Fork me on GitHub

source: git/modules/DualReadoutCalorimeter.cc@ d1678fd

Last change on this file since d1678fd was d1678fd, checked in by michele <michele.selvaggi@…>, 3 years ago

fix weighted time and tower position in calorimeter modules

  • Property mode set to 100644
File size: 21.7 KB
Line 
1/*
2 * Delphes: a framework for fast simulation of a generic collider experiment
3 * Copyright (C) 2012-2014 Universite catholique de Louvain (UCL), Belgium
4 *
5 * This program is free software: you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation, either version 3 of the License, or
8 * (at your option) any later version.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program. If not, see <http://www.gnu.org/licenses/>.
17 */
18
19
20/** \class DualReadoutCalorimeter
21 *
22
23 // ============ TODO =========================================================
24 // This implementation of dual calorimetry relies on several approximations:
25 // - If hadronic energy is found in the tower the energy resolution then the full tower enrgy is smeared according to hadronic resolution (pessimistic for (e,n) or (pi+,gamma))
26 // - While e+ vs pi+ (or gamma vs n) separation is in principle possible for single particles (using C/S, PMT timing, lateral shower profile) it is not obvious it can be done overlapping particles.
27 // Now we assume that regarless of the number of particle hits per tower we can always distinguish e+ vs pi+, which is probably not true in the case (e+,n) vs (pi+,gamma) without longitudinal segmentation.
28
29 *
30 * \author M. Selvaggi - CERN
31 *
32 */
33
34#include "modules/DualReadoutCalorimeter.h"
35
36#include "classes/DelphesClasses.h"
37#include "classes/DelphesFactory.h"
38#include "classes/DelphesFormula.h"
39
40#include "ExRootAnalysis/ExRootResult.h"
41#include "ExRootAnalysis/ExRootFilter.h"
42#include "ExRootAnalysis/ExRootClassifier.h"
43
44#include "TMath.h"
45#include "TString.h"
46#include "TFormula.h"
47#include "TRandom3.h"
48#include "TObjArray.h"
49#include "TDatabasePDG.h"
50#include "TLorentzVector.h"
51
52#include <algorithm>
53#include <stdexcept>
54#include <iostream>
55#include <sstream>
56
57using namespace std;
58
59//------------------------------------------------------------------------------
60
61DualReadoutCalorimeter::DualReadoutCalorimeter() :
62 fECalResolutionFormula(0), fHCalResolutionFormula(0),
63 fItParticleInputArray(0), fItTrackInputArray(0)
64{
65
66 fECalResolutionFormula = new DelphesFormula;
67 fHCalResolutionFormula = new DelphesFormula;
68
69 fECalTowerTrackArray = new TObjArray;
70 fItECalTowerTrackArray = fECalTowerTrackArray->MakeIterator();
71
72 fHCalTowerTrackArray = new TObjArray;
73 fItHCalTowerTrackArray = fHCalTowerTrackArray->MakeIterator();
74
75 fTowerTrackArray = new TObjArray;
76 fItTowerTrackArray = fTowerTrackArray->MakeIterator();
77
78}
79
80//------------------------------------------------------------------------------
81
82DualReadoutCalorimeter::~DualReadoutCalorimeter()
83{
84
85 if(fECalResolutionFormula) delete fECalResolutionFormula;
86 if(fHCalResolutionFormula) delete fHCalResolutionFormula;
87
88 if(fECalTowerTrackArray) delete fECalTowerTrackArray;
89 if(fItECalTowerTrackArray) delete fItECalTowerTrackArray;
90
