1 | //FJSTARTHEADER
|
---|
2 | // $Id: SearchTree.hh 3433 2014-07-23 08:17:03Z salam $
|
---|
3 | //
|
---|
4 | // Copyright (c) 2005-2014, Matteo Cacciari, Gavin P. Salam and Gregory Soyez
|
---|
5 | //
|
---|
6 | //----------------------------------------------------------------------
|
---|
7 | // This file is part of FastJet.
|
---|
8 | //
|
---|
9 | // FastJet is free software; you can redistribute it and/or modify
|
---|
10 | // it under the terms of the GNU General Public License as published by
|
---|
11 | // the Free Software Foundation; either version 2 of the License, or
|
---|
12 | // (at your option) any later version.
|
---|
13 | //
|
---|
14 | // The algorithms that underlie FastJet have required considerable
|
---|
15 | // development. They are described in the original FastJet paper,
|
---|
16 | // hep-ph/0512210 and in the manual, arXiv:1111.6097. If you use
|
---|
17 | // FastJet as part of work towards a scientific publication, please
|
---|
18 | // quote the version you use and include a citation to the manual and
|
---|
19 | // optionally also to hep-ph/0512210.
|
---|
20 | //
|
---|
21 | // FastJet is distributed in the hope that it will be useful,
|
---|
22 | // but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
23 | // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
24 | // GNU General Public License for more details.
|
---|
25 | //
|
---|
26 | // You should have received a copy of the GNU General Public License
|
---|
27 | // along with FastJet. If not, see <http://www.gnu.org/licenses/>.
|
---|
28 | //----------------------------------------------------------------------
|
---|
29 | //FJENDHEADER
|
---|
30 |
|
---|
31 |
|
---|
32 | #ifndef __FASTJET_SEARCHTREE_HH__
|
---|
33 | #define __FASTJET_SEARCHTREE_HH__
|
---|
34 |
|
---|
35 | #include<vector>
|
---|
36 | #include<cassert>
|
---|
37 | #include<cstddef>
|
---|
38 | #include "fastjet/internal/base.hh"
|
---|
39 |
|
---|
40 | FASTJET_BEGIN_NAMESPACE // defined in fastjet/internal/base.hh
|
---|
41 |
|
---|
42 |
|
---|
43 | //======================================================================
|
---|
44 | /// \if internal_doc
|
---|
45 | /// @ingroup internal
|
---|
46 | /// \class SearchTree
|
---|
47 | /// Efficient class for a search tree
|
---|
48 | ///
|
---|
49 | /// This is the class for a search tree designed to be especially efficient
|
---|
50 | /// when looking for successors and predecessors (to be used in Chan's
|
---|
51 | /// CP algorithm). It has the requirement that the maximum size of the
|
---|
52 | /// search tree must be known in advance.
|
---|
53 | /// \endif
|
---|
54 | template<class T> class SearchTree {
|
---|
55 | public:
|
---|
56 |
|
---|
57 | class Node;
|
---|
58 | class circulator;
|
---|
59 | class const_circulator;
|
---|
60 |
|
---|
61 | /// constructor for a search tree from an ordered vector
|
---|
62 | SearchTree(const std::vector<T> & init);
|
---|
63 |
|
---|
64 | /// constructor for a search tree from an ordered vector allowing
|
---|
65 | /// for future growth beyond the current size, up to max_size
|
---|
66 | SearchTree(const std::vector<T> & init, unsigned int max_size);
|
---|
67 |
|
---|
68 | /// remove the node corresponding to node_index from the search tree
|
---|
69 | void remove(unsigned node_index);
|
---|
70 | void remove(typename SearchTree::Node * node);
|
---|
71 | void remove(typename SearchTree::circulator & circ);
|
---|
72 |
|
---|
73 | /// insert the supplied value into the tree and return a pointer to
|
---|
74 | /// the relevant SearchTreeNode.
|
---|
75 | //Node * insert(const T & value);
|
---|
76 | circulator insert(const T & value);
|
---|
77 |
|
---|
78 | const Node & operator[](int i) const {return _nodes[i];};
|
---|
79 |
|
---|
80 | /// return the number of elements currently in the search tree
|
---|
81 | unsigned int size() const {return _nodes.size() - _available_nodes.size();}
|
---|
82 |
|
---|
83 | /// check that the structure we've obtained makes sense...
|
---|
84 | void verify_structure();
|
---|
85 | void verify_structure_linear() const;
|
---|
86 | void verify_structure_recursive(const Node * , const Node * , const Node * ) const;
|
---|
87 |
|
---|
88 | /// print out all elements...
|
---|
89 | void print_elements();
|
---|
90 |
|
---|
91 | // tracking the depth may have some speed overhead -- so leave it
|
---|
92 | // out for the time being...
