[b982244] | 1 | /*
|
---|
| 2 | * Delphes: a framework for fast simulation of a generic collider experiment
|
---|
| 3 | * Copyright (C) 2012-2014 Universite catholique de Louvain (UCL), Belgium
|
---|
| 4 | *
|
---|
| 5 | * This program is free software: you can redistribute it and/or modify
|
---|
| 6 | * it under the terms of the GNU General Public License as published by
|
---|
| 7 | * the Free Software Foundation, either version 3 of the License, or
|
---|
| 8 | * (at your option) any later version.
|
---|
| 9 | *
|
---|
| 10 | * This program is distributed in the hope that it will be useful,
|
---|
| 11 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 12 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 13 | * GNU General Public License for more details.
|
---|
| 14 | *
|
---|
| 15 | * You should have received a copy of the GNU General Public License
|
---|
| 16 | * along with this program. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 17 | */
|
---|
| 18 |
|
---|
| 19 | /** \class EnergyLoss
|
---|
| 20 | *
|
---|
| 21 | * This module computes the charged energy loss according to the active material properties.
|
---|
| 22 | * The energy loss is simulated with a Landau convoluted by a Gaussian. The active material
|
---|
| 23 | * is assumed to be uniformly distributed in the detector volume. The actual active volume
|
---|
| 24 | * get normalized by multiplying the path length by the parameter ActiveFraction.
|
---|
| 25 | *
|
---|
| 26 | *
|
---|
| 27 | * \author M. Selvaggi - CERN
|
---|
| 28 | *
|
---|
| 29 | */
|
---|
| 30 |
|
---|
| 31 | #include "modules/EnergyLoss.h"
|
---|
| 32 |
|
---|
| 33 | #include "classes/DelphesClasses.h"
|
---|
| 34 | #include "classes/DelphesFactory.h"
|
---|
| 35 | #include "classes/DelphesFormula.h"
|
---|
| 36 |
|
---|
| 37 | #include "ExRootAnalysis/ExRootClassifier.h"
|
---|
| 38 | #include "ExRootAnalysis/ExRootFilter.h"
|
---|
| 39 | #include "ExRootAnalysis/ExRootResult.h"
|
---|
| 40 |
|
---|
| 41 | #include "TDatabasePDG.h"
|
---|
| 42 | #include "TFormula.h"
|
---|
| 43 | #include "TLorentzVector.h"
|
---|
| 44 | #include "TMath.h"
|
---|
| 45 | #include "TObjArray.h"
|
---|
| 46 | #include "TRandom3.h"
|
---|
| 47 | #include "TString.h"
|
---|
| 48 |
|
---|
| 49 | #include <algorithm>
|
---|
| 50 | #include <iostream>
|
---|
| 51 | #include <sstream>
|
---|
| 52 | #include <stdexcept>
|
---|
| 53 |
|
---|
| 54 | using namespace std;
|
---|
| 55 |
|
---|
| 56 | //------------------------------------------------------------------------------
|
---|
| 57 |
|
---|
| 58 | EnergyLoss::EnergyLoss()
|
---|
| 59 | {
|
---|
| 60 | }
|
---|
| 61 |
|
---|
| 62 | //------------------------------------------------------------------------------
|
---|
| 63 |
|
---|
| 64 | EnergyLoss::~EnergyLoss()
|
---|
| 65 | {
|
---|
| 66 | }
|
---|
| 67 |
|
---|
| 68 | //------------------------------------------------------------------------------
|
---|
| 69 |
|
---|
| 70 | void EnergyLoss::Init()
|
---|
| 71 | {
|
---|
| 72 |
|
---|
| 73 | fActiveFraction = GetDouble("ActiveFraction", 0.013); // fraction of active material that measures the deposited charge
|
---|
| 74 | fChargeCollectionEfficiency = GetDouble("ChargeCollectionEfficiency", 0.75); // this number shifts Landau to the left
