1 | // $Id: RecursiveSymmetryCutBase.cc 1080 2017-09-28 07:51:37Z gsoyez $
|
---|
2 | //
|
---|
3 | // Copyright (c) 2014-, Gavin P. Salam, Gregory Soyez, Jesse Thaler
|
---|
4 | //
|
---|
5 | //----------------------------------------------------------------------
|
---|
6 | // This file is part of FastJet contrib.
|
---|
7 | //
|
---|
8 | // It is free software; you can redistribute it and/or modify it under
|
---|
9 | // the terms of the GNU General Public License as published by the
|
---|
10 | // Free Software Foundation; either version 2 of the License, or (at
|
---|
11 | // your option) any later version.
|
---|
12 | //
|
---|
13 | // It is distributed in the hope that it will be useful, but WITHOUT
|
---|
14 | // ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
|
---|
15 | // or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
|
---|
16 | // License for more details.
|
---|
17 | //
|
---|
18 | // You should have received a copy of the GNU General Public License
|
---|
19 | // along with this code. If not, see <http://www.gnu.org/licenses/>.
|
---|
20 | //----------------------------------------------------------------------
|
---|
21 |
|
---|
22 | #include "RecursiveSymmetryCutBase.hh"
|
---|
23 | #include "fastjet/JetDefinition.hh"
|
---|
24 | #include "fastjet/ClusterSequenceAreaBase.hh"
|
---|
25 | #include <cassert>
|
---|
26 | #include <algorithm>
|
---|
27 | #include <cstdlib>
|
---|
28 |
|
---|
29 | using namespace std;
|
---|
30 |
|
---|
31 | FASTJET_BEGIN_NAMESPACE // defined in fastjet/internal/base.hh
|
---|
32 |
|
---|
33 | namespace contrib{
|
---|
34 |
|
---|
35 | LimitedWarning RecursiveSymmetryCutBase::_negative_mass_warning;
|
---|
36 | LimitedWarning RecursiveSymmetryCutBase::_mu2_gt1_warning;
|
---|
37 | //LimitedWarning RecursiveSymmetryCutBase::_nonca_warning;
|
---|
38 | LimitedWarning RecursiveSymmetryCutBase::_explicit_ghost_warning;
|
---|
39 |
|
---|
40 | bool RecursiveSymmetryCutBase::_verbose = false;
|
---|
41 |
|
---|
42 | //----------------------------------------------------------------------
|
---|
43 | PseudoJet RecursiveSymmetryCutBase::result(const PseudoJet & jet) const {
|
---|
44 | // construct the input jet (by default, recluster with C/A)
|
---|
45 | if (! jet.has_constituents()){
|
---|
46 | throw Error("RecursiveSymmetryCutBase can only be applied to jets with constituents");
|
---|
47 | }
|
---|
48 |
|
---|
49 | PseudoJet j = _recluster_if_needed(jet);
|
---|
50 |
|
---|
51 | // sanity check: the jet must have a valid CS
|
---|
52 | if (! j.has_valid_cluster_sequence()){
|
---|
53 | throw Error("RecursiveSymmetryCutBase can only be applied to jets associated to a (valid) cluster sequence");
|
---|
54 | }
|
---|
55 |
|
---|
56 | // check that area information is there in case we have a subtractor
|
---|
57 | // GS: do we really need this since subtraction may not require areas?