|
---|
93 | #ifdef __FASTJET_SEARCHTREE_TRACK_DEPTH
|
---|
94 | /// the max depth the tree has ever reached
|
---|
95 | inline unsigned int max_depth() const {return _max_depth;};
|
---|
96 | #else
|
---|
97 | inline unsigned int max_depth() const {return 0;};
|
---|
98 | #endif
|
---|
99 |
|
---|
100 | int loc(const Node * node) const ;
|
---|
101 |
|
---|
102 | /// return predecessor by walking through the tree
|
---|
103 | Node * _find_predecessor(const Node *);
|
---|
104 | /// return successor by walking through the tree
|
---|
105 | Node * _find_successor(const Node *);
|
---|
106 |
|
---|
107 | const Node & operator[](unsigned int i) const {return _nodes[i];};
|
---|
108 |
|
---|
109 | /// return a circulator to some place in the tree (with a circulator
|
---|
110 | /// you don't care where...)
|
---|
111 | const_circulator somewhere() const;
|
---|
112 | circulator somewhere();
|
---|
113 |
|
---|
114 | private:
|
---|
115 |
|
---|
116 | void _initialize(const std::vector<T> & init);
|
---|
117 |
|
---|
118 | std::vector<Node> _nodes;
|
---|
119 | std::vector<Node *> _available_nodes;
|
---|
120 | Node * _top_node;
|
---|
121 | unsigned int _n_removes;
|
---|
122 |
|
---|
123 |
|
---|
124 | /// recursive routine for doing the initial connections assuming things
|
---|
125 | /// are ordered. Assumes this_one's parent is labelled, and was
|
---|
126 | /// generated at a scale "scale" -- connections will be carried out
|
---|
127 | /// including left edge and excluding right edge
|
---|
128 | void _do_initial_connections(unsigned int this_one, unsigned int scale,
|
---|
129 | unsigned int left_edge, unsigned int right_edge,
|
---|
130 | unsigned int depth);
|
---|
131 |
|
---|
132 |
|
---|
133 | #ifdef __FASTJET_SEARCHTREE_TRACK_DEPTH
|
---|
134 | unsigned int _max_depth;
|
---|
135 | #endif
|
---|
136 |
|
---|
137 | };
|
---|
138 |
|
---|
139 |
|
---|
140 | //======================================================================
|
---|
141 | /// \if internal_doc
|
---|
142 | /// @ingroup internal
|
---|
143 | /// \class SearchTree::Node
|
---|
144 | /// A node in the search tree
|
---|
145 | /// \endif
|
---|
146 | template<class T> class SearchTree<T>::Node{
|
---|
147 | public:
|
---|
148 | Node() {}; /// default constructor
|
---|
149 |
|
---|
150 |
|
---|
151 | /// returns tree if all the tree-related links are set to null for this node
|
---|
152 | bool treelinks_null() const {
|
---|
153 | return ((parent==0) && (left==0) && (right==0));};
|
---|
154 |
|
---|
155 | /// set all the tree-related links are set to null for this node
|
---|
156 | inline void nullify_treelinks() {
|
---|
157 | parent = NULL;
|
---|
158 | left = NULL;
|
---|
159 | right = NULL;
|
---|
160 | };
|
---|
161 |
|
---|
162 | /// if my parent exists, determine whether I am it's left or right
|
---|
163 | /// node and set the relevant link equal to XX.
|
---|
164 | void reset_parents_link_to_me(Node * XX);
|
---|
165 |
|
---|
166 | T value;
|
---|
167 | Node * left;
|
---|
168 | Node * right;
|
---|
169 | Node * parent;
|
---|
170 | Node * successor;
|
---|
171 | Node * predecessor;
|
---|
172 | };
|
---|
173 |
|
---|
174 | //----------------------------------------------------------------------
|
---|
175 | template<class T> void SearchTree<T>::Node::reset_parents_link_to_me(typename SearchTree<T>::Node * XX) {
|
---|
176 | if (parent == NULL) {return;}
|
---|
177 | if (parent->right == this) {parent->right = XX;}
|
---|
178 | else {parent->left = XX;}
|
---|
179 | }
|
---|
180 |
|
---|
181 |
|
---|
182 |
|
---|
183 | //======================================================================
|
---|
184 | /// \if internal_doc
|
---|
185 | /// @ingroup internal
|
---|
186 | /// \class SearchTree::circulator
|
---|
187 | /// circulator for the search tree
|
---|
188 | /// \endif
|
---|
189 | template<class T> class SearchTree<T>::circulator{
|
---|
190 | public:
|
---|
191 |
|
---|
192 | // so that it can access our _node object;
|
---|
193 | // note: "class U" needed for clang (v1.1 branches/release_27) compilation
|
---|
194 | // 2014-07-22: as reported by Torbjorn Sjostrand,
|
---|
195 | // the next line was giving a warning with Apple LLVM version 5.1 (clang-503.0.40) (based on LLVM 3.4svn)
|
---|
196 | // (dependent nested name specifier 'SearchTree<U>::' for friend class declaration is not supported)
|
---|
197 | // Just commenting it out, things still seem to work; same with a template of type T
|
---|
198 | //template<class U> friend class SearchTree<U>::const_circulator;
|
---|
199 | friend class SearchTree<T>::const_circulator;
|
---|
200 | friend class SearchTree<T>;
|
---|
201 |
|
---|