91 if(fHCalTowerTrackArray) delete fHCalTowerTrackArray;
92 if(fItHCalTowerTrackArray) delete fItHCalTowerTrackArray;
93
94 if(fTowerTrackArray) delete fTowerTrackArray;
95 if(fItTowerTrackArray) delete fItTowerTrackArray;
96
97}
98
99//------------------------------------------------------------------------------
100
101void DualReadoutCalorimeter::Init()
102{
103 ExRootConfParam param, paramEtaBins, paramPhiBins, paramFractions;
104 Long_t i, j, k, size, sizeEtaBins, sizePhiBins;
105 Double_t ecalFraction, hcalFraction;
106 TBinMap::iterator itEtaBin;
107 set< Double_t >::iterator itPhiBin;
108 vector< Double_t > *phiBins;
109
110 // read eta and phi bins
111 param = GetParam("EtaPhiBins");
112 size = param.GetSize();
113 fBinMap.clear();
114 fEtaBins.clear();
115 fPhiBins.clear();
116 for(i = 0; i < size/2; ++i)
117 {
118 paramEtaBins = param[i*2];
119 sizeEtaBins = paramEtaBins.GetSize();
120 paramPhiBins = param[i*2 + 1];
121 sizePhiBins = paramPhiBins.GetSize();
122
123 for(j = 0; j < sizeEtaBins; ++j)
124 {
125 for(k = 0; k < sizePhiBins; ++k)
126 {
127 fBinMap[paramEtaBins[j].GetDouble()].insert(paramPhiBins[k].GetDouble());
128 }
129 }
130 }
131
132 // for better performance we transform map of sets to parallel vectors:
133 // vector< double > and vector< vector< double >* >
134 for(itEtaBin = fBinMap.begin(); itEtaBin != fBinMap.end(); ++itEtaBin)
135 {
136 fEtaBins.push_back(itEtaBin->first);
137 phiBins = new vector< double >(itEtaBin->second.size());
138 fPhiBins.push_back(phiBins);
139 phiBins->clear();
140 for(itPhiBin = itEtaBin->second.begin(); itPhiBin != itEtaBin->second.end(); ++itPhiBin)
141 {
142 phiBins->push_back(*itPhiBin);
143 }
144 }
145
146 // read energy fractions for different particles
147 param = GetParam("EnergyFraction");
148 size = param.GetSize();
149
150 // set default energy fractions values
151 fFractionMap.clear();
152 fFractionMap[0] = make_pair(0.0, 1.0);
153
154 for(i = 0; i < size/2; ++i)
155 {
156 paramFractions = param[i*2 + 1];
157
158 ecalFraction = paramFractions[0].GetDouble();
159 hcalFraction = paramFractions[1].GetDouble();
160
161 fFractionMap[param[i*2].GetInt()] = make_pair(ecalFraction, hcalFraction);
162 }
163
164 // read min E value for timing measurement in ECAL
165 fTimingEnergyMin = GetDouble("TimingEnergyMin",4.);
166 // For timing
167 // So far this flag needs to be false
168 // Curved extrapolation not supported
169 fElectronsFromTrack = false;
170
171 // read min E value for towers to be saved
172 fECalEnergyMin = GetDouble("ECalEnergyMin", 0.0);
173 fHCalEnergyMin = GetDouble("HCalEnergyMin", 0.0);
174 fEnergyMin = GetDouble("EnergyMin", 0.0);
175
176 fECalEnergySignificanceMin = GetDouble("ECalEnergySignificanceMin", 0.0);
177 fHCalEnergySignificanceMin = GetDouble("HCalEnergySignificanceMin", 0.0);
178 fEnergySignificanceMin = GetDouble("EnergySignificanceMin", 0.0);
179
180 // switch on or off the dithering of the center of DualReadoutCalorimeter towers
181 fSmearTowerCenter = GetBool("SmearTowerCenter", true);
182
183 // read resolution formulas
184 fECalResolutionFormula->Compile(GetString("ECalResolutionFormula", "0"));
185 fHCalResolutionFormula->Compile(GetString("HCalResolutionFormula", "0"));
186
187 // import array with output from other modules
