[b7b836a] | 1 | // $Id: RecursiveSymmetryCutBase.cc 1080 2017-09-28 07:51:37Z gsoyez $
|
---|
[1f1f858] | 2 | //
|
---|
| 3 | // Copyright (c) 2014-, Gavin P. Salam, Gregory Soyez, Jesse Thaler
|
---|
| 4 | //
|
---|
| 5 | //----------------------------------------------------------------------
|
---|
| 6 | // This file is part of FastJet contrib.
|
---|
| 7 | //
|
---|
| 8 | // It is free software; you can redistribute it and/or modify it under
|
---|
| 9 | // the terms of the GNU General Public License as published by the
|
---|
| 10 | // Free Software Foundation; either version 2 of the License, or (at
|
---|
| 11 | // your option) any later version.
|
---|
| 12 | //
|
---|
| 13 | // It is distributed in the hope that it will be useful, but WITHOUT
|
---|
| 14 | // ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
|
---|
| 15 | // or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
|
---|
| 16 | // License for more details.
|
---|
| 17 | //
|
---|
| 18 | // You should have received a copy of the GNU General Public License
|
---|
| 19 | // along with this code. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 20 | //----------------------------------------------------------------------
|
---|
| 21 |
|
---|
| 22 | #include "RecursiveSymmetryCutBase.hh"
|
---|
| 23 | #include "fastjet/JetDefinition.hh"
|
---|
| 24 | #include "fastjet/ClusterSequenceAreaBase.hh"
|
---|
[b7b836a] | 25 | #include <cassert>
|
---|
[1f1f858] | 26 | #include <algorithm>
|
---|
| 27 | #include <cstdlib>
|
---|
| 28 |
|
---|
| 29 | using namespace std;
|
---|
| 30 |
|
---|
| 31 | FASTJET_BEGIN_NAMESPACE // defined in fastjet/internal/base.hh
|
---|
| 32 |
|
---|
| 33 | namespace contrib{
|
---|
| 34 |
|
---|
| 35 | LimitedWarning RecursiveSymmetryCutBase::_negative_mass_warning;
|
---|
| 36 | LimitedWarning RecursiveSymmetryCutBase::_mu2_gt1_warning;
|
---|
| 37 | //LimitedWarning RecursiveSymmetryCutBase::_nonca_warning;
|
---|
| 38 | LimitedWarning RecursiveSymmetryCutBase::_explicit_ghost_warning;
|
---|
| 39 |
|
---|
| 40 | bool RecursiveSymmetryCutBase::_verbose = false;
|
---|
| 41 |
|
---|
| 42 | //----------------------------------------------------------------------
|
---|
| 43 | PseudoJet RecursiveSymmetryCutBase::result(const PseudoJet & jet) const {
|
---|
| 44 | // construct the input jet (by default, recluster with C/A)
|
---|
| 45 | if (! jet.has_constituents()){
|
---|
| 46 | throw Error("RecursiveSymmetryCutBase can only be applied to jets with constituents");
|
---|
| 47 | }
|
---|
| 48 |
|
---|
[b7b836a] | 49 | PseudoJet j = _recluster_if_needed(jet);
|
---|
[1f1f858] | 50 |
|
---|
[b7b836a] | 51 | // sanity check: the jet must have a valid CS
|
---|
[1f1f858] | 52 | if (! j.has_valid_cluster_sequence()){
|
---|
| 53 | throw Error("RecursiveSymmetryCutBase can only be applied to jets associated to a (valid) cluster sequence");
|
---|
| 54 | }
|
---|
| 55 |
|
---|
[b7b836a] | 56 | // check that area information is there in case we have a subtractor
|
---|
| 57 | // GS: do we really need this since subtraction may not require areas?