202 | circulator() : _node(NULL) {}
|
---|
203 |
|
---|
204 | circulator(Node * node) : _node(node) {}
|
---|
205 |
|
---|
206 | const T * operator->() const {return &(_node->value);}
|
---|
207 | T * operator->() {return &(_node->value);}
|
---|
208 | const T & operator*() const {return _node->value;}
|
---|
209 | T & operator*() {return _node->value;}
|
---|
210 |
|
---|
211 | /// prefix increment (structure copied from stl_bvector.h)
|
---|
212 | circulator & operator++() {
|
---|
213 | _node = _node->successor;
|
---|
214 | return *this;}
|
---|
215 |
|
---|
216 | /// postfix increment ["int" argument tells compiler it's postfix]
|
---|
217 | /// (structure copied from stl_bvector.h)
|
---|
218 | circulator operator++(int) {
|
---|
219 | circulator tmp = *this;
|
---|
220 | _node = _node->successor;
|
---|
221 | return tmp;}
|
---|
222 |
|
---|
223 | /// prefix decrement (structure copied from stl_bvector.h)
|
---|
224 | circulator & operator--() {
|
---|
225 | _node = _node->predecessor;
|
---|
226 | return *this;}
|
---|
227 |
|
---|
228 | /// postfix decrement ["int" argument tells compiler it's postfix]
|
---|
229 | /// (structure copied from stl_bvector.h)
|
---|
230 | circulator operator--(int) {
|
---|
231 | circulator tmp = *this;
|
---|
232 | _node = _node->predecessor;
|
---|
233 | return tmp;}
|
---|
234 |
|
---|
235 | /// return a circulator referring to the next node
|
---|
236 | circulator next() const {
|
---|
237 | return circulator(_node->successor);}
|
---|
238 |
|
---|
239 | /// return a circulator referring to the previous node
|
---|
240 | circulator previous() const {
|
---|
241 | return circulator(_node->predecessor);}
|
---|
242 |
|
---|
243 | bool operator!=(const circulator & other) const {return other._node != _node;}
|
---|
244 | bool operator==(const circulator & other) const {return other._node == _node;}
|
---|
245 |
|
---|
246 | private:
|
---|
247 | Node * _node;
|
---|
248 | };
|
---|
249 |
|
---|
250 |
|
---|
251 | //======================================================================
|
---|
252 | /// \if internal_doc
|
---|
253 | /// @ingroup internal
|
---|
254 | /// \class SearchTree::const_circulator
|
---|
255 | /// A const_circulator for the search tree
|
---|
256 | /// \endif
|
---|
257 | template<class T> class SearchTree<T>::const_circulator{
|
---|
258 | public:
|
---|
259 |
|
---|
260 | const_circulator() : _node(NULL) {}
|
---|
261 |
|
---|
262 | const_circulator(const Node * node) : _node(node) {}
|
---|
263 | const_circulator(const circulator & circ) :_node(circ._node) {}
|
---|
264 |
|
---|
265 | const T * operator->() {return &(_node->value);}
|
---|
266 | const T & operator*() const {return _node->value;}
|
---|
267 |
|
---|
268 | /// prefix increment (structure copied from stl_bvector.h)
|
---|
269 | const_circulator & operator++() {
|
---|
270 | _node = _node->successor;
|
---|
271 | return *this;}
|
---|
272 |
|
---|
273 | /// postfix increment ["int" argument tells compiler it's postfix]
|
---|
274 | /// (structure copied from stl_bvector.h)
|
---|
275 | const_circulator operator++(int) {
|
---|
276 | const_circulator tmp = *this;
|
---|
277 | _node = _node->successor;
|
---|
278 | return tmp;}
|
---|
279 |
|
---|
280 |
|
---|
281 | /// prefix decrement (structure copied from stl_bvector.h)
|
---|
282 | const_circulator & operator--() {
|
---|
283 | _node = _node->predecessor;
|
---|
284 | return *this;}
|
---|
285 |
|
---|
286 | /// postfix decrement ["int" argument tells compiler it's postfix]
|
---|
287 | /// (structure copied from stl_bvector.h)
|
---|
288 | const_circulator operator--(int) {
|
---|
289 | const_circulator tmp = *this;
|
---|
290 | _node = _node->predecessor;
|
---|
291 | return tmp;}
|
---|
292 |
|
---|
293 | /// return a circulator referring to the next node
|
---|
294 | const_circulator next() const {
|
---|
295 | return const_circulator(_node->successor);}
|
---|
296 |
|
---|
297 | /// return a circulator referring to the previous node
|
---|
298 | const_circulator previous() const {
|
---|
299 | return const_circulator(_node->predecessor);}
|
---|
300 |
|
---|
301 |
|
---|
302 |
|
---|
303 | bool operator!=(const const_circulator & other) const {return other._node != _node;}
|
---|
304 | bool operator==(const const_circulator & other) const {return other._node == _node;}
|
---|
305 |
|
---|
306 | private:
|
---|
307 | const Node * _node;
|
---|
308 | };
|
---|
309 |
|
---|
310 |
|
---|
311 |
|
---|
312 |
|
---|
313 | //----------------------------------------------------------------------
|
---|
314 | /// initialise from a sorted initial array allowing for a larger
|
---|
315 | /// maximum size of the array...