188 fParticleInputArray = ImportArray(GetString("ParticleInputArray", "ParticlePropagator/particles"));
189 fItParticleInputArray = fParticleInputArray->MakeIterator();
190
191 fTrackInputArray = ImportArray(GetString("TrackInputArray", "ParticlePropagator/tracks"));
192 fItTrackInputArray = fTrackInputArray->MakeIterator();
193
194 // create output arrays
195 fTowerOutputArray = ExportArray(GetString("TowerOutputArray", "towers"));
196 fPhotonOutputArray = ExportArray(GetString("PhotonOutputArray", "photons"));
197
198 fEFlowTrackOutputArray = ExportArray(GetString("EFlowTrackOutputArray", "eflowTracks"));
199 fEFlowPhotonOutputArray = ExportArray(GetString("EFlowPhotonOutputArray", "eflowPhotons"));
200 fEFlowNeutralHadronOutputArray = ExportArray(GetString("EFlowNeutralHadronOutputArray", "eflowNeutralHadrons"));
201}
202
203//------------------------------------------------------------------------------
204
205void DualReadoutCalorimeter::Finish()
206{
207 vector< vector< Double_t >* >::iterator itPhiBin;
208 if(fItParticleInputArray) delete fItParticleInputArray;
209 if(fItTrackInputArray) delete fItTrackInputArray;
210 for(itPhiBin = fPhiBins.begin(); itPhiBin != fPhiBins.end(); ++itPhiBin)
211 {
212 delete *itPhiBin;
213 }
214}
215
216//------------------------------------------------------------------------------
217
218void DualReadoutCalorimeter::Process()
219{
220 Candidate *particle, *track;
221 TLorentzVector position, momentum;
222 Short_t etaBin, phiBin, flags;
223 Int_t number;
224 Long64_t towerHit, towerEtaPhi, hitEtaPhi;
225 Double_t ecalFraction, hcalFraction;
226 Double_t ecalEnergy, hcalEnergy;
227 Double_t ecalSigma, hcalSigma, sigma;
228 Double_t energyGuess, energy;
229 Int_t pdgCode;
230
231 TFractionMap::iterator itFractionMap;
232
233 vector< Double_t >::iterator itEtaBin;
234 vector< Double_t >::iterator itPhiBin;
235 vector< Double_t > *phiBins;
236
237 vector< Long64_t >::iterator itTowerHits;
238
239 DelphesFactory *factory = GetFactory();
240 fTowerHits.clear();
241 fECalTowerFractions.clear();
242 fHCalTowerFractions.clear();
243 fECalTrackFractions.clear();
244 fHCalTrackFractions.clear();
245
246 // loop over all particles
247 fItParticleInputArray->Reset();
248 number = -1;
249 while((particle = static_cast<Candidate*>(fItParticleInputArray->Next())))
250 {
251 const TLorentzVector &particlePosition = particle->Position;
252 ++number;
253
254 pdgCode = TMath::Abs(particle->PID);
255
256 itFractionMap = fFractionMap.find(pdgCode);
257 if(itFractionMap == fFractionMap.end())
258 {
259 itFractionMap = fFractionMap.find(0);
260 }
261
262 ecalFraction = itFractionMap->second.first;
263 hcalFraction = itFractionMap->second.second;
264
265 fECalTowerFractions.push_back(ecalFraction);
266 fHCalTowerFractions.push_back(hcalFraction);
267
268 if(ecalFraction < 1.0E-9 && hcalFraction < 1.0E-9) continue;
269
270 // find eta bin [1, fEtaBins.size - 1]
271 itEtaBin = lower_bound(fEtaBins.begin(), fEtaBins.end(), particlePosition.Eta());
272 if(itEtaBin == fEtaBins.begin() || itEtaBin == fEtaBins.end()) continue;
273 etaBin = distance(fEtaBins.begin(), itEtaBin);
274
275 // phi bins for given eta bin
276 phiBins = fPhiBins[etaBin];
277
278 // find phi bin [1, phiBins.size - 1]