|
---|
58 | if (_subtractor) {
|
---|
59 | const ClusterSequenceAreaBase * csab =
|
---|
60 | dynamic_cast<const ClusterSequenceAreaBase *>(j.associated_cs());
|
---|
61 | if (csab == 0 || (!csab->has_explicit_ghosts()))
|
---|
62 | _explicit_ghost_warning.warn("RecursiveSymmetryCutBase: there is no clustering sequence, or it lacks explicit ghosts: subtraction is not guaranteed to function properly");
|
---|
63 | }
|
---|
64 |
|
---|
65 | // establish the first subjet and optionally subtract it
|
---|
66 | PseudoJet subjet = j;
|
---|
67 | if (_subtractor && (!_input_jet_is_subtracted)) {
|
---|
68 | subjet = (*_subtractor)(subjet);
|
---|
69 | }
|
---|
70 |
|
---|
71 | // variables for tracking what will happen
|
---|
72 | PseudoJet piece1, piece2;
|
---|
73 |
|
---|
74 | // vectors for storing optional verbose structure
|
---|
75 | // these hold the deltaR, symmetry, and mu values of dropped branches
|
---|
76 | std::vector<double> dropped_delta_R;
|
---|
77 | std::vector<double> dropped_symmetry;
|
---|
78 | std::vector<double> dropped_mu;
|
---|
79 |
|
---|
80 | double sym, mu2;
|
---|
81 |
|
---|
82 | // now recurse into the jet's structure
|
---|
83 | RecursionStatus status;
|
---|
84 | while ((status=recurse_one_step(subjet, piece1, piece2, sym, mu2)) != recursion_success) {
|
---|
85 | // start with sanity checks:
|
---|
86 | if ((status == recursion_issue) || (status == recursion_no_parents)) {
|
---|
87 | // we should return piece1 by our convention for recurse_one_step
|
---|
88 | PseudoJet result;
|
---|
89 | if (status == recursion_issue){
|
---|
90 | result = piece1;
|
---|
91 | if (_verbose) cout << "reached end; returning null jet " << endl;
|
---|
92 | } else {
|
---|
93 | result = _result_no_substructure(piece1);
|
---|
94 | if (_verbose) cout << "no parents found; returning last PJ or empty jet" << endl;
|
---|
95 | }
|
---|
96 |
|
---|
97 | if (result != 0) {
|
---|
98 | // if in grooming mode, add dummy structure information
|
---|
99 | StructureType * structure = new StructureType(result);
|
---|
100 | // structure->_symmetry = 0.0;
|
---|
101 | // structure->_mu = 0.0;
|
---|
102 | // structure->_delta_R = 0.0;
|
---|
103 | if (_verbose_structure) { // still want to store verbose information about dropped branches
|
---|
104 | structure->_has_verbose = true;
|
---|
105 | structure->_dropped_symmetry = dropped_symmetry;
|
---|
106 | structure->_dropped_mu = dropped_mu;
|
---|
107 | structure->_dropped_delta_R = dropped_delta_R;
|
---|
108 | }
|
---|
109 | result.set_structure_shared_ptr(SharedPtr<PseudoJetStructureBase>(structure));
|
---|
110 | }
|
---|
111 |
|
---|
112 | return result;
|
---|
113 | }
|
---|
114 |
|
---|
115 | assert(status == recursion_dropped);
|
---|
116 |
|
---|
117 | // if desired, store information about dropped branches before recursing
|
---|
118 | if (_verbose_structure) {
|
---|
119 | dropped_delta_R.push_back(piece1.delta_R(piece2));
|
---|
120 | dropped_symmetry.push_back(sym);
|
---|
121 | dropped_mu.push_back((mu2 >= 0) ? sqrt(mu2) : -sqrt(-mu2));
|
---|
122 | }
|
---|
123 |
|
---|
124 | subjet = piece1;
|
---|
125 | }
|
---|
126 |
|
---|
127 |
|
---|
128 | // we've tagged the splitting, return the jet with its substructure
|
---|
129 | StructureType * structure = new StructureType(subjet);
|
---|
130 | structure->_symmetry = sym;
|
---|
131 | structure->_mu = (mu2 >= 0) ? sqrt(mu2) : -sqrt(-mu2);
|
---|
132 | structure->_delta_R = sqrt(squared_geometric_distance(piece1, piece2));
|
---|
133 | if (_verbose_structure) {
|
---|
134 | structure->_has_verbose = true;
|
---|
135 | structure->_dropped_symmetry = dropped_symmetry;
|
---|
136 | structure->_dropped_mu = dropped_mu;
|
---|
137 | structure->_dropped_delta_R = dropped_delta_R;
|
---|
138 | }
|
---|
139 | subjet.set_structure_shared_ptr(SharedPtr<PseudoJetStructureBase>(structure));
|
---|
140 | return subjet;
|
---|
141 | }
|
---|
142 |
|
---|
143 |
|
---|
144 |
|
---|
145 | //----------------------------------------------------------------------
|
---|
146 | // the method below is the one actually performing one step of the
|
---|
147 | // recursion.