|
---|
316 | template<class T> SearchTree<T>::SearchTree(const std::vector<T> & init,
|
---|
317 | unsigned int max_size) :
|
---|
318 | _nodes(max_size) {
|
---|
319 |
|
---|
320 | _available_nodes.reserve(max_size);
|
---|
321 | _available_nodes.resize(max_size - init.size());
|
---|
322 | for (unsigned int i = init.size(); i < max_size; i++) {
|
---|
323 | _available_nodes[i-init.size()] = &(_nodes[i]);
|
---|
324 | }
|
---|
325 |
|
---|
326 | _initialize(init);
|
---|
327 | }
|
---|
328 |
|
---|
329 | //----------------------------------------------------------------------
|
---|
330 | /// initialise from a sorted initial array
|
---|
331 | template<class T> SearchTree<T>::SearchTree(const std::vector<T> & init) :
|
---|
332 | _nodes(init.size()), _available_nodes(0) {
|
---|
333 |
|
---|
334 | // reserve space for the list of available nodes
|
---|
335 | _available_nodes.reserve(init.size());
|
---|
336 | _initialize(init);
|
---|
337 | }
|
---|
338 |
|
---|
339 | //----------------------------------------------------------------------
|
---|
340 | /// do the actual hard work of initialization
|
---|
341 | template<class T> void SearchTree<T>::_initialize(const std::vector<T> & init) {
|
---|
342 |
|
---|
343 | _n_removes = 0;
|
---|
344 | unsigned n = init.size();
|
---|
345 | assert(n>=1);
|
---|
346 |
|
---|
347 | // reserve space for the list of available nodes
|
---|
348 | //_available_nodes.reserve();
|
---|
349 |
|
---|
350 | #ifdef __FASTJET_SEARCHTREE_TRACK_DEPTH
|
---|
351 | _max_depth = 0;
|
---|
352 | #endif
|
---|
353 |
|
---|
354 |
|
---|
355 | // validate the input
|
---|
356 | for (unsigned int i = 1; i<n; i++) {
|
---|
357 | assert(!(init[i] < init[i-1]));
|
---|
358 | }
|
---|
359 |
|
---|
360 | // now initialise the vector; link neighbours in the sequence
|
---|
361 | for(unsigned int i = 0; i < n; i++) {
|
---|
362 | _nodes[i].value = init[i];
|
---|
363 | _nodes[i].predecessor = (& (_nodes[i])) - 1;
|
---|
364 | _nodes[i].successor = (& (_nodes[i])) + 1;
|
---|
365 | _nodes[i].nullify_treelinks();
|
---|
366 | }
|
---|
367 | // make a loop structure so that we can circulate...
|
---|
368 | _nodes[0].predecessor = (& (_nodes[n-1]));
|
---|
369 | _nodes[n-1].successor = (& (_nodes[0]));
|
---|
370 |
|
---|
371 | // now label the rest of the nodes
|
---|
372 | unsigned int scale = (n+1)/2;
|
---|
373 | unsigned int top = std::min(n-1,scale);
|
---|
374 | _nodes[top].parent = NULL;
|
---|
375 | _top_node = &(_nodes[top]);
|
---|
376 | _do_initial_connections(top, scale, 0, n, 0);
|
---|
377 |
|
---|
378 | // make sure things are sensible...
|
---|
379 | //verify_structure();
|
---|
380 | }
|
---|
381 |
|
---|
382 |
|
---|
383 |
|
---|
384 | //----------------------------------------------------------------------
|
---|
385 | template<class T> inline int SearchTree<T>::loc(const Node * node) const {return node == NULL?
|
---|
386 | -999 : node - &(_nodes[0]);}
|
---|
387 |
|
---|
388 |
|
---|
389 | //----------------------------------------------------------------------
|
---|
390 | /// Recursive creation of connections, assuming the _nodes vector is
|
---|
391 | /// completely filled and ordered
|
---|
392 | template<class T> void SearchTree<T>::_do_initial_connections(
|
---|
393 | unsigned int this_one,
|
---|
394 | unsigned int scale,
|
---|
395 | unsigned int left_edge,
|
---|
396 | unsigned int right_edge,
|
---|
397 | unsigned int depth
|
---|
398 | ) {
|
---|
399 |
|
---|
400 | #ifdef __FASTJET_SEARCHTREE_TRACK_DEPTH
|
---|
401 | // keep track of tree depth for checking things stay reasonable...
