Fork me on GitHub

source: git/modules/ParticlePropagator.cc@ 95e4e44

ImprovedOutputFile
Last change on this file since 95e4e44 was 341014c, checked in by Pavel Demin <pavel-demin@…>, 6 years ago

apply .clang-format to all .h, .cc and .cpp files

  • Property mode set to 100644
File size: 12.3 KB
RevLine 
[b443089]1/*
2 * Delphes: a framework for fast simulation of a generic collider experiment
3 * Copyright (C) 2012-2014 Universite catholique de Louvain (UCL), Belgium
[1fa50c2]4 *
[b443089]5 * This program is free software: you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation, either version 3 of the License, or
8 * (at your option) any later version.
[1fa50c2]9 *
[b443089]10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
[1fa50c2]14 *
[b443089]15 * You should have received a copy of the GNU General Public License
16 * along with this program. If not, see <http://www.gnu.org/licenses/>.
17 */
18
[d7d2da3]19/** \class ParticlePropagator
20 *
21 * Propagates charged and neutral particles
[d41ba4a]22 * from a given vertex to a cylinder defined by its radius,
[d7d2da3]23 * its half-length, centered at (0,0,0) and with its axis
24 * oriented along the z-axis.
25 *
26 * \author P. Demin - UCL, Louvain-la-Neuve
27 *
28 */
29
30#include "modules/ParticlePropagator.h"
31
32#include "classes/DelphesClasses.h"
33#include "classes/DelphesFactory.h"
34#include "classes/DelphesFormula.h"
35
36#include "ExRootAnalysis/ExRootClassifier.h"
[341014c]37#include "ExRootAnalysis/ExRootFilter.h"
38#include "ExRootAnalysis/ExRootResult.h"
[d7d2da3]39
40#include "TDatabasePDG.h"
[341014c]41#include "TFormula.h"
[d7d2da3]42#include "TLorentzVector.h"
[341014c]43#include "TMath.h"
44#include "TObjArray.h"
45#include "TRandom3.h"
46#include "TString.h"
[d7d2da3]47
[d41ba4a]48#include <algorithm>
[d7d2da3]49#include <iostream>
50#include <sstream>
[341014c]51#include <stdexcept>
[d7d2da3]52
53using namespace std;
54
55//------------------------------------------------------------------------------
56
57ParticlePropagator::ParticlePropagator() :
58 fItInputArray(0)
59{
60}
61
62//------------------------------------------------------------------------------
63
64ParticlePropagator::~ParticlePropagator()
65{
66}
67
68//------------------------------------------------------------------------------
69
70void ParticlePropagator::Init()
71{
72 fRadius = GetDouble("Radius", 1.0);
[341014c]73 fRadius2 = fRadius * fRadius;
[d7d2da3]74 fHalfLength = GetDouble("HalfLength", 3.0);
75 fBz = GetDouble("Bz", 0.0);
76 if(fRadius < 1.0E-2)
[d41ba4a]77 {
[d7d2da3]78 cout << "ERROR: magnetic field radius is too low\n";
79 return;
80 }
81 if(fHalfLength < 1.0E-2)
82 {
83 cout << "ERROR: magnetic field length is too low\n";
84 return;
85 }
86
[9330b7b]87 fRadiusMax = GetDouble("RadiusMax", fRadius);