|
---|
148 | //
|
---|
149 | // It returns a status code (defined above)
|
---|
150 | //
|
---|
151 | // In case of success, all the information is filled
|
---|
152 | // In case of "no parents", piee1 is the same subjet
|
---|
153 | // In case of trouble, piece2 will be a 0 PJ and piece1 is the PJ we
|
---|
154 | // should return (either 0 itself if the issue was critical, or
|
---|
155 | // non-wero in case of a minor issue just causing the recursion to
|
---|
156 | // stop)
|
---|
157 | RecursiveSymmetryCutBase::RecursionStatus
|
---|
158 | RecursiveSymmetryCutBase::recurse_one_step(const PseudoJet & subjet,
|
---|
159 | PseudoJet &piece1, PseudoJet &piece2,
|
---|
160 | double &sym, double &mu2,
|
---|
161 | void *extra_parameters) const {
|
---|
162 | if (!subjet.has_parents(piece1, piece2)){
|
---|
163 | piece1 = subjet;
|
---|
164 | piece2 = PseudoJet();
|
---|
165 | return recursion_no_parents;
|
---|
166 | }
|
---|
167 |
|
---|
168 | // first sanity check:
|
---|
169 | // - zero or negative pts are not allowed for the input subjet
|
---|
170 | // - zero or negative masses are not allowed for configurations
|
---|
171 | // in which the mass will effectively appear in a denominator
|
---|
172 | // (The masses will be checked later)
|
---|
173 | if (subjet.pt2() <= 0){ // this is a critical problem, return an empty PJ
|
---|
174 | piece1 = piece2 = PseudoJet();
|
---|
175 | return recursion_issue;
|
---|
176 | }
|
---|
177 |
|
---|
178 | if (_subtractor) {
|
---|
179 | piece1 = (*_subtractor)(piece1);
|
---|
180 | piece2 = (*_subtractor)(piece2);
|
---|
181 | }
|
---|
182 |
|
---|
183 | // determine the symmetry parameter
|
---|
184 | if (_symmetry_measure == y) {
|
---|
185 | // the original d_{ij}/m^2 choice from MDT
|
---|
186 | // first make sure the mass is sensible
|
---|
187 | if (subjet.m2() <= 0) {
|
---|
188 | _negative_mass_warning.warn("RecursiveSymmetryCutBase: cannot calculate y, because (sub)jet mass is negative; bailing out");
|
---|
189 | // since rounding errors can give -ve masses, be a it more
|
---|
190 | // tolerant and consider that no substructure has been found
|
---|
191 | piece1 = _result_no_substructure(subjet);
|
---|
192 | piece2 = PseudoJet();
|
---|
193 | return recursion_issue;
|
---|
194 | }
|
---|
195 | sym = piece1.kt_distance(piece2) / subjet.m2();
|
---|
196 |
|
---|
197 | } else if (_symmetry_measure == vector_z) {
|
---|
198 | // min(pt1, pt2)/(pt), where the denominator is a vector sum
|
---|
199 | // of the two subjets
|
---|
200 | sym = min(piece1.pt(), piece2.pt()) / subjet.pt();
|
---|
201 | } else if (_symmetry_measure == scalar_z) {
|
---|
202 | // min(pt1, pt2)/(pt1+pt2), where the denominator is a scalar sum
|
---|
203 | // of the two subjets
|
---|
204 | double pt1 = piece1.pt();
|
---|
205 | double pt2 = piece2.pt();
|
---|
206 | // make sure denominator is non-zero
|
---|
207 | sym = pt1 + pt2;
|
---|
208 | if (sym == 0){ // this is a critical problem, return an empty PJ
|
---|
209 | piece1 = piece2 = PseudoJet();
|
---|
210 | return recursion_issue;
|
---|
211 | }
|
---|
212 | sym = min(pt1, pt2) / sym;
|
---|
213 | } else if ((_symmetry_measure == theta_E) || (_symmetry_measure == cos_theta_E)){
|
---|
214 | // min(E1, E2)/(E1+E2)
|
---|
215 | double E1 = piece1.E();
|
---|
216 | double E2 = piece2.E();
|
---|
217 | // make sure denominator is non-zero
|
---|
218 | sym = E1 + E2;
|
---|
219 | if (sym == 0){ // this is a critical problem, return an empty PJ
|
---|
220 | piece1 = piece2 = PseudoJet();
|
---|
221 | return recursion_issue;
|
---|
222 | }
|
---|
223 | sym = min(E1, E2) / sym;
|
---|
224 | } else {
|
---|
225 | throw Error ("Unrecognized choice of symmetry_measure");
|
---|
226 | }
|
---|
227 |
|
---|
228 | // determine the symmetry cut
|
---|
229 | // (This function is specified in the derived classes)
|
---|
230 | double this_symmetry_cut = symmetry_cut_fn(piece1, piece2, extra_parameters);
|
---|
231 |
|
---|
232 | // and make a first tagging decision based on symmetry cut
|
---|
233 | bool tagged = (sym > this_symmetry_cut);
|
---|
234 |
|
---|
235 | // if tagged based on symmetry cut, then check the mu cut (if relevant)
|
---|
236 | // and update the tagging decision. Calculate mu^2 regardless, for cases
|
---|
237 | // of users not cutting on mu2, but still interested in its value.