279 itPhiBin = lower_bound(phiBins->begin(), phiBins->end(), particlePosition.Phi());
280 if(itPhiBin == phiBins->begin() || itPhiBin == phiBins->end()) continue;
281 phiBin = distance(phiBins->begin(), itPhiBin);
282
283 flags = 0;
284 flags |= (pdgCode == 11 || pdgCode == 22) << 1;
285
286 // make tower hit {16-bits for eta bin number, 16-bits for phi bin number, 8-bits for flags, 24-bits for particle number}
287 towerHit = (Long64_t(etaBin) << 48) | (Long64_t(phiBin) << 32) | (Long64_t(flags) << 24) | Long64_t(number);
288
289 fTowerHits.push_back(towerHit);
290 }
291
292 // loop over all tracks
293 fItTrackInputArray->Reset();
294 number = -1;
295 while((track = static_cast<Candidate*>(fItTrackInputArray->Next())))
296 {
297 const TLorentzVector &trackPosition = track->Position;
298 ++number;
299
300 pdgCode = TMath::Abs(track->PID);
301
302 itFractionMap = fFractionMap.find(pdgCode);
303 if(itFractionMap == fFractionMap.end())
304 {
305 itFractionMap = fFractionMap.find(0);
306 }
307
308 ecalFraction = itFractionMap->second.first;
309 hcalFraction = itFractionMap->second.second;
310
311 fECalTrackFractions.push_back(ecalFraction);
312 fHCalTrackFractions.push_back(hcalFraction);
313
314 // find eta bin [1, fEtaBins.size - 1]
315 itEtaBin = lower_bound(fEtaBins.begin(), fEtaBins.end(), trackPosition.Eta());
316 if(itEtaBin == fEtaBins.begin() || itEtaBin == fEtaBins.end()) continue;
317 etaBin = distance(fEtaBins.begin(), itEtaBin);
318
319 // phi bins for given eta bin
320 phiBins = fPhiBins[etaBin];
321
322 // find phi bin [1, phiBins.size - 1]
323 itPhiBin = lower_bound(phiBins->begin(), phiBins->end(), trackPosition.Phi());
324 if(itPhiBin == phiBins->begin() || itPhiBin == phiBins->end()) continue;
325 phiBin = distance(phiBins->begin(), itPhiBin);
326
327 flags = 1;
328
329 // make tower hit {16-bits for eta bin number, 16-bits for phi bin number, 8-bits for flags, 24-bits for track number}
330 towerHit = (Long64_t(etaBin) << 48) | (Long64_t(phiBin) << 32) | (Long64_t(flags) << 24) | Long64_t(number);
331
332 fTowerHits.push_back(towerHit);
333 }
334
335 // all hits are sorted first by eta bin number, then by phi bin number,
336 // then by flags and then by particle or track number
337 sort(fTowerHits.begin(), fTowerHits.end());
338
339 // loop over all hits
340 towerEtaPhi = 0;
341 fTower = 0;
342 for(itTowerHits = fTowerHits.begin(); itTowerHits != fTowerHits.end(); ++itTowerHits)
343 {
344 towerHit = (*itTowerHits);
345 flags = (towerHit >> 24) & 0x00000000000000FFLL;
346 number = (towerHit) & 0x0000000000FFFFFFLL;
347 hitEtaPhi = towerHit >> 32;
348
349 if(towerEtaPhi != hitEtaPhi)
350 {
351 // switch to next tower
352 towerEtaPhi = hitEtaPhi;
353
354 // finalize previous tower
355 FinalizeTower();
356
357 // create new tower
358 fTower = factory->NewCandidate();
359
360 phiBin = (towerHit >> 32) & 0x000000000000FFFFLL;
361 etaBin = (towerHit >> 48) & 0x000000000000FFFFLL;
362
363 // phi bins for given eta bin
364 phiBins = fPhiBins[etaBin];
365
366 // calculate eta and phi of the tower's center
367 fTowerEta = 0.5*(fEtaBins[etaBin - 1] + fEtaBins[etaBin]);
368 fTowerPhi = 0.5*((*phiBins)[phiBin - 1] + (*phiBins)[phiBin]);
369
370 fTowerEdges[0] = fEtaBins[etaBin - 1];
371 fTowerEdges[1] = fEtaBins[etaBin];
372 fTowerEdges[2] = (*phiBins)[phiBin - 1];