|
---|
[1f1f858] | 58 | if (_subtractor) {
|
---|
| 59 | const ClusterSequenceAreaBase * csab =
|
---|
| 60 | dynamic_cast<const ClusterSequenceAreaBase *>(j.associated_cs());
|
---|
| 61 | if (csab == 0 || (!csab->has_explicit_ghosts()))
|
---|
| 62 | _explicit_ghost_warning.warn("RecursiveSymmetryCutBase: there is no clustering sequence, or it lacks explicit ghosts: subtraction is not guaranteed to function properly");
|
---|
| 63 | }
|
---|
| 64 |
|
---|
| 65 | // establish the first subjet and optionally subtract it
|
---|
| 66 | PseudoJet subjet = j;
|
---|
| 67 | if (_subtractor && (!_input_jet_is_subtracted)) {
|
---|
| 68 | subjet = (*_subtractor)(subjet);
|
---|
| 69 | }
|
---|
| 70 |
|
---|
| 71 | // variables for tracking what will happen
|
---|
| 72 | PseudoJet piece1, piece2;
|
---|
| 73 |
|
---|
| 74 | // vectors for storing optional verbose structure
|
---|
| 75 | // these hold the deltaR, symmetry, and mu values of dropped branches
|
---|
| 76 | std::vector<double> dropped_delta_R;
|
---|
| 77 | std::vector<double> dropped_symmetry;
|
---|
| 78 | std::vector<double> dropped_mu;
|
---|
[b7b836a] | 79 |
|
---|
| 80 | double sym, mu2;
|
---|
[1f1f858] | 81 |
|
---|
| 82 | // now recurse into the jet's structure
|
---|
[b7b836a] | 83 | RecursionStatus status;
|
---|
| 84 | while ((status=recurse_one_step(subjet, piece1, piece2, sym, mu2)) != recursion_success) {
|
---|
| 85 | // start with sanity checks:
|
---|
| 86 | if ((status == recursion_issue) || (status == recursion_no_parents)) {
|
---|
| 87 | // we should return piece1 by our convention for recurse_one_step
|
---|
| 88 | PseudoJet result;
|
---|
| 89 | if (status == recursion_issue){
|
---|
| 90 | result = piece1;
|
---|
| 91 | if (_verbose) cout << "reached end; returning null jet " << endl;
|
---|
| 92 | } else {
|
---|
| 93 | result = _result_no_substructure(piece1);
|
---|
| 94 | if (_verbose) cout << "no parents found; returning last PJ or empty jet" << endl;
|
---|
[1f1f858] | 95 | }
|
---|
[b7b836a] | 96 |
|
---|
| 97 | if (result != 0) {
|
---|
| 98 | // if in grooming mode, add dummy structure information
|
---|
| 99 | StructureType * structure = new StructureType(result);
|
---|
| 100 | // structure->_symmetry = 0.0;
|
---|
| 101 | // structure->_mu = 0.0;
|
---|
| 102 | // structure->_delta_R = 0.0;
|
---|
| 103 | if (_verbose_structure) { // still want to store verbose information about dropped branches
|
---|
| 104 | structure->_has_verbose = true;
|
---|
| 105 | structure->_dropped_symmetry = dropped_symmetry;
|
---|
| 106 | structure->_dropped_mu = dropped_mu;
|
---|
| 107 | structure->_dropped_delta_R = dropped_delta_R;
|
---|
| 108 | }
|
---|
| 109 | result.set_structure_shared_ptr(SharedPtr<PseudoJetStructureBase>(structure));
|
---|
[1f1f858] | 110 | }
|
---|
[b7b836a] | 111 |
|
---|
| 112 | return result;
|
---|
[1f1f858] | 113 | }
|
---|
| 114 |
|
---|
[b7b836a] | 115 | assert(status == recursion_dropped);
|
---|
[1f1f858] | 116 |
|
---|
| 117 | // if desired, store information about dropped branches before recursing
|
---|
| 118 | if (_verbose_structure) {
|
---|
| 119 | dropped_delta_R.push_back(piece1.delta_R(piece2));
|
---|
| 120 | dropped_symmetry.push_back(sym);
|
---|
| 121 | dropped_mu.push_back((mu2 >= 0) ? sqrt(mu2) : -sqrt(-mu2));
|
---|
| 122 | }
|
---|
[b7b836a] | 123 |
|
---|
| 124 | subjet = piece1;
|
---|
| 125 | }
|
---|
[1f1f858] | 126 |
|
---|
[b7b836a] | 127 |
|
---|
| 128 | // we've tagged the splitting, return the jet with its substructure
|
---|
| 129 | StructureType * structure = new StructureType(subjet);
|
---|
| 130 | structure->_symmetry = sym;
|
---|
| 131 | structure->_mu = (mu2 >= 0) ? sqrt(mu2) : -sqrt(-mu2);
|
---|
| 132 | structure->_delta_R = sqrt(squared_geometric_distance(piece1, piece2));
|
---|
| 133 | if (_verbose_structure) {
|
---|
| 134 | structure->_has_verbose = true;
|
---|
| 135 | structure->_dropped_symmetry = dropped_symmetry;
|
---|
| 136 | structure->_dropped_mu = dropped_mu;
|
---|
| 137 | structure->_dropped_delta_R = dropped_delta_R;
|
---|
| 138 | }
|
---|
| 139 | subjet.set_structure_shared_ptr(SharedPtr<PseudoJetStructureBase>(structure));
|
---|
| 140 | return subjet;
|
---|
| 141 | }
|
---|
| 142 |
|
---|
| 143 |
|
---|
[1f1f858] | 144 |
|
---|
[b7b836a] | 145 | //----------------------------------------------------------------------
|
---|
| 146 | // the method below is the one actually performing one step of the
|
---|
| 147 | // recursion.
