[b443089] | 1 | /*
|
---|
| 2 | * Delphes: a framework for fast simulation of a generic collider experiment
|
---|
| 3 | * Copyright (C) 2012-2014 Universite catholique de Louvain (UCL), Belgium
|
---|
| 4 | *
|
---|
| 5 | * This program is free software: you can redistribute it and/or modify
|
---|
| 6 | * it under the terms of the GNU General Public License as published by
|
---|
| 7 | * the Free Software Foundation, either version 3 of the License, or
|
---|
| 8 | * (at your option) any later version.
|
---|
| 9 | *
|
---|
| 10 | * This program is distributed in the hope that it will be useful,
|
---|
| 11 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 12 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 13 | * GNU General Public License for more details.
|
---|
| 14 | *
|
---|
| 15 | * You should have received a copy of the GNU General Public License
|
---|
| 16 | * along with this program. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 17 | */
|
---|
| 18 |
|
---|
[d7d2da3] | 19 |
|
---|
| 20 | /** \class ParticlePropagator
|
---|
| 21 | *
|
---|
| 22 | * Propagates charged and neutral particles
|
---|
[d41ba4a] | 23 | * from a given vertex to a cylinder defined by its radius,
|
---|
[d7d2da3] | 24 | * its half-length, centered at (0,0,0) and with its axis
|
---|
| 25 | * oriented along the z-axis.
|
---|
| 26 | *
|
---|
| 27 | * $Date$
|
---|
| 28 | * $Revision$
|
---|
| 29 | *
|
---|
| 30 | *
|
---|
| 31 | * \author P. Demin - UCL, Louvain-la-Neuve
|
---|
| 32 | *
|
---|
| 33 | */
|
---|
| 34 |
|
---|
| 35 | #include "modules/ParticlePropagator.h"
|
---|
| 36 |
|
---|
| 37 | #include "classes/DelphesClasses.h"
|
---|
| 38 | #include "classes/DelphesFactory.h"
|
---|
| 39 | #include "classes/DelphesFormula.h"
|
---|
| 40 |
|
---|
| 41 | #include "ExRootAnalysis/ExRootResult.h"
|
---|
| 42 | #include "ExRootAnalysis/ExRootFilter.h"
|
---|
| 43 | #include "ExRootAnalysis/ExRootClassifier.h"
|
---|
| 44 |
|
---|
| 45 | #include "TMath.h"
|
---|
| 46 | #include "TString.h"
|
---|
| 47 | #include "TFormula.h"
|
---|
| 48 | #include "TRandom3.h"
|
---|
| 49 | #include "TObjArray.h"
|
---|
| 50 | #include "TDatabasePDG.h"
|
---|
| 51 | #include "TLorentzVector.h"
|
---|
| 52 |
|
---|
[d41ba4a] | 53 | #include <algorithm>
|
---|
[d7d2da3] | 54 | #include <stdexcept>
|
---|
| 55 | #include <iostream>
|
---|
| 56 | #include <sstream>
|
---|
| 57 |
|
---|
| 58 | using namespace std;
|
---|
| 59 |
|
---|
| 60 | //------------------------------------------------------------------------------
|
---|
| 61 |
|
---|
| 62 | ParticlePropagator::ParticlePropagator() :
|
---|
| 63 | fItInputArray(0)
|
---|
| 64 | {
|
---|
| 65 | }
|
---|
| 66 |
|
---|