88 fHalfLengthMax = GetDouble("HalfLengthMax", fHalfLength);
89
[d7d2da3]90 // import array with output from filter/classifier module
91
92 fInputArray = ImportArray(GetString("InputArray", "Delphes/stableParticles"));
93 fItInputArray = fInputArray->MakeIterator();
94
[187fc41]95 // import beamspot
[bff2e33]96 try
97 {
98 fBeamSpotInputArray = ImportArray(GetString("BeamSpotInputArray", "BeamSpotFilter/beamSpotParticle"));
99 }
100 catch(runtime_error &e)
101 {
102 fBeamSpotInputArray = 0;
[e55f5b0]103 }
[d7d2da3]104 // create output arrays
105
106 fOutputArray = ExportArray(GetString("OutputArray", "stableParticles"));
[751cb9c]107 fNeutralOutputArray = ExportArray(GetString("NeutralOutputArray", "neutralParticles"));
[d7d2da3]108 fChargedHadronOutputArray = ExportArray(GetString("ChargedHadronOutputArray", "chargedHadrons"));
109 fElectronOutputArray = ExportArray(GetString("ElectronOutputArray", "electrons"));
110 fMuonOutputArray = ExportArray(GetString("MuonOutputArray", "muons"));
111}
112
113//------------------------------------------------------------------------------
114
115void ParticlePropagator::Finish()
116{
117 if(fItInputArray) delete fItInputArray;
118}
119
120//------------------------------------------------------------------------------
121
122void ParticlePropagator::Process()
123{
[60e1de6]124 Candidate *candidate, *mother, *particle;
125 TLorentzVector particlePosition, particleMomentum, beamSpotPosition;
[d7d2da3]126 Double_t px, py, pz, pt, pt2, e, q;
127 Double_t x, y, z, t, r, phi;
128 Double_t x_c, y_c, r_c, phi_c, phi_0;
129 Double_t x_t, y_t, z_t, r_t;
130 Double_t t1, t2, t3, t4, t5, t6;
131 Double_t t_z, t_r, t_ra, t_rb;
132 Double_t tmp, discr, discr2;
133 Double_t delta, gammam, omega, asinrho;
[187fc41]134 Double_t rcu, rc2, xd, yd, zd;
135 Double_t l, d0, dz, p, ctgTheta, phip, etap, alpha;
136 Double_t bsx, bsy, bsz;
[e55f5b0]137
[d7d2da3]138 const Double_t c_light = 2.99792458E8;
[e55f5b0]139
[341014c]140 if(!fBeamSpotInputArray || fBeamSpotInputArray->GetSize() == 0)
[187fc41]141 beamSpotPosition.SetXYZT(0.0, 0.0, 0.0, 0.0);
142 else
143 {
[341014c]144 Candidate &beamSpotCandidate = *((Candidate *)fBeamSpotInputArray->At(0));
[187fc41]145 beamSpotPosition = beamSpotCandidate.Position;
146 }
[e55f5b0]147
[d7d2da3]148 fItInputArray->Reset();
[341014c]149 while((candidate = static_cast<Candidate *>(fItInputArray->Next())))
[d7d2da3]150 {
[60e1de6]151 if(candidate->GetCandidates()->GetEntriesFast() == 0)
152 {
153 particle = candidate;
154 }
155 else
156 {
[341014c]157 particle = static_cast<Candidate *>(candidate->GetCandidates()->At(0));
[60e1de6]158 }
159
160 particlePosition = particle->Position;
161 particleMomentum = particle->Momentum;
[341014c]162 x = particlePosition.X() * 1.0E-3;
163 y = particlePosition.Y() * 1.0E-3;