|
---|
| 75 |
|
---|
| 76 | // fixme: this number should probably be charge/energy dependent
|
---|
| 77 | fResolution = GetDouble("Resolution", 0.15); // 0 - perfect Landau energy loss (0.15 gives good agreement with CMS pixel detector)
|
---|
| 78 |
|
---|
| 79 | // active material properties (cf. http://pdg.lbl.gov/2014/AtomicNuclearProperties/properties8.dat)
|
---|
| 80 | fZ = GetDouble("Z", 14.);
|
---|
| 81 | fA = GetDouble("A", 28.0855); // in g/mol
|
---|
| 82 | frho = GetDouble("rho", 2.329); // in g/cm3
|
---|
| 83 | fa = GetDouble("a", 0.1492);
|
---|
| 84 | fm = GetDouble("m", 3.2546);
|
---|
| 85 | fx0 = GetDouble("x0", 0.2015);
|
---|
| 86 | fx1 = GetDouble("x1", 2.8716);
|
---|
| 87 | fI = GetDouble("I", 173.0); // mean excitation potential in (eV)
|
---|
| 88 | fc0 = GetDouble("c0", 4.4355);
|
---|
| 89 |
|
---|
| 90 | // import arrays with output from other modules
|
---|
| 91 |
|
---|
| 92 | ExRootConfParam param = GetParam("InputArray");
|
---|
| 93 | Long_t i, size;
|
---|
| 94 | const TObjArray *array;
|
---|
| 95 | TIterator *iterator;
|
---|
| 96 |
|
---|
| 97 | size = param.GetSize();
|
---|
| 98 | for(i = 0; i < size; ++i)
|
---|
| 99 | {
|
---|
| 100 | array = ImportArray(param[i].GetString());
|
---|
| 101 | iterator = array->MakeIterator();
|
---|
| 102 |
|
---|
| 103 | fInputList.push_back(iterator);
|
---|
| 104 | }
|
---|
| 105 |
|
---|
| 106 | }
|
---|
| 107 |
|
---|
| 108 | //------------------------------------------------------------------------------
|
---|
| 109 |
|
---|
| 110 | void EnergyLoss::Finish()
|
---|
| 111 | {
|
---|
| 112 | vector<TIterator *>::iterator itInputList;
|
---|
| 113 | TIterator *iterator;
|
---|
| 114 |
|
---|
| 115 | for(itInputList = fInputList.begin(); itInputList != fInputList.end(); ++itInputList)
|
---|
| 116 | {
|
---|
| 117 | iterator = *itInputList;
|
---|
| 118 | if(iterator) delete iterator;
|
---|
| 119 | }
|
---|
| 120 |
|
---|
| 121 | }
|
---|
| 122 |
|
---|
| 123 | //------------------------------------------------------------------------------
|
---|
| 124 |
|
---|
| 125 | void EnergyLoss::Process()
|
---|
| 126 | {
|
---|
| 127 | Candidate *candidate, *particle, *particleTest;
|
---|
| 128 | vector<TIterator *>::iterator itInputList;
|
---|
| 129 | TIterator *iterator;
|
---|
| 130 | TObjArray *array;
|
---|
| 131 |
|
---|
| 132 | Double_t beta, gamma, charge, x;
|
---|
| 133 | Double_t kappa, chi, me, I, Wmax, delta, avdE, dP, dx, dE, dEdx;
|
---|
| 134 |
|
---|
| 135 | //cout<<"---------------- new event -------------------"<<endl;
|
---|
| 136 |
|
---|
| 137 |
|
---|
| 138 | // loop over all input arrays
|
---|
| 139 | for(itInputList = fInputList.begin(); itInputList != fInputList.end(); ++itInputList)
|
---|
| 140 | {
|
---|
| 141 | iterator = *itInputList;
|
---|
| 142 |
|
---|
| 143 | // loop over all candidates
|
---|
| 144 | iterator->Reset();
|
---|
| 145 | while((candidate = static_cast<Candidate *>(iterator->Next())))
|
---|
| 146 | {
|
---|
| 147 | //cout<<" ---------------- new candidate -------------------"<<endl;
|
---|
| 148 | const TLorentzVector &candidateMomentum = candidate->Momentum;
|
---|
| 149 |
|
---|
| 150 | beta = candidateMomentum.Beta();
