t_z = 1.0E99;
|
---|
| 287 | else t_z = gammam / (pz*1.0E9/c_light) * (-z + fHalfLength*sign_pz);
|
---|
| 288 |
|
---|
| 289 | if(r_c + TMath::Abs(r) < fRadius)
|
---|
| 290 | {
|
---|
| 291 | // helix does not cross the cylinder sides
|
---|
| 292 | t = t_z;
|
---|
| 293 | }
|
---|
| 294 | else
|
---|
| 295 | {
|
---|
| 296 | asinrho = TMath::ASin( (fRadius*fRadius - r_c*r_c - r*r) / (2*TMath::Abs(r)*r_c) );
|
---|
| 297 | delta = phi_0 - phi;
|
---|
| 298 | if(delta <-TMath::Pi()) delta += 2*TMath::Pi();
|
---|
| 299 | if(delta > TMath::Pi()) delta -= 2*TMath::Pi();
|
---|
| 300 | t1 = (delta + asinrho) / omega;
|
---|
| 301 | t2 = (delta + TMath::Pi() - asinrho) / omega;
|
---|
| 302 | t3 = (delta + TMath::Pi() + asinrho) / omega;
|
---|
| 303 | t4 = (delta - asinrho) / omega;
|
---|
| 304 | t5 = (delta - TMath::Pi() - asinrho) / omega;
|
---|
| 305 | t6 = (delta - TMath::Pi() + asinrho) / omega;
|
---|
| 306 |
|
---|
[b594101] | 307 | if(t1 < 0.0) t1 = 1.0E99;
|
---|
| 308 | if(t2 < 0.0) t2 = 1.0E99;
|
---|
| 309 | if(t3 < 0.0) t3 = 1.0E99;
|
---|
| 310 | if(t4 < 0.0) t4 = 1.0E99;
|
---|
| 311 | if(t5 < 0.0) t5 = 1.0E99;
|
---|
| 312 | if(t6 < 0.0) t6 = 1.0E99;
|
---|
[d7d2da3] | 313 |
|
---|
| 314 | t_ra = TMath::Min(t1, TMath::Min(t2, t3));
|
---|
| 315 | t_rb = TMath::Min(t4, TMath::Min(t5, t6));
|
---|
| 316 | t_r = TMath::Min(t_ra, t_rb);
|
---|
[d41ba4a] | 317 | t = TMath::Min(t_r, t_z);
|
---|
[d7d2da3] | 318 | }
|
---|
| 319 |
|
---|
| 320 | // 4. position in terms of x(t), y(t), z(t)
|
---|
| 321 | x_t = x_c + r * TMath::Sin(omega * t - phi_0);
|
---|
| 322 | y_t = y_c + r * TMath::Cos(omega * t - phi_0);
|
---|
| 323 | z_t = z + pz*1.0E9 / c_light / gammam * t;
|
---|
| 324 | r_t = TMath::Hypot(x_t, y_t);
|
---|
| 325 |
|
---|
[187fc41] | 326 |
|
---|
| 327 | // compute path length for an helix
|
---|
| 328 |
|
---|
| 329 | alpha = pz*1.0E9 / c_light / gammam;
|
---|
| 330 | l = t * TMath::Sqrt(alpha*alpha + r*r*omega*omega);
|
---|
| 331 |
|
---|
[d7d2da3] | 332 | if(r_t > 0.0)
|
---|
| 333 | {
|
---|
| 334 | mother = candidate;
|
---|
| 335 | candidate = static_cast<Candidate*>(candidate->Clone());
|
---|
| 336 |
|
---|
[d41ba4a] | 337 | candidate->Position.SetXYZT(x_t*1.0E3, y_t*1.0E3, z_t*1.0E3, candidatePosition.T() + t*c_light*1.0E3);
|
---|
[d7d2da3] | 338 |
|
---|
| 339 | candidate->Momentum = candidateMomentum;
|
---|
[187fc41] | 340 |
|
---|
| 341 | candidate->L = l*1.0E3;
|
---|
| 342 | candidate->D0 = d0*1.0E3;
|
---|
| 343 | candidate->DZ = dz*1.0E3;
|
---|
| 344 | candidate->P = p;
|
---|
| 345 | candidate->PT = pt;
|
---|
| 346 | candidate->CtgTheta = ctgTheta;
|
---|
| 347 | candidate->Phi = phi;
|
---|
| 348 |
|
---|
| 349 | candidate->Xd = xd*1.0E3;
|
---|
[b594101] | 350 | candidate->Yd = yd*1.0E3;
|
---|
[a0431dc] | 351 | candidate->Zd = zd*1.0E3;
|
---|
[b594101] | 352 |
|
---|
| 353 | candidate->AddCandidate(mother);
|
---|
[d7d2da3] | 354 |
|
---|
| 355 | fOutputArray->Add(candidate);
|
---|
| 356 | switch(TMath::Abs(candidate->PID))
|
---|
| 357 | {
|
---|
| 358 | case 11:
|
---|
| 359 | fElectronOutputArray->Add(candidate);
|
---|
| 360 | break;
|
---|
| 361 | case 13:
|
---|
| 362 | fMuonOutputArray->Add(candidate);
|
---|
| 363 | break;
|
---|
| 364 | default:
|
---|
| 365 | fChargedHadronOutputArray->Add(candidate);
|
---|
| 366 | }
|
---|
| 367 | }
|
---|
| 368 | }
|
---|
| 369 | }
|
---|
| 370 | }
|
---|
| 371 |
|
---|
| 372 | //------------------------------------------------------------------------------
|
---|
[a0431dc] | 373 |
|
---|