164 z = particlePosition.Z() * 1.0E-3;
[e55f5b0]165
[341014c]166 bsx = beamSpotPosition.X() * 1.0E-3;
167 bsy = beamSpotPosition.Y() * 1.0E-3;
168 bsz = beamSpotPosition.Z() * 1.0E-3;
[e55f5b0]169
[60e1de6]170 q = particle->Charge;
[d7d2da3]171
172 // check that particle position is inside the cylinder
[9330b7b]173 if(TMath::Hypot(x, y) > fRadiusMax || TMath::Abs(z) > fHalfLengthMax)
[d7d2da3]174 {
175 continue;
176 }
177
[60e1de6]178 px = particleMomentum.Px();
179 py = particleMomentum.Py();
180 pz = particleMomentum.Pz();
181 pt = particleMomentum.Pt();
182 pt2 = particleMomentum.Perp2();
183 e = particleMomentum.E();
[d7d2da3]184
185 if(pt2 < 1.0E-9)
186 {
187 continue;
188 }
189
[9330b7b]190 if(TMath::Hypot(x, y) > fRadius || TMath::Abs(z) > fHalfLength)
191 {
192 mother = candidate;
[341014c]193 candidate = static_cast<Candidate *>(candidate->Clone());
[9330b7b]194
[60e1de6]195 candidate->InitialPosition = particlePosition;
196 candidate->Position = particlePosition;
[9330b7b]197 candidate->L = 0.0;
198
[60e1de6]199 candidate->Momentum = particleMomentum;
[9330b7b]200 candidate->AddCandidate(mother);
201
202 fOutputArray->Add(candidate);
203 }
204 else if(TMath::Abs(q) < 1.0E-9 || TMath::Abs(fBz) < 1.0E-9)
[d7d2da3]205 {
[fcdb8bc]206 // solve pt2*t^2 + 2*(px*x + py*y)*t - (fRadius2 - x*x - y*y) = 0
[341014c]207 tmp = px * y - py * x;
208 discr2 = pt2 * fRadius2 - tmp * tmp;
[d41ba4a]209
[b594101]210 if(discr2 < 0.0)
[d7d2da3]211 {
212 // no solutions
213 continue;
214 }
215
[341014c]216 tmp = px * x + py * y;
[d7d2da3]217 discr = TMath::Sqrt(discr2);
[341014c]218 t1 = (-tmp + discr) / pt2;
219 t2 = (-tmp - discr) / pt2;
[b594101]220 t = (t1 < 0.0) ? t2 : t1;
[d7d2da3]221
[341014c]222 z_t = z + pz * t;
[d7d2da3]223 if(TMath::Abs(z_t) > fHalfLength)
224 {
225 t3 = (+fHalfLength - z) / pz;
226 t4 = (-fHalfLength - z) / pz;
[b594101]227 t = (t3 < 0.0) ? t4 : t3;
[d7d2da3]228 }
229
[341014c]230 x_t = x + px * t;
231 y_t = y + py * t;
232 z_t = z + pz * t;
[e55f5b0]233
[341014c]234 l = TMath::Sqrt((x_t - x) * (x_t - x) + (y_t - y) * (y_t - y) + (z_t - z) * (z_t - z));
[d7d2da3]235
236 mother = candidate;
[341014c]237 candidate = static_cast<Candidate *>(candidate->Clone());
[d7d2da3]238
[60e1de6]239 candidate->InitialPosition = particlePosition;
[341014c]240 candidate->Position.SetXYZT(x_t * 1.0E3, y_t * 1.0E3, z_t * 1.0E3, particlePosition.T() + t * e * 1.0E3);
241 candidate->L = l * 1.0E3;
[e55f5b0]242
[60e1de6]243 candidate->Momentum = particleMomentum;
[d7d2da3]244 candidate->AddCandidate(mother);
[d41ba4a]245
[d7d2da3]246 fOutputArray->Add(candidate);
[d41ba4a]247 if(TMath::Abs(q) > 1.0E-9)
[d7d2da3]248 {
249 switch(TMath::Abs(candidate->PID))
250 {
[341014c]251 case 11:
252 fElectronOutputArray->Add(candidate);
253 break;
254 case 13:
255 fMuonOutputArray->Add(candidate);