| 67 | //------------------------------------------------------------------------------
|
---|
| 68 |
|
---|
| 69 | ParticlePropagator::~ParticlePropagator()
|
---|
| 70 | {
|
---|
| 71 | }
|
---|
| 72 |
|
---|
| 73 | //------------------------------------------------------------------------------
|
---|
| 74 |
|
---|
| 75 | void ParticlePropagator::Init()
|
---|
| 76 | {
|
---|
| 77 | fRadius = GetDouble("Radius", 1.0);
|
---|
| 78 | fRadius2 = fRadius*fRadius;
|
---|
| 79 | fHalfLength = GetDouble("HalfLength", 3.0);
|
---|
| 80 | fBz = GetDouble("Bz", 0.0);
|
---|
| 81 | if(fRadius < 1.0E-2)
|
---|
[d41ba4a] | 82 | {
|
---|
[d7d2da3] | 83 | cout << "ERROR: magnetic field radius is too low\n";
|
---|
| 84 | return;
|
---|
| 85 | }
|
---|
| 86 | if(fHalfLength < 1.0E-2)
|
---|
| 87 | {
|
---|
| 88 | cout << "ERROR: magnetic field length is too low\n";
|
---|
| 89 | return;
|
---|
| 90 | }
|
---|
| 91 |
|
---|
| 92 | // import array with output from filter/classifier module
|
---|
| 93 |
|
---|
| 94 | fInputArray = ImportArray(GetString("InputArray", "Delphes/stableParticles"));
|
---|
| 95 | fItInputArray = fInputArray->MakeIterator();
|
---|
| 96 |
|
---|
| 97 | // create output arrays
|
---|
| 98 |
|
---|
| 99 | fOutputArray = ExportArray(GetString("OutputArray", "stableParticles"));
|
---|
| 100 | fChargedHadronOutputArray = ExportArray(GetString("ChargedHadronOutputArray", "chargedHadrons"));
|
---|
| 101 | fElectronOutputArray = ExportArray(GetString("ElectronOutputArray", "electrons"));
|
---|
| 102 | fMuonOutputArray = ExportArray(GetString("MuonOutputArray", "muons"));
|
---|
| 103 | }
|
---|
| 104 |
|
---|
| 105 | //------------------------------------------------------------------------------
|
---|
| 106 |
|
---|
| 107 | void ParticlePropagator::Finish()
|
---|
| 108 | {
|
---|
| 109 | if(fItInputArray) delete fItInputArray;
|
---|
| 110 | }
|
---|
| 111 |
|
---|
| 112 | //------------------------------------------------------------------------------
|
---|
| 113 |
|
---|
| 114 | void ParticlePropagator::Process()
|
---|
| 115 | {
|
---|
| 116 | Candidate *candidate, *mother;
|
---|
| 117 | TLorentzVector candidatePosition, candidateMomentum;
|
---|
| 118 | Double_t px, py, pz, pt, pt2, e, q;
|
---|
| 119 | Double_t x, y, z, t, r, phi;
|
---|
| 120 | Double_t x_c, y_c, r_c, phi_c, phi_0;
|
---|
| 121 | Double_t x_t, y_t, z_t, r_t;
|
---|
| 122 | Double_t t1, t2, t3, t4, t5, t6;
|
---|
| 123 | Double_t t_z, t_r, t_ra, t_rb;
|
---|
| 124 | Double_t tmp, discr, discr2;
|
---|
| 125 | Double_t delta, gammam, omega, asinrho;
|
---|
[a0431dc] | 126 | Double_t ang_mom, rcu, rc2, dxy, xd, yd, zd;
|
---|
| 127 |
|
---|