373 fTowerEdges[3] = (*phiBins)[phiBin];
374
375 fECalTowerEnergy = 0.0;
376 fHCalTowerEnergy = 0.0;
377
378 fECalTrackEnergy = 0.0;
379 fHCalTrackEnergy = 0.0;
380 fTrackEnergy = 0.0;
381
382 fECalTrackSigma = 0.0;
383 fHCalTrackSigma = 0.0;
384 fTrackSigma = 0.0;
385
386 fTowerTrackHits = 0;
387 fTowerPhotonHits = 0;
388
389 fECalTowerTrackArray->Clear();
390 fHCalTowerTrackArray->Clear();
391 fTowerTrackArray->Clear();
392
393 }
394
395 // check for track hits
396 if(flags & 1)
397 {
398 ++fTowerTrackHits;
399
400 track = static_cast<Candidate*>(fTrackInputArray->At(number));
401 momentum = track->Momentum;
402 position = track->Position;
403
404 ecalEnergy = momentum.E() * fECalTrackFractions[number];
405 hcalEnergy = momentum.E() * fHCalTrackFractions[number];
406 energy = ecalEnergy + hcalEnergy;
407
408 if(ecalEnergy > fTimingEnergyMin && fTower)
409 {
410 if(fElectronsFromTrack)
411 {
412 fTower->ECalEnergyTimePairs.push_back(make_pair<Float_t, Float_t>(ecalEnergy, track->Position.T()));
413 }
414 }
415
416
417 // in Dual Readout we do not care if tracks are ECAL of HCAL
418 if(fECalTrackFractions[number] > 1.0E-9 || fHCalTrackFractions[number] > 1.0E-9)
419 {
420 fTrackEnergy += energy;
421 // this sigma will be used to determine whether neutral excess is significant. We choose the resolution according to bthe higest deposited fraction (in practice had for charged hadrons and em for electrons)
422 sigma = 0.0;
423 if(fHCalTrackFractions[number] > 0)
424 sigma = fHCalResolutionFormula->Eval(0.0, fTowerEta, 0.0, momentum.E());
425 else
426 sigma = fECalResolutionFormula->Eval(0.0, fTowerEta, 0.0, momentum.E());
427
428 if(sigma/momentum.E() < track->TrackResolution)
429 energyGuess = ecalEnergy + hcalEnergy;
430 else
431 energyGuess = momentum.E();
432
433 fTrackSigma += (track->TrackResolution)*energyGuess*(track->TrackResolution)*energyGuess;
434 fTowerTrackArray->Add(track);
435
436 }
437 else
438 {
439 fEFlowTrackOutputArray->Add(track);
440 }
441
442 continue;
443 }
444
445 // check for photon and electron hits in current tower
446 if(flags & 2) ++fTowerPhotonHits;
447
448 particle = static_cast<Candidate*>(fParticleInputArray->At(number));
449 momentum = particle->Momentum;
450 position = particle->Position;
451
452 // fill current tower
453 ecalEnergy = momentum.E() * fECalTowerFractions[number];
454 hcalEnergy = momentum.E() * fHCalTowerFractions[number];
455
456 fECalTowerEnergy += ecalEnergy;
457 fHCalTowerEnergy += hcalEnergy;
458
459 if(ecalEnergy > fTimingEnergyMin && fTower)
460 {
461 if (abs(particle->PID) != 11 || !fElectronsFromTrack)
462 {
463 fTower->ECalEnergyTimePairs.push_back(make_pair<Float_t, Float_t>(ecalEnergy, particle->Position.T()));
464 }
465 }
466
467 fTower->AddCandidate(particle);
468 fTower->Position = position;
469 }
470
471 // finalize last tower
472 FinalizeTower();
473}
474
475//------------------------------------------------------------------------------
476
477void DualReadoutCalorimeter::FinalizeTower()
478{
479
480 Candidate *track, *tower, *mother;
481 Double_t energy, pt, eta, phi, r;
482 Double_t ecalEnergy, hcalEnergy;
483 Double_t ecalNeutralEnergy, hcalNeutralEnergy, neutralEnergy;
484
485 Double_t ecalSigma, hcalSigma, sigma;