256 break;
257 default:
258 fChargedHadronOutputArray->Add(candidate);
[d7d2da3]259 }
260 }
[751cb9c]261 else
262 {
[341014c]263 fNeutralOutputArray->Add(candidate);
[751cb9c]264 }
[d7d2da3]265 }
266 else
267 {
268
[b594101]269 // 1. initial transverse momentum p_{T0}: Part->pt
270 // initial transverse momentum direction phi_0 = -atan(p_X0/p_Y0)
271 // relativistic gamma: gamma = E/mc^2; gammam = gamma * m
272 // gyration frequency omega = q/(gamma m) fBz
273 // helix radius r = p_{T0} / (omega gamma m)
[d7d2da3]274
[341014c]275 gammam = e * 1.0E9 / (c_light * c_light); // gammam in [eV/c^2]
276 omega = q * fBz / (gammam); // omega is here in [89875518/s]
277 r = pt / (q * fBz) * 1.0E9 / c_light; // in [m]
[d7d2da3]278
[b594101]279 phi_0 = TMath::ATan2(py, px); // [rad] in [-pi, pi]
[d7d2da3]280
281 // 2. helix axis coordinates
[341014c]282 x_c = x + r * TMath::Sin(phi_0);
283 y_c = y - r * TMath::Cos(phi_0);
[d7d2da3]284 r_c = TMath::Hypot(x_c, y_c);
285 phi_c = TMath::ATan2(y_c, x_c);
286 phi = phi_c;
287 if(x_c < 0.0) phi += TMath::Pi();
288
[a0431dc]289 rcu = TMath::Abs(r);
[341014c]290 rc2 = r_c * r_c;
[b594101]291
[a0431dc]292 // calculate coordinates of closest approach to track circle in transverse plane xd, yd, zd
[341014c]293 xd = x_c * x_c * x_c - x_c * rcu * r_c + x_c * y_c * y_c;
[b594101]294 xd = (rc2 > 0.0) ? xd / rc2 : -999;
[341014c]295 yd = y_c * (-rcu * r_c + rc2);
[b594101]296 yd = (rc2 > 0.0) ? yd / rc2 : -999;
[341014c]297 zd = z + (TMath::Sqrt(xd * xd + yd * yd) - TMath::Sqrt(x * x + y * y)) * pz / pt;
[e55f5b0]298
[187fc41]299 // use perigee momentum rather than original particle
[e55f5b0]300 // momentum, since the orignal particle momentum isn't known
301
[9330b7b]302 px = TMath::Sign(1.0, r) * pt * (-y_c / r_c);
303 py = TMath::Sign(1.0, r) * pt * (x_c / r_c);
[60e1de6]304 etap = particleMomentum.Eta();
[187fc41]305 phip = TMath::ATan2(py, px);
[e55f5b0]306
[60e1de6]307 particleMomentum.SetPtEtaPhiE(pt, etap, phip, particleMomentum.E());
[e55f5b0]308
[187fc41]309 // calculate additional track parameters (correct for beamspot position)
[e55f5b0]310
[341014c]311 d0 = ((x - bsx) * py - (y - bsy) * px) / pt;
312 dz = z - ((x - bsx) * px + (y - bsy) * py) / pt * (pz / pt);
313 p = particleMomentum.P();
314 ctgTheta = 1.0 / TMath::Tan(particleMomentum.Theta());
[e55f5b0]315
[d7d2da3]316 // 3. time evaluation t = TMath::Min(t_r, t_z)
317 // t_r : time to exit from the sides
318 // t_z : time to exit from the front or the back
319 t_r = 0.0; // in [ns]
320 int sign_pz = (pz > 0.0) ? 1 : -1;
[341014c]321 if(pz == 0.0)
322 t_z = 1.0E99;
323 else
324 t_z = gammam / (pz * 1.0E9 / c_light) * (-z + fHalfLength * sign_pz);
[d7d2da3]325
[341014c]326 if(r_c + TMath::Abs(r) < fRadius)
[d7d2da3]327 {
328 // helix does not cross the cylinder sides