[d7d2da3] | 128 | const Double_t c_light = 2.99792458E8;
|
---|
[d41ba4a] | 129 |
|
---|
[d7d2da3] | 130 | fItInputArray->Reset();
|
---|
| 131 | while((candidate = static_cast<Candidate*>(fItInputArray->Next())))
|
---|
| 132 | {
|
---|
| 133 | candidatePosition = candidate->Position;
|
---|
| 134 | candidateMomentum = candidate->Momentum;
|
---|
| 135 | x = candidatePosition.X()*1.0E-3;
|
---|
| 136 | y = candidatePosition.Y()*1.0E-3;
|
---|
| 137 | z = candidatePosition.Z()*1.0E-3;
|
---|
| 138 | q = candidate->Charge;
|
---|
| 139 |
|
---|
| 140 | // check that particle position is inside the cylinder
|
---|
| 141 | if(TMath::Hypot(x, y) > fRadius || TMath::Abs(z) > fHalfLength)
|
---|
| 142 | {
|
---|
| 143 | continue;
|
---|
| 144 | }
|
---|
| 145 |
|
---|
| 146 | px = candidateMomentum.Px();
|
---|
| 147 | py = candidateMomentum.Py();
|
---|
| 148 | pz = candidateMomentum.Pz();
|
---|
| 149 | pt = candidateMomentum.Pt();
|
---|
| 150 | pt2 = candidateMomentum.Perp2();
|
---|
| 151 | e = candidateMomentum.E();
|
---|
| 152 |
|
---|
| 153 | if(pt2 < 1.0E-9)
|
---|
| 154 | {
|
---|
| 155 | continue;
|
---|
| 156 | }
|
---|
| 157 |
|
---|
| 158 | if(TMath::Abs(q) < 1.0E-9 || TMath::Abs(fBz) < 1.0E-9)
|
---|
| 159 | {
|
---|
[fcdb8bc] | 160 | // solve pt2*t^2 + 2*(px*x + py*y)*t - (fRadius2 - x*x - y*y) = 0
|
---|
[d7d2da3] | 161 | tmp = px*y - py*x;
|
---|
| 162 | discr2 = pt2*fRadius2 - tmp*tmp;
|
---|
[d41ba4a] | 163 |
|
---|
[d7d2da3] | 164 | if(discr2 < 0)
|
---|
| 165 | {
|
---|
| 166 | // no solutions
|
---|
| 167 | continue;
|
---|
| 168 | }
|
---|
| 169 |
|
---|
| 170 | tmp = px*x + py*y;
|
---|
| 171 | discr = TMath::Sqrt(discr2);
|
---|
| 172 | t1 = (-tmp + discr)/pt2;
|
---|
| 173 | t2 = (-tmp - discr)/pt2;
|
---|
[d41ba4a] | 174 | t = (t1 < 0) ? t2 : t1;
|
---|
[d7d2da3] | 175 |
|
---|
| 176 | z_t = z + pz*t;
|
---|
| 177 | if(TMath::Abs(z_t) > fHalfLength)
|
---|
| 178 | {
|
---|
| 179 | t3 = (+fHalfLength - z) / pz;
|
---|
| 180 | t4 = (-fHalfLength - z) / pz;
|
---|
[d41ba4a] | 181 | t = (t3 < 0) ? t4 : t3;
|
---|
[d7d2da3] | 182 | }
|
---|
| 183 |
|
---|
| 184 | x_t = x + px*t;
|
---|
| 185 | y_t = y + py*t;
|
---|
| 186 | z_t = z + pz*t;
|
---|
| 187 |
|
---|
| 188 | mother = candidate;
|
---|
| 189 | candidate = static_cast<Candidate*>(candidate->Clone());
|
---|
| 190 |
|
---|
[d41ba4a] | 191 | candidate->Position.SetXYZT(x_t*1.0E3, y_t*1.0E3, z_t*1.0E3, candidatePosition.T() + t*e*1.0E3);
|
---|
[d7d2da3] | 192 |
|
---|
| 193 | candidate->Momentum = candidateMomentum;
|
---|
| 194 | candidate->AddCandidate(mother);
|
---|
[d41ba4a] | 195 |
|
---|
[d7d2da3] | 196 | fOutputArray->Add(candidate);
|
---|
[d41ba4a] | 197 | if(TMath::Abs(q) > 1.0E-9)
|
---|