|
---|
| 148 | //
|
---|
| 149 | // It returns a status code (defined above)
|
---|
| 150 | //
|
---|
| 151 | // In case of success, all the information is filled
|
---|
| 152 | // In case of "no parents", piee1 is the same subjet
|
---|
| 153 | // In case of trouble, piece2 will be a 0 PJ and piece1 is the PJ we
|
---|
| 154 | // should return (either 0 itself if the issue was critical, or
|
---|
| 155 | // non-wero in case of a minor issue just causing the recursion to
|
---|
| 156 | // stop)
|
---|
| 157 | RecursiveSymmetryCutBase::RecursionStatus
|
---|
| 158 | RecursiveSymmetryCutBase::recurse_one_step(const PseudoJet & subjet,
|
---|
| 159 | PseudoJet &piece1, PseudoJet &piece2,
|
---|
| 160 | double &sym, double &mu2,
|
---|
| 161 | void *extra_parameters) const {
|
---|
| 162 | if (!subjet.has_parents(piece1, piece2)){
|
---|
| 163 | piece1 = subjet;
|
---|
| 164 | piece2 = PseudoJet();
|
---|
| 165 | return recursion_no_parents;
|
---|
| 166 | }
|
---|
| 167 |
|
---|
| 168 | // first sanity check:
|
---|
| 169 | // - zero or negative pts are not allowed for the input subjet
|
---|
| 170 | // - zero or negative masses are not allowed for configurations
|
---|
| 171 | // in which the mass will effectively appear in a denominator
|
---|
| 172 | // (The masses will be checked later)
|
---|
| 173 | if (subjet.pt2() <= 0){ // this is a critical problem, return an empty PJ
|
---|
| 174 | piece1 = piece2 = PseudoJet();
|
---|
| 175 | return recursion_issue;
|
---|
| 176 | }
|
---|
| 177 |
|
---|
| 178 | if (_subtractor) {
|
---|
| 179 | piece1 = (*_subtractor)(piece1);
|
---|
| 180 | piece2 = (*_subtractor)(piece2);
|
---|
| 181 | }
|
---|
| 182 |
|
---|
| 183 | // determine the symmetry parameter
|
---|
| 184 | if (_symmetry_measure == y) {
|
---|
| 185 | // the original d_{ij}/m^2 choice from MDT
|
---|
| 186 | // first make sure the mass is sensible
|
---|
| 187 | if (subjet.m2() <= 0) {
|
---|
| 188 | _negative_mass_warning.warn("RecursiveSymmetryCutBase: cannot calculate y, because (sub)jet mass is negative; bailing out");
|
---|
| 189 | // since rounding errors can give -ve masses, be a it more
|
---|
| 190 | // tolerant and consider that no substructure has been found
|
---|
| 191 | piece1 = _result_no_substructure(subjet);
|
---|
| 192 | piece2 = PseudoJet();
|
---|
| 193 | return recursion_issue;
|
---|
| 194 | }
|
---|
| 195 | sym = piece1.kt_distance(piece2) / subjet.m2();
|
---|
| 196 |
|
---|
| 197 | } else if (_symmetry_measure == vector_z) {
|
---|
| 198 | // min(pt1, pt2)/(pt), where the denominator is a vector sum
|
---|
| 199 | // of the two subjets
|
---|
| 200 | sym = min(piece1.pt(), piece2.pt()) / subjet.pt();
|
---|
| 201 | } else if (_symmetry_measure == scalar_z) {
|
---|
| 202 | // min(pt1, pt2)/(pt1+pt2), where the denominator is a scalar sum
|
---|
| 203 | // of the two subjets
|
---|
| 204 | double pt1 = piece1.pt();
|
---|
| 205 | double pt2 = piece2.pt();
|
---|
| 206 | // make sure denominator is non-zero
|
---|
| 207 | sym = pt1 + pt2;
|
---|
| 208 | if (sym == 0){ // this is a critical problem, return an empty PJ
|
---|
| 209 | piece1 = piece2 = PseudoJet();
|
---|