329 t = t_z;
330 }
331 else
332 {
[341014c]333 asinrho = TMath::ASin((fRadius * fRadius - r_c * r_c - r * r) / (2 * TMath::Abs(r) * r_c));
[d7d2da3]334 delta = phi_0 - phi;
[341014c]335 if(delta < -TMath::Pi()) delta += 2 * TMath::Pi();
336 if(delta > TMath::Pi()) delta -= 2 * TMath::Pi();
[d7d2da3]337 t1 = (delta + asinrho) / omega;
338 t2 = (delta + TMath::Pi() - asinrho) / omega;
339 t3 = (delta + TMath::Pi() + asinrho) / omega;
340 t4 = (delta - asinrho) / omega;
341 t5 = (delta - TMath::Pi() - asinrho) / omega;
342 t6 = (delta - TMath::Pi() + asinrho) / omega;
343
[b594101]344 if(t1 < 0.0) t1 = 1.0E99;
345 if(t2 < 0.0) t2 = 1.0E99;
346 if(t3 < 0.0) t3 = 1.0E99;
347 if(t4 < 0.0) t4 = 1.0E99;
348 if(t5 < 0.0) t5 = 1.0E99;
349 if(t6 < 0.0) t6 = 1.0E99;
[d7d2da3]350
351 t_ra = TMath::Min(t1, TMath::Min(t2, t3));
352 t_rb = TMath::Min(t4, TMath::Min(t5, t6));
353 t_r = TMath::Min(t_ra, t_rb);
[d41ba4a]354 t = TMath::Min(t_r, t_z);
[d7d2da3]355 }
356
357 // 4. position in terms of x(t), y(t), z(t)
358 x_t = x_c + r * TMath::Sin(omega * t - phi_0);
359 y_t = y_c + r * TMath::Cos(omega * t - phi_0);
[341014c]360 z_t = z + pz * 1.0E9 / c_light / gammam * t;
[d7d2da3]361 r_t = TMath::Hypot(x_t, y_t);
362
[187fc41]363 // compute path length for an helix
[e55f5b0]364
[341014c]365 alpha = pz * 1.0E9 / c_light / gammam;
366 l = t * TMath::Sqrt(alpha * alpha + r * r * omega * omega);
[e55f5b0]367
[d7d2da3]368 if(r_t > 0.0)
369 {
[e55f5b0]370
[acd0621]371 // store these variables before cloning
[5b51d33]372 if(particle == candidate)
373 {
[341014c]374 particle->D0 = d0 * 1.0E3;
375 particle->DZ = dz * 1.0E3;
[5b51d33]376 particle->P = p;
377 particle->PT = pt;
378 particle->CtgTheta = ctgTheta;
379 particle->Phi = phip;
380 }
[e55f5b0]381
[d7d2da3]382 mother = candidate;
[341014c]383 candidate = static_cast<Candidate *>(candidate->Clone());
[d7d2da3]384
[60e1de6]385 candidate->InitialPosition = particlePosition;
[341014c]386 candidate->Position.SetXYZT(x_t * 1.0E3, y_t * 1.0E3, z_t * 1.0E3, particlePosition.T() + t * c_light * 1.0E3);
[d7d2da3]387
[60e1de6]388 candidate->Momentum = particleMomentum;
[e55f5b0]389
[341014c]390 candidate->L = l * 1.0E3;
[e55f5b0]391
[341014c]392 candidate->Xd = xd * 1.0E3;
393 candidate->Yd = yd * 1.0E3;
394 candidate->Zd = zd * 1.0E3;
[b594101]395
396 candidate->AddCandidate(mother);
[d7d2da3]397
398 fOutputArray->Add(candidate);
399 switch(TMath::Abs(candidate->PID))
400 {
[341014c]401 case 11:
402 fElectronOutputArray->Add(candidate);
403 break;
404 case 13:
405 fMuonOutputArray->Add(candidate);
406 break;
407 default:
408 fChargedHadronOutputArray->Add(candidate);
[d7d2da3]409 }
410 }
411 }
412 }
413}
414
415//------------------------------------------------------------------------------
Note: See TracBrowser for help on using the repository browser.