|
---|
402 | _max_depth = max(depth, _max_depth);
|
---|
403 | #endif
|
---|
404 |
|
---|
405 | //std::cout << this_one << " "<< scale<< std::endl;
|
---|
406 | unsigned int ref_new_scale = (scale+1)/2;
|
---|
407 |
|
---|
408 | // work through children to our left
|
---|
409 | unsigned new_scale = ref_new_scale;
|
---|
410 | bool did_child = false;
|
---|
411 | while(true) {
|
---|
412 | int left = this_one - new_scale; // be careful here to use signed int...
|
---|
413 | // if there is something unitialised to our left, link to it
|
---|
414 | if (left >= static_cast<int>(left_edge)
|
---|
415 | && _nodes[left].treelinks_null() ) {
|
---|
416 | _nodes[left].parent = &(_nodes[this_one]);
|
---|
417 | _nodes[this_one].left = &(_nodes[left]);
|
---|
418 | // create connections between left_edge and this_one
|
---|
419 | _do_initial_connections(left, new_scale, left_edge, this_one, depth+1);
|
---|
420 | did_child = true;
|
---|
421 | break;
|
---|
422 | }
|
---|
423 | // reduce the scale so as to try again
|
---|
424 | unsigned int old_new_scale = new_scale;
|
---|
425 | new_scale = (old_new_scale + 1)/2;
|
---|
426 | // unless we've reached end of tree
|
---|
427 | if (new_scale == old_new_scale) break;
|
---|
428 | }
|
---|
429 | if (!did_child) {_nodes[this_one].left = NULL;}
|
---|
430 |
|
---|
431 |
|
---|
432 | // work through children to our right
|
---|
433 | new_scale = ref_new_scale;
|
---|
434 | did_child = false;
|
---|
435 | while(true) {
|
---|
436 | unsigned int right = this_one + new_scale;
|
---|
437 | if (right < right_edge && _nodes[right].treelinks_null()) {
|
---|
438 | _nodes[right].parent = &(_nodes[this_one]);
|
---|
439 | _nodes[this_one].right = &(_nodes[right]);
|
---|
440 | // create connections between this_one+1 and right_edge
|
---|
441 | _do_initial_connections(right, new_scale, this_one+1,right_edge,depth+1);
|
---|
442 | did_child = true;
|
---|
443 | break;
|
---|
444 | }
|
---|
445 | // reduce the scale so as to try again
|
---|
446 | unsigned int old_new_scale = new_scale;
|
---|
447 | new_scale = (old_new_scale + 1)/2;
|
---|
448 | // unless we've reached end of tree
|
---|
449 | if (new_scale == old_new_scale) break;
|
---|
450 | }
|
---|
451 | if (!did_child) {_nodes[this_one].right = NULL;}
|
---|
452 |
|
---|
453 | }
|
---|
454 |
|
---|
455 |
|
---|
456 |
|
---|
457 | //----------------------------------------------------------------------
|
---|
458 | template<class T> void SearchTree<T>::remove(unsigned int node_index) {
|
---|
459 | remove(&(_nodes[node_index]));
|
---|
460 | }
|
---|
461 |
|
---|
462 | //----------------------------------------------------------------------
|
---|
463 | template<class T> void SearchTree<T>::remove(circulator & circ) {
|
---|
464 | remove(circ._node);
|
---|
465 | }
|
---|
466 |
|
---|
467 | //----------------------------------------------------------------------
|
---|
468 | // Useful reference for this:
|
---|
469 | // http://en.wikipedia.org/wiki/Binary_search_tree#Deletion
|
---|
470 | template<class T> void SearchTree<T>::remove(typename SearchTree<T>::Node * node) {
|
---|
471 |
|
---|
472 | // we don't remove things from the tree if we've reached the last
|
---|
473 | // elements... (is this wise?)
|
---|
474 | assert(size() > 1); // switch this to throw...?
|
---|
475 | assert(!node->treelinks_null());
|
---|
476 |
|
---|
477 | // deal with relinking predecessor and successor
|
---|
478 | node->predecessor->successor = node->successor;
|
---|
479 | node->successor->predecessor = node->predecessor;
|
---|
480 |
|
---|
481 | if (node->left == NULL && node->right == NULL) {
|
---|
482 | // node has no children, so remove it by nullifying the pointer
|
---|
483 | // from the parent
|
---|
484 | node->reset_parents_link_to_me(NULL);
|
---|
485 |
|
---|
486 | } else if (node->left != NULL && node->right == NULL){
|
---|
487 | // make parent point to my child
|
---|
488 | node->reset_parents_link_to_me(node->left);
|
---|
489 | // and child to parent
|
---|
490 | node->left->parent = node->parent;
|
---|
491 | // sort out the top node...