|
---|
238 | bool use_mu_cut = (_mu_cut != numeric_limits<double>::infinity());
|
---|
239 | mu2 = max(piece1.m2(), piece2.m2())/subjet.m2();
|
---|
240 | if (tagged && use_mu_cut) {
|
---|
241 | // first a sanity check -- mu2 won't be sensible if the subjet mass
|
---|
242 | // is negative, so we can't then trust the mu cut - bail out
|
---|
243 | if (subjet.m2() <= 0) {
|
---|
244 | _negative_mass_warning.warn("RecursiveSymmetryCutBase: cannot trust mu, because (sub)jet mass is negative; bailing out");
|
---|
245 | piece1 = piece2 = PseudoJet();
|
---|
246 | return recursion_issue;
|
---|
247 | }
|
---|
248 | if (mu2 > 1) _mu2_gt1_warning.warn("RecursiveSymmetryCutBase encountered mu^2 value > 1");
|
---|
249 | if (mu2 > pow(_mu_cut,2)) tagged = false;
|
---|
250 | }
|
---|
251 |
|
---|
252 | // we'll continue unclustering, allowing for the different
|
---|
253 | // ways of choosing which parent to look into
|
---|
254 | if (_recursion_choice == larger_pt) {
|
---|
255 | if (piece1.pt2() < piece2.pt2()) std::swap(piece1, piece2);
|
---|
256 | } else if (_recursion_choice == larger_mt) {
|
---|
257 | if (piece1.mt2() < piece2.mt2()) std::swap(piece1, piece2);
|
---|
258 | } else if (_recursion_choice == larger_m) {
|
---|
259 | if (piece1.m2() < piece2.m2()) std::swap(piece1, piece2);
|
---|
260 | } else if (_recursion_choice == larger_E) {
|
---|
261 | if (piece1.E() < piece2.E()) std::swap(piece1, piece2);
|
---|
262 | } else {
|
---|
263 | throw Error ("Unrecognized value for recursion_choice");
|
---|
264 | }
|
---|
265 |
|
---|
266 | return tagged ? recursion_success : recursion_dropped;
|
---|
267 | }
|
---|
268 |
|
---|
269 |
|
---|
270 | //----------------------------------------------------------------------
|
---|
271 | string RecursiveSymmetryCutBase::description() const {
|
---|
272 | ostringstream ostr;
|
---|
273 | ostr << "Recursive " << (_grooming_mode ? "Groomer" : "Tagger") << " with a symmetry cut ";
|
---|
274 |
|
---|
275 | switch(_symmetry_measure) {
|
---|
276 | case y:
|
---|
277 | ostr << "y"; break;
|
---|
278 | case scalar_z:
|
---|
279 | ostr << "scalar_z"; break;
|
---|
280 | case vector_z:
|
---|
281 | ostr << "vector_z"; break;
|
---|
282 | case theta_E:
|
---|
283 | ostr << "theta_E"; break;
|
---|
284 | case cos_theta_E:
|
---|
285 | ostr << "cos_theta_E"; break;
|
---|
286 | default:
|
---|
287 | cerr << "failed to interpret symmetry_measure" << endl; exit(-1);
|
---|
288 | }
|
---|
289 | ostr << " > " << symmetry_cut_description();
|
---|
290 |
|
---|
291 | if (_mu_cut != numeric_limits<double>::infinity()) {
|
---|
292 | ostr << ", mass-drop cut mu=max(m1,m2)/m < " << _mu_cut;
|
---|
293 | } else {
|
---|
294 | ostr << ", no mass-drop requirement";
|
---|
295 | }
|
---|
296 |
|
---|
297 | ostr << ", recursion into the subjet with larger ";
|
---|
298 | switch(_recursion_choice) {
|
---|
299 | case larger_pt:
|
---|
300 | ostr << "pt"; break;
|
---|
301 | case larger_mt:
|
---|
302 | ostr << "mt(=sqrt(m^2+pt^2))"; break;
|
---|
303 | case larger_m:
|
---|
304 | ostr << "mass"; break;
|
---|
305 | case larger_E:
|
---|
306 | ostr << "energy"; break;
|
---|
307 | default:
|
---|
308 | cerr << "failed to interpret recursion_choice" << endl; exit(-1);
|
---|
309 | }
|
---|
310 |
|
---|
311 | if (_subtractor) {
|
---|
312 | ostr << ", subtractor: " << _subtractor->description();
|
---|
313 | if (_input_jet_is_subtracted) {ostr << " (input jet is assumed already subtracted)";}
|
---|
314 | }
|
---|
315 |
|
---|
316 | if (_recluster) {
|
---|
317 | ostr << " and reclustering using " << _recluster->description();
|
---|
318 | }
|
---|
319 |
|
---|
320 | return ostr.str();
|
---|
321 | }
|
---|
322 |
|
---|
323 | //----------------------------------------------------------------------
|
---|
324 | // helper for handling the reclustering
|
---|