| 210 | return recursion_issue;
|
---|
[1f1f858] | 211 | }
|
---|
[b7b836a] | 212 | sym = min(pt1, pt2) / sym;
|
---|
| 213 | } else if ((_symmetry_measure == theta_E) || (_symmetry_measure == cos_theta_E)){
|
---|
| 214 | // min(E1, E2)/(E1+E2)
|
---|
| 215 | double E1 = piece1.E();
|
---|
| 216 | double E2 = piece2.E();
|
---|
| 217 | // make sure denominator is non-zero
|
---|
| 218 | sym = E1 + E2;
|
---|
| 219 | if (sym == 0){ // this is a critical problem, return an empty PJ
|
---|
| 220 | piece1 = piece2 = PseudoJet();
|
---|
| 221 | return recursion_issue;
|
---|
| 222 | }
|
---|
| 223 | sym = min(E1, E2) / sym;
|
---|
| 224 | } else {
|
---|
| 225 | throw Error ("Unrecognized choice of symmetry_measure");
|
---|
[1f1f858] | 226 | }
|
---|
| 227 |
|
---|
[b7b836a] | 228 | // determine the symmetry cut
|
---|
| 229 | // (This function is specified in the derived classes)
|
---|
| 230 | double this_symmetry_cut = symmetry_cut_fn(piece1, piece2, extra_parameters);
|
---|
| 231 |
|
---|
| 232 | // and make a first tagging decision based on symmetry cut
|
---|
| 233 | bool tagged = (sym > this_symmetry_cut);
|
---|
| 234 |
|
---|
| 235 | // if tagged based on symmetry cut, then check the mu cut (if relevant)
|
---|
| 236 | // and update the tagging decision. Calculate mu^2 regardless, for cases
|
---|
| 237 | // of users not cutting on mu2, but still interested in its value.
|
---|
| 238 | bool use_mu_cut = (_mu_cut != numeric_limits<double>::infinity());
|
---|
| 239 | mu2 = max(piece1.m2(), piece2.m2())/subjet.m2();
|
---|
| 240 | if (tagged && use_mu_cut) {
|
---|
| 241 | // first a sanity check -- mu2 won't be sensible if the subjet mass
|
---|
| 242 | // is negative, so we can't then trust the mu cut - bail out
|
---|
| 243 | if (subjet.m2() <= 0) {
|
---|
| 244 | _negative_mass_warning.warn("RecursiveSymmetryCutBase: cannot trust mu, because (sub)jet mass is negative; bailing out");
|
---|
| 245 | piece1 = piece2 = PseudoJet();
|
---|
| 246 | return recursion_issue;
|
---|
| 247 | }
|
---|
| 248 | if (mu2 > 1) _mu2_gt1_warning.warn("RecursiveSymmetryCutBase encountered mu^2 value > 1");
|
---|
| 249 | if (mu2 > pow(_mu_cut,2)) tagged = false;
|
---|
| 250 | }
|
---|
[1f1f858] | 251 |
|
---|
[b7b836a] | 252 | // we'll continue unclustering, allowing for the different
|
---|
| 253 | // ways of choosing which parent to look into
|
---|
| 254 | if (_recursion_choice == larger_pt) {
|
---|
| 255 | if (piece1.pt2() < piece2.pt2()) std::swap(piece1, piece2);
|
---|
| 256 | } else if (_recursion_choice == larger_mt) {
|
---|
| 257 | if (piece1.mt2() < piece2.mt2()) std::swap(piece1, piece2);
|
---|
| 258 | } else if (_recursion_choice == larger_m) {
|
---|
| 259 | if (piece1.m2() < piece2.m2()) std::swap(piece1, piece2);
|
---|
| 260 | } else if (_recursion_choice == larger_E) {
|
---|
| 261 | if (piece1.E() < piece2.E()) std::swap(piece1, piece2);
|
---|
| 262 | } else {
|
---|
| 263 | throw Error ("Unrecognized value for recursion_choice");
|
---|
| 264 | }
|
---|
[1f1f858] | 265 |
|
---|
[b7b836a] | 266 | return tagged ? recursion_success : recursion_dropped;
|
---|
| 267 | }
|
---|
| 268 |
|
---|
| 269 |