|
---|
492 | if (_top_node == node) {_top_node = node->left;}
|
---|
493 |
|
---|
494 | } else if (node->left == NULL && node->right != NULL){
|
---|
495 | // make parent point to my child
|
---|
496 | node->reset_parents_link_to_me(node->right);
|
---|
497 | // and child to parent
|
---|
498 | node->right->parent = node->parent;
|
---|
499 | // sort out the top node...
|
---|
500 | if (_top_node == node) {_top_node = node->right;}
|
---|
501 |
|
---|
502 | } else {
|
---|
503 | // we have two children; we will put a replacement in our place
|
---|
504 | Node * replacement;
|
---|
505 | //SearchTree<T>::Node * replacements_child;
|
---|
506 | // chose predecessor or successor (one, then other, then first, etc...)
|
---|
507 | bool use_predecessor = (_n_removes % 2 == 1);
|
---|
508 | if (use_predecessor) {
|
---|
509 | // Option 1: put predecessor in our place, and have its parent
|
---|
510 | // point to its left child (as a predecessor it has no right child)
|
---|
511 | replacement = node->predecessor;
|
---|
512 | assert(replacement->right == NULL); // guaranteed if it's our predecessor
|
---|
513 | // we have to be careful of replacing certain links when the
|
---|
514 | // replacement is this node's child
|
---|
515 | if (replacement != node->left) {
|
---|
516 | if (replacement->left != NULL) {
|
---|
517 | replacement->left->parent = replacement->parent;}
|
---|
518 | replacement->reset_parents_link_to_me(replacement->left);
|
---|
519 | replacement->left = node->left;
|
---|
520 | }
|
---|
521 | replacement->parent = node->parent;
|
---|
522 | replacement->right = node->right;
|
---|
523 | } else {
|
---|
524 | // Option 2: put successor in our place, and have its parent
|
---|
525 | // point to its right child (as a successor it has no left child)
|
---|
526 | replacement = node->successor;
|
---|
527 | assert(replacement->left == NULL); // guaranteed if it's our successor
|
---|
528 | if (replacement != node->right) {
|
---|
529 | if (replacement->right != NULL) {
|
---|
530 | replacement->right->parent = replacement->parent;}
|
---|
531 | replacement->reset_parents_link_to_me(replacement->right);
|
---|
532 | replacement->right = node->right;
|
---|
533 | }
|
---|
534 | replacement->parent = node->parent;
|
---|
535 | replacement->left = node->left;
|
---|
536 | }
|
---|
537 | node->reset_parents_link_to_me(replacement);
|
---|
538 |
|
---|
539 | // make sure node's original children now point to the replacement
|
---|
540 | if (node->left != replacement) {node->left->parent = replacement;}
|
---|
541 | if (node->right != replacement) {node->right->parent = replacement;}
|
---|
542 |
|
---|
543 | // sort out the top node...
|
---|
544 | if (_top_node == node) {_top_node = replacement;}
|
---|
545 | }
|
---|
546 |
|
---|
547 | // make sure we leave something nice and clean...
|
---|
548 | node->nullify_treelinks();
|
---|
549 | node->predecessor = NULL;
|
---|
550 | node->successor = NULL;
|
---|
551 |
|
---|
552 | // for bookkeeping (and choosing whether to use pred. or succ.)
|
---|
553 | _n_removes++;
|
---|
554 | // for when we next need access to a free node...
|
---|
555 | _available_nodes.push_back(node);
|
---|
556 | }
|
---|
557 |
|
---|
558 |
|
---|
559 | //----------------------------------------------------------------------
|
---|
560 | //template<class T> typename SearchTree<T>::Node * SearchTree<T>::insert(const T & value) {
|
---|
561 |
|
---|
562 | //----------------------------------------------------------------------
|
---|
563 | template<class T> typename SearchTree<T>::circulator SearchTree<T>::insert(const T & value) {
|
---|
564 | // make sure we don't exceed allowed number of nodes...
|
---|
565 | assert(_available_nodes.size() > 0);
|
---|
566 |
|
---|
567 | Node * node = _available_nodes.back();
|
---|
568 | _available_nodes.pop_back();
|
---|
569 | node->value = value;
|
---|
570 |
|
---|
571 | Node * location = _top_node;
|
---|
572 | Node * old_location = NULL;
|
---|
573 | bool on_left = true; // (init not needed -- but soothes g++4)
|
---|
574 | // work through tree until we reach its end
|
---|
575 | #ifdef __FASTJET_SEARCHTREE_TRACK_DEPTH
|
---|
576 | unsigned int depth = 0;
|
---|
577 | #endif
|
---|
578 | while(location != NULL) {
|
---|
579 | #ifdef __FASTJET_SEARCHTREE_TRACK_DEPTH
|
---|
580 | depth++;
|
---|
581 | #endif
|
---|
582 | old_location = location;
|
---|
583 | on_left = value < location->value;
|
---|
584 | if (on_left) {location = location->left;}
|
---|
585 | else {location = location->right;}
|
---|
586 | }
|
---|
587 | #ifdef __FASTJET_SEARCHTREE_TRACK_DEPTH
|
---|
588 | _max_depth = max(depth, _max_depth);
|
---|
589 | #endif
|
---|
590 | // now create tree links
|
---|
591 | node->parent = old_location;
|
---|
592 | if (on_left) {node->parent->left = node;}
|
---|
593 | else {node->parent->right = node;}
|
---|
594 | node->left = NULL;
|
---|
595 | node->right = NULL;
|
---|
596 | // and create predecessor / successor links
|
---|
597 | node->predecessor = _find_predecessor(node);
|
---|
598 | if (node->predecessor != NULL) {
|
---|
599 | // it exists, so make use of its info (will include a cyclic case,
|
---|
600 | // when successor is round the bend)
|
---|
601 | node->successor = node->predecessor->successor;
|
---|
602 | node->predecessor->successor = node;
|
---|
603 | node->successor->predecessor = node;
|
---|
604 | } else {
|
---|
605 | // deal with case when we are left-most edge of tree (then successor
|
---|
606 | // will exist...)