325 | PseudoJet RecursiveSymmetryCutBase::_recluster_if_needed(const PseudoJet &jet) const{
|
---|
326 | if (! _do_reclustering) return jet;
|
---|
327 | if (_recluster) return (*_recluster)(jet);
|
---|
328 | if (is_ee()){
|
---|
329 | #if FASTJET_VERSION_NUMBER >= 30100
|
---|
330 | return Recluster(JetDefinition(ee_genkt_algorithm, JetDefinition::max_allowable_R, 0.0), true)(jet);
|
---|
331 | #else
|
---|
332 | return Recluster(JetDefinition(ee_genkt_algorithm, JetDefinition::max_allowable_R, 0.0))(jet);
|
---|
333 | #endif
|
---|
334 | }
|
---|
335 |
|
---|
336 | return Recluster(cambridge_algorithm, JetDefinition::max_allowable_R)(jet);
|
---|
337 | }
|
---|
338 |
|
---|
339 | //----------------------------------------------------------------------
|
---|
340 | // decide what to return when no substructure has been found
|
---|
341 | double RecursiveSymmetryCutBase::squared_geometric_distance(const PseudoJet &j1,
|
---|
342 | const PseudoJet &j2) const{
|
---|
343 | if (_symmetry_measure == theta_E){
|
---|
344 | double dot_3d = j1.px()*j2.px() + j1.py()*j2.py() + j1.pz()*j2.pz();
|
---|
345 | double cos_theta = max(-1.0,min(1.0, dot_3d/sqrt(j1.modp2()*j2.modp2())));
|
---|
346 | double theta = acos(cos_theta);
|
---|
347 | return theta*theta;
|
---|
348 | } else if (_symmetry_measure == cos_theta_E){
|
---|
349 | double dot_3d = j1.px()*j2.px() + j1.py()*j2.py() + j1.pz()*j2.pz();
|
---|
350 | return max(0.0, 2*(1-dot_3d/sqrt(j1.modp2()*j2.modp2())));
|
---|
351 | }
|
---|
352 |
|
---|
353 | return j1.squared_distance(j2);
|
---|
354 | }
|
---|
355 |
|
---|
356 | //----------------------------------------------------------------------
|
---|
357 | PseudoJet RecursiveSymmetryCutBase::_result_no_substructure(const PseudoJet &last_parent) const{
|
---|
358 | if (_grooming_mode){
|
---|
359 | // in grooming mode, return the last parent
|
---|
360 | return last_parent;
|
---|
361 | } else {
|
---|
362 | // in tagging mode, return an empty PseudoJet
|
---|
363 | return PseudoJet();
|
---|
364 | }
|
---|
365 | }
|
---|
366 |
|
---|
367 |
|
---|
368 | //========================================================================
|
---|
369 | // implementation of the details of the structure
|
---|
370 |
|
---|
371 | // the number of dropped subjets
|
---|
372 | int RecursiveSymmetryCutBase::StructureType::dropped_count(bool global) const {
|
---|
373 | check_verbose("dropped_count()");
|
---|
374 |
|
---|
375 | // if this jet has no substructure, just return an empty vector
|
---|
376 | if (!has_substructure()) return _dropped_delta_R.size();
|
---|
377 |
|
---|
378 | // deal with the non-global case
|
---|
379 | if (!global) return _dropped_delta_R.size();
|
---|
380 |
|
---|
381 | // for the global case, we've unfolded the recursion (likely more
|
---|
382 | // efficient as it requires less copying)
|
---|
383 | unsigned int count = 0;
|
---|
384 | vector<const RecursiveSymmetryCutBase::StructureType*> to_parse;
|
---|
385 | to_parse.push_back(this);
|
---|
386 |
|
---|
387 | unsigned int i_parse = 0;
|
---|
388 | while (i_parse<to_parse.size()){
|
---|
389 | const RecursiveSymmetryCutBase::StructureType *current = to_parse[i_parse];
|
---|
390 | count += current->_dropped_delta_R.size();
|
---|
391 |
|
---|
392 | // check if we need to recurse deeper in the substructure
|
---|
393 | //
|
---|
394 | // we can have 2 situations here for the underlying structure (the
|
---|
395 | // one we've wrapped around):
|
---|
396 | // - it's of the clustering type
|
---|
397 | // - it's a composite jet
|
---|
398 | // only in the 2nd case do we have to recurse deeper
|
---|
399 | const CompositeJetStructure *css = dynamic_cast<const CompositeJetStructure*>(current->_structure.get());
|
---|
400 | if (css == 0){ ++i_parse; continue; }
|
---|
401 |
|
---|
402 | vector<PseudoJet> prongs = css->pieces(PseudoJet()); // argument irrelevant
|
---|
403 | assert(prongs.size() == 2);