|
---|
[1f1f858] | 270 | //----------------------------------------------------------------------
|
---|
| 271 | string RecursiveSymmetryCutBase::description() const {
|
---|
| 272 | ostringstream ostr;
|
---|
| 273 | ostr << "Recursive " << (_grooming_mode ? "Groomer" : "Tagger") << " with a symmetry cut ";
|
---|
| 274 |
|
---|
| 275 | switch(_symmetry_measure) {
|
---|
| 276 | case y:
|
---|
| 277 | ostr << "y"; break;
|
---|
| 278 | case scalar_z:
|
---|
| 279 | ostr << "scalar_z"; break;
|
---|
| 280 | case vector_z:
|
---|
| 281 | ostr << "vector_z"; break;
|
---|
[b7b836a] | 282 | case theta_E:
|
---|
| 283 | ostr << "theta_E"; break;
|
---|
| 284 | case cos_theta_E:
|
---|
| 285 | ostr << "cos_theta_E"; break;
|
---|
[1f1f858] | 286 | default:
|
---|
| 287 | cerr << "failed to interpret symmetry_measure" << endl; exit(-1);
|
---|
| 288 | }
|
---|
| 289 | ostr << " > " << symmetry_cut_description();
|
---|
| 290 |
|
---|
| 291 | if (_mu_cut != numeric_limits<double>::infinity()) {
|
---|
| 292 | ostr << ", mass-drop cut mu=max(m1,m2)/m < " << _mu_cut;
|
---|
| 293 | } else {
|
---|
| 294 | ostr << ", no mass-drop requirement";
|
---|
| 295 | }
|
---|
| 296 |
|
---|
| 297 | ostr << ", recursion into the subjet with larger ";
|
---|
| 298 | switch(_recursion_choice) {
|
---|
| 299 | case larger_pt:
|
---|
| 300 | ostr << "pt"; break;
|
---|
| 301 | case larger_mt:
|
---|
| 302 | ostr << "mt(=sqrt(m^2+pt^2))"; break;
|
---|
| 303 | case larger_m:
|
---|
| 304 | ostr << "mass"; break;
|
---|
[b7b836a] | 305 | case larger_E:
|
---|
| 306 | ostr << "energy"; break;
|
---|
[1f1f858] | 307 | default:
|
---|
| 308 | cerr << "failed to interpret recursion_choice" << endl; exit(-1);
|
---|
| 309 | }
|
---|
| 310 |
|
---|
| 311 | if (_subtractor) {
|
---|
[b7b836a] | 312 | ostr << ", subtractor: " << _subtractor->description();
|
---|
[1f1f858] | 313 | if (_input_jet_is_subtracted) {ostr << " (input jet is assumed already subtracted)";}
|
---|
| 314 | }
|
---|
[b7b836a] | 315 |
|
---|
| 316 | if (_recluster) {
|
---|
| 317 | ostr << " and reclustering using " << _recluster->description();
|
---|
| 318 | }
|
---|
| 319 |
|
---|
[1f1f858] | 320 | return ostr.str();
|
---|
| 321 | }
|
---|
| 322 |
|
---|
[b7b836a] | 323 | //----------------------------------------------------------------------
|
---|
| 324 | // helper for handling the reclustering
|
---|
| 325 | PseudoJet RecursiveSymmetryCutBase::_recluster_if_needed(const PseudoJet &jet) const{
|
---|
| 326 | if (! _do_reclustering) return jet;
|
---|
| 327 | if (_recluster) return (*_recluster)(jet);
|
---|
| 328 | if (is_ee()){
|
---|
| 329 | #if FASTJET_VERSION_NUMBER >= 30100
|
---|
| 330 | return Recluster(JetDefinition(ee_genkt_algorithm, JetDefinition::max_allowable_R, 0.0), true)(jet);
|
---|
| 331 | #else
|
---|
| 332 | return Recluster(JetDefinition(ee_genkt_algorithm, JetDefinition::max_allowable_R, 0.0))(jet);
|
---|
| 333 | #endif
|
---|
| 334 | }
|
---|
| 335 |
|
---|
| 336 | return Recluster(cambridge_algorithm, JetDefinition::max_allowable_R)(jet);
|
---|
| 337 | }
|
---|
| 338 |
|
---|
| 339 | //----------------------------------------------------------------------