|
---|
607 | node->successor = _find_successor(node);
|
---|
608 | assert(node->successor != NULL); // can only happen if we're sole element
|
---|
609 | // (but not allowed, since tree size>=1)
|
---|
610 | node->predecessor = node->successor->predecessor;
|
---|
611 | node->successor->predecessor = node;
|
---|
612 | node->predecessor->successor = node;
|
---|
613 | }
|
---|
614 |
|
---|
615 | return circulator(node);
|
---|
616 | }
|
---|
617 |
|
---|
618 |
|
---|
619 | //----------------------------------------------------------------------
|
---|
620 | template<class T> void SearchTree<T>::verify_structure() {
|
---|
621 |
|
---|
622 | // do a check running through all elements
|
---|
623 | verify_structure_linear();
|
---|
624 |
|
---|
625 | // do a recursive check down tree from top
|
---|
626 |
|
---|
627 | // first establish the extremities
|
---|
628 | const Node * left_limit = _top_node;
|
---|
629 | while (left_limit->left != NULL) {left_limit = left_limit->left;}
|
---|
630 | const Node * right_limit = _top_node;
|
---|
631 | while (right_limit->right != NULL) {right_limit = right_limit->right;}
|
---|
632 |
|
---|
633 | // then actually do recursion
|
---|
634 | verify_structure_recursive(_top_node, left_limit, right_limit);
|
---|
635 | }
|
---|
636 |
|
---|
637 |
|
---|
638 | //----------------------------------------------------------------------
|
---|
639 | template<class T> void SearchTree<T>::verify_structure_recursive(
|
---|
640 | const typename SearchTree<T>::Node * element,
|
---|
641 | const typename SearchTree<T>::Node * left_limit,
|
---|
642 | const typename SearchTree<T>::Node * right_limit) const {
|
---|
643 |
|
---|
644 | assert(!(element->value < left_limit->value));
|
---|
645 | assert(!(right_limit->value < element->value));
|
---|
646 |
|
---|
647 | const Node * left = element->left;
|
---|
648 | if (left != NULL) {
|
---|
649 | assert(!(element->value < left->value));
|
---|
650 | if (left != left_limit) {
|
---|
651 | // recurse down the tree with this element as the right-hand limit
|
---|
652 | verify_structure_recursive(left, left_limit, element);}
|
---|
653 | }
|
---|
654 |
|
---|
655 | const Node * right = element->right;
|
---|
656 | if (right != NULL) {
|
---|
657 | assert(!(right->value < element->value));
|
---|
658 | if (right != right_limit) {
|
---|
659 | // recurse down the tree with this element as the left-hand limit
|
---|
660 | verify_structure_recursive(right, element, right_limit);}
|
---|
661 | }
|
---|
662 | }
|
---|
663 |
|
---|
664 | //----------------------------------------------------------------------
|
---|
665 | template<class T> void SearchTree<T>::verify_structure_linear() const {
|
---|
666 |
|
---|
667 | //print_elements();
|
---|
668 |
|
---|
669 | unsigned n_top = 0;
|
---|
670 | unsigned n_null = 0;
|
---|
671 | for(unsigned i = 0; i < _nodes.size(); i++) {
|
---|
672 | const typename SearchTree<T>::Node * node = &(_nodes[i]);
|
---|
673 | // make sure node is defined
|
---|
674 | if (node->treelinks_null()) {n_null++; continue;}
|
---|
675 |
|
---|
676 | // make sure of the number of "top" nodes
|
---|
677 | if (node->parent == NULL) {
|
---|
678 | n_top++;
|
---|
679 | //assert(node->left != NULL);
|
---|
680 | //assert(node->right != NULL);
|
---|
681 | } else {
|
---|
682 | // make sure that I am a child of my parent...