[d7d2da3] | 198 | {
|
---|
| 199 | switch(TMath::Abs(candidate->PID))
|
---|
| 200 | {
|
---|
| 201 | case 11:
|
---|
| 202 | fElectronOutputArray->Add(candidate);
|
---|
| 203 | break;
|
---|
| 204 | case 13:
|
---|
| 205 | fMuonOutputArray->Add(candidate);
|
---|
| 206 | break;
|
---|
| 207 | default:
|
---|
| 208 | fChargedHadronOutputArray->Add(candidate);
|
---|
| 209 | }
|
---|
| 210 | }
|
---|
| 211 | }
|
---|
| 212 | else
|
---|
| 213 | {
|
---|
| 214 |
|
---|
| 215 | // 1. initial transverse momentum p_{T0} : Part->pt
|
---|
[d41ba4a] | 216 | // initial transverse momentum direction \phi_0 = -atan(p_X0/p_Y0)
|
---|
[d7d2da3] | 217 | // relativistic gamma : gamma = E/mc² ; gammam = gamma \times m
|
---|
| 218 | // giration frequency \omega = q/(gamma m) fBz
|
---|
| 219 | // helix radius r = p_T0 / (omega gamma m)
|
---|
| 220 |
|
---|
| 221 | gammam = e*1.0E9 / (c_light*c_light); // gammam in [eV/c²]
|
---|
[d41ba4a] | 222 | omega = q * fBz / (gammam); // omega is here in [ 89875518 / s]
|
---|
| 223 | r = pt / (q * fBz) * 1.0E9/c_light; // in [m]
|
---|
[d7d2da3] | 224 |
|
---|
| 225 | phi_0 = TMath::ATan2(py, px); // [rad] in [-pi; pi]
|
---|
| 226 |
|
---|
| 227 | // 2. helix axis coordinates
|
---|
| 228 | x_c = x + r*TMath::Sin(phi_0);
|
---|
| 229 | y_c = y - r*TMath::Cos(phi_0);
|
---|
| 230 | r_c = TMath::Hypot(x_c, y_c);
|
---|
| 231 | phi_c = TMath::ATan2(y_c, x_c);
|
---|
| 232 | phi = phi_c;
|
---|
| 233 | if(x_c < 0.0) phi += TMath::Pi();
|
---|
| 234 |
|
---|
[a0431dc] | 235 | rcu = TMath::Abs(r);
|
---|
| 236 | rc2 = r_c*r_c;
|
---|
| 237 |
|
---|
| 238 | // calculate coordinates of closest approach to track circle in transverse plane xd, yd, zd
|
---|
| 239 | xd = x_c*x_c*x_c - x_c*rcu*r_c + x_c*y_c*y_c;
|
---|
| 240 | xd = ( rc2 > 0.0 ) ? xd / rc2 : -999;
|
---|
| 241 | yd = y_c*(-rcu*r_c + rc2);
|
---|
| 242 | yd = ( rc2 > 0.0 ) ? yd / rc2 : -999;
|
---|
| 243 | zd = z + (TMath::Sqrt(xd*xd+yd*yd) - TMath::Sqrt(x*x+y*y))*pz/pt;
|
---|
| 244 |
|
---|
| 245 | // calculate impact paramater
|
---|
| 246 | ang_mom = (xd*py - yd*px);
|
---|
| 247 | dxy = ang_mom/pt;
|
---|
| 248 |
|
---|
| 249 |
|
---|
[d7d2da3] | 250 | // 3. time evaluation t = TMath::Min(t_r, t_z)
|
---|
| 251 | // t_r : time to exit from the sides
|
---|
| 252 | // t_z : time to exit from the front or the back
|
---|
| 253 | t_r = 0.0; // in [ns]
|
---|
| 254 | int sign_pz = (pz > 0.0) ? 1 : -1;
|
---|
| 255 | if(pz == 0.0) t_z = 1.0E99;
|
---|
| 256 | else t_z = gammam / (pz*1.0E9/c_light) * (-z + fHalfLength*sign_pz);
|
---|
| 257 |
|
---|
| 258 | if(r_c + TMath::Abs(r) < fRadius)
|
---|
| 259 | {
|
---|
| 260 | // helix does not cross the cylinder sides
|
---|