486 Double_t ecalNeutralSigma, hcalNeutralSigma, neutralSigma;
487
488 Double_t weightTrack, weightCalo, bestEnergyEstimate, rescaleFactor;
489
490 TLorentzVector momentum;
491 TFractionMap::iterator itFractionMap;
492
493 Float_t weight, sumWeightedTime, sumWeight;
494
495 if(!fTower) return;
496
497
498 // if no hadronic energy, use ECAL resolution
499 if (fHCalTowerEnergy <= fHCalEnergyMin)
500 {
501 energy = fECalTowerEnergy;
502 sigma = fECalResolutionFormula->Eval(0.0, fTowerEta, 0.0, energy);
503 //cout<<"em energy"<<energy<<", sigma: "<<sigma<<endl;
504 }
505
506 // if hadronic fraction > 0, use HCAL resolution
507 else
508 {
509 energy = fECalTowerEnergy + fHCalTowerEnergy;
510 sigma = fHCalResolutionFormula->Eval(0.0, fTowerEta, 0.0, energy);
511 //cout<<"had energy: "<<energy<<", sigma: "<<sigma<<endl;
512 }
513
514 energy = LogNormal(energy, sigma);
515 //cout<<energy<<","<<ecalEnergy<<","<<hcalEnergy<<endl;
516
517 if(energy < fEnergyMin || energy < fEnergySignificanceMin*sigma) energy = 0.0;
518
519 // for now keep this the same
520 ecalSigma = fECalResolutionFormula->Eval(0.0, fTowerEta, 0.0, fECalTowerEnergy);
521 hcalSigma = fHCalResolutionFormula->Eval(0.0, fTowerEta, 0.0, fHCalTowerEnergy);
522
523 ecalEnergy = LogNormal(fECalTowerEnergy, ecalSigma);
524 hcalEnergy = LogNormal(fHCalTowerEnergy, hcalSigma);
525
526 ecalSigma = fECalResolutionFormula->Eval(0.0, fTowerEta, 0.0, ecalEnergy);
527 hcalSigma = fHCalResolutionFormula->Eval(0.0, fTowerEta, 0.0, hcalEnergy);
528
529 if(ecalEnergy < fECalEnergyMin || ecalEnergy < fECalEnergySignificanceMin*ecalSigma) ecalEnergy = 0.0;
530 if(hcalEnergy < fHCalEnergyMin || hcalEnergy < fHCalEnergySignificanceMin*hcalSigma) hcalEnergy = 0.0;
531
532 //cout<<"Measured energy: "<<energy<<endl;
533
534 if(fSmearTowerCenter)
535 {
536 eta = gRandom->Uniform(fTowerEdges[0], fTowerEdges[1]);
537 phi = gRandom->Uniform(fTowerEdges[2], fTowerEdges[3]);
538 }
539 else
540 {
541 eta = fTowerEta;
542 phi = fTowerPhi;
543 }
544
545 pt = energy / TMath::CosH(eta);
546
547 // Time calculation for tower
548 fTower->NTimeHits = 0;
549 sumWeightedTime = 0.0;
550 sumWeight = 0.0;
551
552 for(size_t i = 0; i < fTower->ECalEnergyTimePairs.size(); ++i)
553 {
554 weight = TMath::Power((fTower->ECalEnergyTimePairs[i].first),2);
555 sumWeightedTime += weight * fTower->ECalEnergyTimePairs[i].second;
556 sumWeight += weight;
557 fTower->NTimeHits++;
558 }
559
560 r = TMath::Sqrt(fTower->Position.X()*fTower->Position.X()+fTower->Position.Y()*fTower->Position.Y());
561
562 if(sumWeight > 0.0)
563 {
564 fTower->Position.SetPtEtaPhiE(r, eta, phi, sumWeightedTime/sumWeight);
565 }
566 else
567 {
568 fTower->Position.SetPtEtaPhiE(r, eta, phi, 999999.9);
569 }
570
571 fTower->Momentum.SetPtEtaPhiE(pt, eta, phi, energy);
572 fTower->Eem = ecalEnergy;
573 fTower->Ehad = hcalEnergy;
574
575 fTower->Edges[0] = fTowerEdges[0];
576 fTower->Edges[1] = fTowerEdges[1];
577 fTower->Edges[2] = fTowerEdges[2];
578 fTower->Edges[3] = fTowerEdges[3];
579
580 if(energy > 0.0)
581 {
582 if(fTowerPhotonHits > 0 && fTowerTrackHits == 0)
583 {
584 fPhotonOutputArray->Add(fTower);
585 }
586 fTowerOutputArray->Add(fTower);
587 }
588
589 // fill energy flow candidates
590
591 fTrackSigma = TMath::Sqrt(fTrackSigma);