|
---|
| 151 | gamma = candidateMomentum.Gamma();
|
---|
| 152 |
|
---|
| 153 | charge = TMath::Abs(candidate->Charge);
|
---|
| 154 |
|
---|
| 155 | // length of the track normalized by the fraction of active material and the charge collection efficiency in the tracker (in cm)
|
---|
| 156 | dx = candidate->L * fActiveFraction * 0.1;
|
---|
| 157 | x = dx * fChargeCollectionEfficiency;
|
---|
| 158 |
|
---|
| 159 | kappa = 2*0.1535*TMath::Abs(charge)*TMath::Abs(charge)*fZ*frho*x/(fA*beta*beta); //energy loss in MeV
|
---|
| 160 |
|
---|
| 161 | chi = 0.5*kappa;
|
---|
| 162 | me = 0.510998; // electron mass in MeV, need
|
---|
| 163 | I = fI*1e-6; // convert I in MeV
|
---|
| 164 |
|
---|
| 165 | // fixme: max energy transfer wrong for electrons
|
---|
| 166 | Wmax = 2*me*beta*beta*gamma*gamma; // this is not valid for electrons
|
---|
| 167 |
|
---|
| 168 | delta = Deltaf(fc0, fa, fm, fx0, fx1, beta, gamma);
|
---|
| 169 |
|
---|
| 170 | // Bethe-Bloch energy loss in MeV (not used here)
|
---|
| 171 | avdE = kappa*( TMath::Log(Wmax/I) - beta*beta - delta/2);
|
---|
| 172 |
|
---|
| 173 | // most probable energy (MPV) loss for Landau
|
---|
| 174 | dP = chi*( TMath::Log(Wmax/I) + TMath::Log(chi/I) + 0.2 - beta*beta - delta);
|
---|
| 175 |
|
---|
| 176 | //cout<<"x: "<<x<<", Beta: "<< beta<<", Gamma: "<<gamma <<", Charge: "<<charge<<endl;
|
---|
| 177 |
|
---|
| 178 | //cout<<x<<","<<kappa<<endl;
|
---|
| 179 | //cout<<" Wmax: "<<Wmax<<", Chi: "<<chi<<", delta: "<<delta<<", DeDx: "<<avdE<<", DeltaP: "<<dP<<endl;
|
---|
| 180 |
|
---|
| 181 | // compute total energy loss in MeV predicted by a Landau
|
---|
| 182 | dE = gRandom->Landau(dP,chi); // this is the total energy loss in MeV predicted by a Landau
|
---|
| 183 |
|
---|
| 184 | // apply additionnal gaussian smearing to simulate finite resolution in charge measurement
|
---|
| 185 | dE = gRandom->Gaus(dE,fResolution*dP);
|
---|
| 186 |
|
---|
| 187 | dEdx = dx > 0 ? dE/dx : -1. ;
|
---|
| 188 |
|
---|
| 189 | // store computed dEdx in MeV/cm
|
---|
| 190 | candidate->DeDx = dEdx;
|
---|
| 191 |
|
---|
| 192 | // add dedx also in Muons in electrons classes in treeWriter
|
---|
| 193 | // fix electrons here
|
---|
| 194 | // think whether any relevance for hits
|
---|
| 195 |
|
---|
| 196 |
|
---|
| 197 | //cout<<" eloss: "<<dE<<", dx: "<<dx<<", dEdx: "<<dEdx<<endl;
|
---|
| 198 | }
|
---|
| 199 | }
|
---|
| 200 |
|
---|
| 201 | }
|
---|
| 202 |
|
---|
| 203 |
|
---|
| 204 | //------------------------------------------------------------------------------
|
---|
| 205 |
|
---|
| 206 | // formula Taken from Leo (2.30) pg. 26
|
---|
| 207 | Double_t EnergyLoss::Deltaf(Double_t c0, Double_t a, Double_t m, Double_t x0, Double_t x1, Double_t beta, Double_t gamma)
|
---|
| 208 | {
|
---|
| 209 | Double_t x= TMath::Log10(beta*gamma);
|
---|
| 210 | Double_t delta = 0.;
|
---|
| 211 |
|
---|
| 212 | //cout<<x<<","<<x0<<","<<x1<<","<<endl;
|
---|
| 213 |
|
---|
| 214 | if (x < x0)
|
---|
| 215 | delta = 0.;
|
---|
| 216 | if (x >= x0 && x< x1)
|
---|
| 217 | delta = 4.6052*x - c0 + a*TMath::Power(x1 - x,m);
|
---|
| 218 | if (x> x1)
|
---|
| 219 | delta = 4.6052*x - c0;
|
---|
| 220 |
|
---|
| 221 | return delta;
|
---|
| 222 | }
|
---|