|
---|
404 | for (unsigned int i_prong=0; i_prong<2; ++i_prong){
|
---|
405 | if (prongs[i_prong].has_structure_of<RecursiveSymmetryCutBase>()){
|
---|
406 | RecursiveSymmetryCutBase::StructureType* prong_structure
|
---|
407 | = (RecursiveSymmetryCutBase::StructureType*) prongs[i_prong].structure_ptr();
|
---|
408 | if (prong_structure->has_substructure())
|
---|
409 | to_parse.push_back(prong_structure);
|
---|
410 | }
|
---|
411 | }
|
---|
412 |
|
---|
413 | ++i_parse;
|
---|
414 | }
|
---|
415 | return count;
|
---|
416 | }
|
---|
417 |
|
---|
418 | // the delta_R of all the dropped subjets
|
---|
419 | vector<double> RecursiveSymmetryCutBase::StructureType::dropped_delta_R(bool global) const {
|
---|
420 | check_verbose("dropped_delta_R()");
|
---|
421 |
|
---|
422 | // if this jet has no substructure, just return an empty vector
|
---|
423 | if (!has_substructure()) return vector<double>();
|
---|
424 |
|
---|
425 | // deal with the non-global case
|
---|
426 | if (!global) return _dropped_delta_R;
|
---|
427 |
|
---|
428 | // for the global case, we've unfolded the recursion (likely more
|
---|
429 | // efficient as it requires less copying)
|
---|
430 | vector<double> all_dropped;
|
---|
431 | vector<const RecursiveSymmetryCutBase::StructureType*> to_parse;
|
---|
432 | to_parse.push_back(this);
|
---|
433 |
|
---|
434 | unsigned int i_parse = 0;
|
---|
435 | while (i_parse<to_parse.size()){
|
---|
436 | const RecursiveSymmetryCutBase::StructureType *current = to_parse[i_parse];
|
---|
437 | all_dropped.insert(all_dropped.end(), current->_dropped_delta_R.begin(), current->_dropped_delta_R.end());
|
---|
438 |
|
---|
439 | // check if we need to recurse deeper in the substructure
|
---|
440 | //
|
---|
441 | // we can have 2 situations here for the underlying structure (the
|
---|
442 | // one we've wrapped around):
|
---|
443 | // - it's of the clustering type
|
---|
444 | // - it's a composite jet
|
---|
445 | // only in the 2nd case do we have to recurse deeper
|
---|
446 | const CompositeJetStructure *css = dynamic_cast<const CompositeJetStructure*>(current->_structure.get());
|
---|
447 | if (css == 0){ ++i_parse; continue; }
|
---|
448 |
|
---|
449 | vector<PseudoJet> prongs = css->pieces(PseudoJet()); // argument irrelevant
|
---|
450 | assert(prongs.size() == 2);
|
---|
451 | for (unsigned int i_prong=0; i_prong<2; ++i_prong){
|
---|
452 | if (prongs[i_prong].has_structure_of<RecursiveSymmetryCutBase>()){
|
---|
453 | RecursiveSymmetryCutBase::StructureType* prong_structure
|
---|
454 | = (RecursiveSymmetryCutBase::StructureType*) prongs[i_prong].structure_ptr();
|
---|
455 | if (prong_structure->has_substructure())
|
---|
456 | to_parse.push_back(prong_structure);
|
---|
457 | }
|
---|
458 | }
|
---|
459 |
|
---|
460 | ++i_parse;
|
---|
461 | }
|
---|
462 | return all_dropped;
|
---|
463 | }
|
---|
464 |
|
---|
465 | // the symmetry of all the dropped subjets
|
---|
466 | vector<double> RecursiveSymmetryCutBase::StructureType::dropped_symmetry(bool global) const {
|
---|
467 | check_verbose("dropped_symmetry()");
|
---|
468 |
|
---|
469 | // if this jet has no substructure, just return an empty vector
|
---|
470 | if (!has_substructure()) return vector<double>();
|
---|
471 |
|
---|
472 | // deal with the non-global case
|
---|
473 | if (!global) return _dropped_symmetry;
|
---|
474 |
|
---|
475 | // for the global case, we've unfolded the recursion (likely more
|
---|
476 | // efficient as it requires less copying)
|
---|
477 | vector<double> all_dropped;
|
---|
478 | vector<const RecursiveSymmetryCutBase::StructureType*> to_parse;
|
---|
479 | to_parse.push_back(this);
|
---|
480 |
|
---|
481 | unsigned int i_parse = 0;
|
---|
482 | while (i_parse<to_parse.size()){
|
---|
483 | const RecursiveSymmetryCutBase::StructureType *current = to_parse[i_parse];
|
---|