592 neutralEnergy = max( (energy - fTrackEnergy) , 0.0);
593 neutralSigma = neutralEnergy / TMath::Sqrt(fTrackSigma*fTrackSigma + sigma*sigma);
594
595 //cout<<"trackEnergy: "<<fTrackEnergy<<", trackSigma: "<<fTrackSigma<<", Ntracks: "<<fTowerTrackArray->GetEntries()<<endl;
596
597 //cout<<"neutralEnergy: "<<neutralEnergy<<", neutralSigma: "<<neutralSigma<<", :fEnergyMin "<<fEnergyMin<<", fEnergySignificanceMin: "<<fEnergySignificanceMin<<endl;
598
599 // For now, if neutral excess is significant, simply create neutral EflowPhoton tower and clone each track into eflowtrack !!! -> Creating only photons !! EFlowNeutralHadron collection will be empy!!! TO BE FIXED
600 if(neutralEnergy > fEnergyMin && neutralSigma > fEnergySignificanceMin)
601 {
602
603 //cout<<"significant neutral excess found:"<<endl;
604 // create new photon tower
605 tower = static_cast<Candidate*>(fTower->Clone());
606 pt = neutralEnergy / TMath::CosH(eta);
607 //cout<<"Creating tower with Pt, Eta, Phi, Energy: "<<pt<<","<<eta<<","<<phi<<","<<neutralEnergy<<endl;
608 tower->Momentum.SetPtEtaPhiE(pt, eta, phi, neutralEnergy);
609
610 // if no hadronic energy, use ECAL resolution
611 if (fHCalTowerEnergy <= fHCalEnergyMin)
612 {
613 tower->Eem = neutralEnergy;
614 tower->Ehad = 0.0;
615 tower->PID = 22;
616 }
617
618 // if hadronic fraction > 0, use HCAL resolution
619 else
620 {
621 tower->Eem = 0;
622 tower->Ehad = neutralEnergy;
623 tower->PID = 130;
624 }
625
626 fEFlowPhotonOutputArray->Add(tower);
627
628
629 //clone tracks
630 fItTowerTrackArray->Reset();
631 while((track = static_cast<Candidate*>(fItTowerTrackArray->Next())))
632 {
633 mother = track;
634 track = static_cast<Candidate*>(track->Clone());
635 track->AddCandidate(mother);
636 fEFlowTrackOutputArray->Add(track);
637 }
638 }
639
640
641 // if neutral excess is not significant, rescale eflow tracks, such that the total charged equals the best measurement given by the DualReadoutCalorimeter and tracking
642 else if(fTrackEnergy > 0.0)
643 {
644 //cout<<"no significant neutral excess found:"<<endl;
645 weightTrack = (fTrackSigma > 0.0) ? 1 / (fTrackSigma*fTrackSigma) : 0.0;
646 weightCalo = (sigma > 0.0) ? 1 / (sigma*sigma) : 0.0;
647
648 bestEnergyEstimate = (weightTrack*fTrackEnergy + weightCalo*energy) / (weightTrack + weightCalo);
649 rescaleFactor = bestEnergyEstimate/fTrackEnergy;
650
651 //rescale tracks
652 fItTowerTrackArray->Reset();
653 while((track = static_cast<Candidate*>(fItTowerTrackArray->Next())))
654 {
655 mother = track;
656 track = static_cast<Candidate *>(track->Clone());
657 track->AddCandidate(mother);
658 track->Momentum.SetPtEtaPhiM(track->Momentum.Pt()*rescaleFactor, track->Momentum.Eta(), track->Momentum.Phi(), track->Momentum.M());
659 fEFlowTrackOutputArray->Add(track);
660 }
661 }
662
663
664}
665
666//------------------------------------------------------------------------------
667
668Double_t DualReadoutCalorimeter::LogNormal(Double_t mean, Double_t sigma)
669{
670 Double_t a, b;
671
672 if(mean > 0.0)
673 {
674 b = TMath::Sqrt(TMath::Log((1.0 + (sigma*sigma)/(mean*mean))));
675 a = TMath::Log(mean) - 0.5*b*b;
676
677 return TMath::Exp(a + b*gRandom->Gaus(0.0, 1.0));
678 }
679 else
680 {
681 return 0.0;
682 }
683}
Note: See TracBrowser for help on using the repository browser.