| 261 | t = t_z;
|
---|
| 262 | }
|
---|
| 263 | else
|
---|
| 264 | {
|
---|
| 265 | asinrho = TMath::ASin( (fRadius*fRadius - r_c*r_c - r*r) / (2*TMath::Abs(r)*r_c) );
|
---|
| 266 | delta = phi_0 - phi;
|
---|
| 267 | if(delta <-TMath::Pi()) delta += 2*TMath::Pi();
|
---|
| 268 | if(delta > TMath::Pi()) delta -= 2*TMath::Pi();
|
---|
| 269 | t1 = (delta + asinrho) / omega;
|
---|
| 270 | t2 = (delta + TMath::Pi() - asinrho) / omega;
|
---|
| 271 | t3 = (delta + TMath::Pi() + asinrho) / omega;
|
---|
| 272 | t4 = (delta - asinrho) / omega;
|
---|
| 273 | t5 = (delta - TMath::Pi() - asinrho) / omega;
|
---|
| 274 | t6 = (delta - TMath::Pi() + asinrho) / omega;
|
---|
| 275 |
|
---|
| 276 | if(t1 < 0) t1 = 1.0E99;
|
---|
| 277 | if(t2 < 0) t2 = 1.0E99;
|
---|
| 278 | if(t3 < 0) t3 = 1.0E99;
|
---|
| 279 | if(t4 < 0) t4 = 1.0E99;
|
---|
| 280 | if(t5 < 0) t5 = 1.0E99;
|
---|
| 281 | if(t6 < 0) t6 = 1.0E99;
|
---|
| 282 |
|
---|
| 283 | t_ra = TMath::Min(t1, TMath::Min(t2, t3));
|
---|
| 284 | t_rb = TMath::Min(t4, TMath::Min(t5, t6));
|
---|
| 285 | t_r = TMath::Min(t_ra, t_rb);
|
---|
[d41ba4a] | 286 | t = TMath::Min(t_r, t_z);
|
---|
[d7d2da3] | 287 | }
|
---|
| 288 |
|
---|
| 289 | // 4. position in terms of x(t), y(t), z(t)
|
---|
| 290 | x_t = x_c + r * TMath::Sin(omega * t - phi_0);
|
---|
| 291 | y_t = y_c + r * TMath::Cos(omega * t - phi_0);
|
---|
| 292 | z_t = z + pz*1.0E9 / c_light / gammam * t;
|
---|
| 293 | r_t = TMath::Hypot(x_t, y_t);
|
---|
| 294 |
|
---|
| 295 | if(r_t > 0.0)
|
---|
| 296 | {
|
---|
| 297 | mother = candidate;
|
---|
| 298 | candidate = static_cast<Candidate*>(candidate->Clone());
|
---|
| 299 |
|
---|
[d41ba4a] | 300 | candidate->Position.SetXYZT(x_t*1.0E3, y_t*1.0E3, z_t*1.0E3, candidatePosition.T() + t*c_light*1.0E3);
|
---|
[d7d2da3] | 301 |
|
---|
| 302 | candidate->Momentum = candidateMomentum;
|
---|
[a0431dc] | 303 | candidate->Xd = xd*1.0E3;
|
---|
| 304 | candidate->Yd = yd*1.0E3;
|
---|
| 305 | candidate->Zd = zd*1.0E3;
|
---|
| 306 |
|
---|
| 307 | candidate->AddCandidate(mother);
|
---|
[d7d2da3] | 308 |
|
---|
| 309 | fOutputArray->Add(candidate);
|
---|
| 310 | switch(TMath::Abs(candidate->PID))
|
---|
| 311 | {
|
---|
| 312 | case 11:
|
---|
| 313 | fElectronOutputArray->Add(candidate);
|
---|
| 314 | break;
|
---|
| 315 | case 13:
|
---|
| 316 | fMuonOutputArray->Add(candidate);
|
---|
| 317 | break;
|
---|
| 318 | default:
|
---|
| 319 | fChargedHadronOutputArray->Add(candidate);
|
---|
| 320 | }
|
---|
| 321 | }
|
---|
| 322 | }
|
---|
| 323 | }
|
---|
| 324 | }
|
---|
| 325 |
|
---|
| 326 | //------------------------------------------------------------------------------
|
---|
[a0431dc] | 327 |
|
---|