484 | all_dropped.insert(all_dropped.end(), current->_dropped_symmetry.begin(), current->_dropped_symmetry.end());
|
---|
485 |
|
---|
486 | // check if we need to recurse deeper in the substructure
|
---|
487 | //
|
---|
488 | // we can have 2 situations here for the underlying structure (the
|
---|
489 | // one we've wrapped around):
|
---|
490 | // - it's of the clustering type
|
---|
491 | // - it's a composite jet
|
---|
492 | // only in the 2nd case do we have to recurse deeper
|
---|
493 | const CompositeJetStructure *css = dynamic_cast<const CompositeJetStructure*>(current->_structure.get());
|
---|
494 | if (css == 0){ ++i_parse; continue; }
|
---|
495 |
|
---|
496 | vector<PseudoJet> prongs = css->pieces(PseudoJet()); // argument irrelevant
|
---|
497 | assert(prongs.size() == 2);
|
---|
498 | for (unsigned int i_prong=0; i_prong<2; ++i_prong){
|
---|
499 | if (prongs[i_prong].has_structure_of<RecursiveSymmetryCutBase>()){
|
---|
500 | RecursiveSymmetryCutBase::StructureType* prong_structure
|
---|
501 | = (RecursiveSymmetryCutBase::StructureType*) prongs[i_prong].structure_ptr();
|
---|
502 | if (prong_structure->has_substructure())
|
---|
503 | to_parse.push_back(prong_structure);
|
---|
504 | }
|
---|
505 | }
|
---|
506 |
|
---|
507 | ++i_parse;
|
---|
508 | }
|
---|
509 | return all_dropped;
|
---|
510 | }
|
---|
511 |
|
---|
512 | // the mu of all the dropped subjets
|
---|
513 | vector<double> RecursiveSymmetryCutBase::StructureType::dropped_mu(bool global) const {
|
---|
514 | check_verbose("dropped_mu()");
|
---|
515 |
|
---|
516 | // if this jet has no substructure, just return an empty vector
|
---|
517 | if (!has_substructure()) return vector<double>();
|
---|
518 |
|
---|
519 | // deal with the non-global case
|
---|
520 | if (!global) return _dropped_mu;
|
---|
521 |
|
---|
522 | // for the global case, we've unfolded the recursion (likely more
|
---|
523 | // efficient as it requires less copying)
|
---|
524 | vector<double> all_dropped;
|
---|
525 | vector<const RecursiveSymmetryCutBase::StructureType*> to_parse;
|
---|
526 | to_parse.push_back(this);
|
---|
527 |
|
---|
528 | unsigned int i_parse = 0;
|
---|
529 | while (i_parse<to_parse.size()){
|
---|
530 | const RecursiveSymmetryCutBase::StructureType *current = to_parse[i_parse];
|
---|
531 | all_dropped.insert(all_dropped.end(), current->_dropped_mu.begin(), current->_dropped_mu.end());
|
---|
532 |
|
---|
533 | // check if we need to recurse deeper in the substructure
|
---|
534 | //
|
---|
535 | // we can have 2 situations here for the underlying structure (the
|
---|
536 | // one we've wrapped around):
|
---|
537 | // - it's of the clustering type
|
---|
538 | // - it's a composite jet
|
---|
539 | // only in the 2nd case do we have to recurse deeper
|
---|
540 | const CompositeJetStructure *css = dynamic_cast<const CompositeJetStructure*>(current->_structure.get());
|
---|
541 | if (css == 0){ ++i_parse; continue; }
|
---|
542 |
|
---|
543 | vector<PseudoJet> prongs = css->pieces(PseudoJet()); // argument irrelevant
|
---|
544 | assert(prongs.size() == 2);
|
---|
545 | for (unsigned int i_prong=0; i_prong<2; ++i_prong){
|
---|
546 | if (prongs[i_prong].has_structure_of<RecursiveSymmetryCutBase>()){
|
---|
547 | RecursiveSymmetryCutBase::StructureType* prong_structure
|
---|
548 | = (RecursiveSymmetryCutBase::StructureType*) prongs[i_prong].structure_ptr();
|
---|
549 | if (prong_structure->has_substructure())
|
---|
550 | to_parse.push_back(prong_structure);
|
---|
551 | }
|
---|
552 | }
|
---|
553 |
|
---|
554 | ++i_parse;
|
---|
555 | }
|
---|
556 | return all_dropped;
|
---|
557 | }
|
---|
558 |
|
---|
559 | // the maximum of the symmetry over the dropped subjets
|
---|
560 | double RecursiveSymmetryCutBase::StructureType::max_dropped_symmetry(bool global) const {
|
---|
561 | check_verbose("max_dropped_symmetry()");
|
---|
562 |
|
---|