|
---|
683 | //assert((node->parent->left == node) || (node->parent->right == node));
|
---|
684 | assert((node->parent->left == node) ^ (node->parent->right == node));
|
---|
685 | }
|
---|
686 |
|
---|
687 | // when there is a left child make sure it's value is ordered
|
---|
688 | // (note use of !(b<a), to allow for a<=b while using just the <
|
---|
689 | // operator)
|
---|
690 | if (node->left != NULL) {
|
---|
691 | assert(!(node->value < node->left->value ));}
|
---|
692 |
|
---|
693 | // when there is a right child make sure it's value is ordered
|
---|
694 | if (node->right != NULL) {
|
---|
695 | assert(!(node->right->value < node->value ));}
|
---|
696 |
|
---|
697 | }
|
---|
698 | assert(n_top == 1 || (n_top == 0 && size() <= 1) );
|
---|
699 | assert(n_null == _available_nodes.size() ||
|
---|
700 | (n_null == _available_nodes.size() + 1 && size() == 1));
|
---|
701 | }
|
---|
702 |
|
---|
703 |
|
---|
704 | //----------------------------------------------------------------------
|
---|
705 | template<class T> typename SearchTree<T>::Node * SearchTree<T>::_find_predecessor(const typename SearchTree<T>::Node * node) {
|
---|
706 |
|
---|
707 | typename SearchTree<T>::Node * newnode;
|
---|
708 | if (node->left != NULL) {
|
---|
709 | // go down left, and then down right as far as possible.
|
---|
710 | newnode = node->left;
|
---|
711 | while(newnode->right != NULL) {newnode = newnode->right;}
|
---|
712 | return newnode;
|
---|
713 | } else {
|
---|
714 | const typename SearchTree<T>::Node * lastnode = node;
|
---|
715 | newnode = node->parent;
|
---|
716 | // go up the tree as long as we're going right (when we go left then
|
---|
717 | // we've found something smaller, so stop)
|
---|
718 | while(newnode != NULL) {
|
---|
719 | if (newnode->right == lastnode) {return newnode;}
|
---|
720 | lastnode = newnode;
|
---|
721 | newnode = newnode->parent;
|
---|
722 | }
|
---|
723 | return newnode;
|
---|
724 | }
|
---|
725 | }
|
---|
726 |
|
---|
727 |
|
---|
728 | //----------------------------------------------------------------------
|
---|
729 | template<class T> typename SearchTree<T>::Node * SearchTree<T>::_find_successor(const typename SearchTree<T>::Node * node) {
|
---|
730 |
|
---|
731 | typename SearchTree<T>::Node * newnode;
|
---|
732 | if (node->right != NULL) {
|
---|
733 | // go down right, and then down left as far as possible.
|
---|
734 | newnode = node->right;
|
---|
735 | while(newnode->left != NULL) {newnode = newnode->left;}
|
---|
736 | return newnode;
|
---|
737 | } else {
|
---|
738 | const typename SearchTree<T>::Node * lastnode = node;
|
---|
739 | newnode = node->parent;
|
---|
740 | // go up the tree as long as we're going left (when we go right then
|
---|
741 | // we've found something larger, so stop)
|
---|
742 | while(newnode != NULL) {
|
---|
743 | if (newnode->left == lastnode) {return newnode;}
|
---|
744 | lastnode = newnode;
|
---|
745 | newnode = newnode->parent;
|
---|
746 | }
|
---|
747 | return newnode;
|
---|
748 | }
|
---|
749 | }
|
---|
750 |
|
---|
751 |
|
---|
752 | //----------------------------------------------------------------------
|
---|
753 | // print out all the elements for visual checking...
|
---|
754 | template<class T> void SearchTree<T>::print_elements() {
|
---|
755 | typename SearchTree<T>::Node * base_node = &(_nodes[0]);
|
---|
756 | typename SearchTree<T>::Node * node = base_node;
|
---|
757 |
|
---|
758 | int n = _nodes.size();
|
---|
759 | for(; node - base_node < n ; node++) {
|
---|
760 | printf("%4d parent:%4d left:%4d right:%4d pred:%4d succ:%4d value:%10.6f\n",loc(node), loc(node->parent), loc(node->left), loc(node->right), loc(node->predecessor),loc(node->successor),node->value);
|
---|
761 | }
|
---|
762 | }
|
---|
763 |
|
---|
764 | //----------------------------------------------------------------------
|
---|
765 | template<class T> typename SearchTree<T>::circulator SearchTree<T>::somewhere() {
|
---|
766 | return circulator(_top_node);
|
---|
767 | }
|
---|
768 |
|
---|
769 |
|
---|
770 | //----------------------------------------------------------------------
|
---|
771 | template<class T> typename SearchTree<T>::const_circulator SearchTree<T>::somewhere() const {
|
---|
772 | return const_circulator(_top_node);
|
---|
773 | }
|
---|
774 |
|
---|
775 |
|
---|
776 | FASTJET_END_NAMESPACE
|
---|
777 |
|
---|
778 | #endif // __FASTJET_SEARCHTREE_HH__
|
---|