563 | // if there is no substructure, just exit
|
---|
564 | if (!has_substructure()){ return 0.0; }
|
---|
565 |
|
---|
566 | // local value of the max_dropped_symmetry
|
---|
567 | double local_max = (_dropped_symmetry.size() == 0)
|
---|
568 | ? 0.0 : *max_element(_dropped_symmetry.begin(),_dropped_symmetry.end());
|
---|
569 |
|
---|
570 | // recurse down the structure if instructed to do so
|
---|
571 | if (global){
|
---|
572 | // we can have 2 situations here for the underlying structure (the
|
---|
573 | // one we've wrapped around):
|
---|
574 | // - it's of the clustering type
|
---|
575 | // - it's a composite jet
|
---|
576 | // only in the 2nd case do we have to recurse deeper
|
---|
577 | const CompositeJetStructure *css = dynamic_cast<const CompositeJetStructure*>(_structure.get());
|
---|
578 | if (css == 0) return local_max;
|
---|
579 |
|
---|
580 | vector<PseudoJet> prongs = css->pieces(PseudoJet()); // argument irrelevant
|
---|
581 | assert(prongs.size() == 2);
|
---|
582 | for (unsigned int i_prong=0; i_prong<2; ++i_prong){
|
---|
583 | // check if the prong has further substructure
|
---|
584 | if (prongs[i_prong].has_structure_of<RecursiveSymmetryCutBase>()){
|
---|
585 | RecursiveSymmetryCutBase::StructureType* prong_structure
|
---|
586 | = (RecursiveSymmetryCutBase::StructureType*) prongs[i_prong].structure_ptr();
|
---|
587 | local_max = max(local_max, prong_structure->max_dropped_symmetry(true));
|
---|
588 | }
|
---|
589 | }
|
---|
590 | }
|
---|
591 |
|
---|
592 | return local_max;
|
---|
593 | }
|
---|
594 |
|
---|
595 | //------------------------------------------------------------------------
|
---|
596 | // helper class to sort by decreasing thetag
|
---|
597 | class SortRecursiveSoftDropStructureZgThetagPair{
|
---|
598 | public:
|
---|
599 | bool operator()(const pair<double, double> &p1, const pair<double, double> &p2) const{
|
---|
600 | return p1.second > p2.second;
|
---|
601 | }
|
---|
602 | };
|
---|
603 | //------------------------------------------------------------------------
|
---|
604 |
|
---|
605 | // the (zg,thetag) pairs of all the splitting that were found and passed the SD condition
|
---|
606 | vector<pair<double,double> > RecursiveSymmetryCutBase::StructureType::sorted_zg_and_thetag() const {
|
---|
607 | //check_verbose("sorted_zg_and_thetag()");
|
---|
608 |
|
---|
609 | // if this jet has no substructure, just return an empty vector
|
---|
610 | if (!has_substructure()) return vector<pair<double,double> >();
|
---|
611 |
|
---|
612 | // otherwise fill a vector with all the prongs (no specific ordering)
|
---|
613 | vector<pair<double,double> > all;
|
---|
614 | vector<const RecursiveSymmetryCutBase::StructureType*> to_parse;
|
---|
615 | to_parse.push_back(this);
|
---|
616 |
|
---|
617 | unsigned int i_parse = 0;
|
---|
618 | while (i_parse<to_parse.size()){
|
---|
619 | const RecursiveSymmetryCutBase::StructureType *current = to_parse[i_parse];
|
---|
620 | all.push_back(pair<double,double>(current->_symmetry, current->_delta_R));
|
---|
621 |
|
---|
622 | vector<PseudoJet> prongs = current->pieces(PseudoJet());
|
---|
623 | assert(prongs.size() == 2);
|
---|
624 | for (unsigned int i_prong=0; i_prong<2; ++i_prong){
|
---|
625 | if (prongs[i_prong].has_structure_of<RecursiveSymmetryCutBase>()){
|
---|
626 | RecursiveSymmetryCutBase::StructureType* prong_structure
|
---|
627 | = (RecursiveSymmetryCutBase::StructureType*) prongs[i_prong].structure_ptr();
|
---|
628 | if (prong_structure->has_substructure())
|
---|
629 | to_parse.push_back(prong_structure);
|
---|
630 | }
|
---|
631 | }
|
---|
632 |
|
---|
633 | ++i_parse;
|
---|
634 | }
|
---|
635 |
|
---|
636 | sort(all.begin(), all.end(), SortRecursiveSoftDropStructureZgThetagPair());
|
---|
637 | return all;
|
---|
638 | }
|
---|
639 |
|
---|
640 | } // namespace contrib
|
---|
641 |
|
---|
642 | FASTJET_END_NAMESPACE
|
---|