|
---|
[1f1f858] | 340 | // decide what to return when no substructure has been found
|
---|
[b7b836a] | 341 | double RecursiveSymmetryCutBase::squared_geometric_distance(const PseudoJet &j1,
|
---|
| 342 | const PseudoJet &j2) const{
|
---|
| 343 | if (_symmetry_measure == theta_E){
|
---|
| 344 | double dot_3d = j1.px()*j2.px() + j1.py()*j2.py() + j1.pz()*j2.pz();
|
---|
| 345 | double cos_theta = max(-1.0,min(1.0, dot_3d/sqrt(j1.modp2()*j2.modp2())));
|
---|
| 346 | double theta = acos(cos_theta);
|
---|
| 347 | return theta*theta;
|
---|
| 348 | } else if (_symmetry_measure == cos_theta_E){
|
---|
| 349 | double dot_3d = j1.px()*j2.px() + j1.py()*j2.py() + j1.pz()*j2.pz();
|
---|
| 350 | return max(0.0, 2*(1-dot_3d/sqrt(j1.modp2()*j2.modp2())));
|
---|
| 351 | }
|
---|
| 352 |
|
---|
| 353 | return j1.squared_distance(j2);
|
---|
| 354 | }
|
---|
| 355 |
|
---|
| 356 | //----------------------------------------------------------------------
|
---|
[1f1f858] | 357 | PseudoJet RecursiveSymmetryCutBase::_result_no_substructure(const PseudoJet &last_parent) const{
|
---|
| 358 | if (_grooming_mode){
|
---|
| 359 | // in grooming mode, return the last parent
|
---|
| 360 | return last_parent;
|
---|
| 361 | } else {
|
---|
| 362 | // in tagging mode, return an empty PseudoJet
|
---|
| 363 | return PseudoJet();
|
---|
| 364 | }
|
---|
| 365 | }
|
---|
| 366 |
|
---|
| 367 |
|
---|
[b7b836a] | 368 | //========================================================================
|
---|
| 369 | // implementation of the details of the structure
|
---|
| 370 |
|
---|
| 371 | // the number of dropped subjets
|
---|
| 372 | int RecursiveSymmetryCutBase::StructureType::dropped_count(bool global) const {
|
---|
| 373 | check_verbose("dropped_count()");
|
---|
| 374 |
|
---|
| 375 | // if this jet has no substructure, just return an empty vector
|
---|
| 376 | if (!has_substructure()) return _dropped_delta_R.size();
|
---|
| 377 |
|
---|
| 378 | // deal with the non-global case
|
---|
| 379 | if (!global) return _dropped_delta_R.size();
|
---|
| 380 |
|
---|
| 381 | // for the global case, we've unfolded the recursion (likely more
|
---|
| 382 | // efficient as it requires less copying)
|
---|
| 383 | unsigned int count = 0;
|
---|
| 384 | vector<const RecursiveSymmetryCutBase::StructureType*> to_parse;
|
---|
| 385 | to_parse.push_back(this);
|
---|
| 386 |
|
---|
| 387 | unsigned int i_parse = 0;
|
---|
| 388 | while (i_parse<to_parse.size()){
|
---|
| 389 | const RecursiveSymmetryCutBase::StructureType *current = to_parse[i_parse];
|
---|
| 390 | count += current->_dropped_delta_R.size();
|
---|
| 391 |
|
---|
| 392 | // check if we need to recurse deeper in the substructure
|
---|
| 393 | //
|
---|
| 394 | // we can have 2 situations here for the underlying structure (the
|
---|
| 395 | // one we've wrapped around):
|
---|
| 396 | // - it's of the clustering type
|
---|
| 397 | // - it's a composite jet
|
---|
| 398 | // only in the 2nd case do we have to recurse deeper
|
---|
| 399 | const CompositeJetStructure *css = dynamic_cast<const CompositeJetStructure*>(current->_structure.get());
|
---|
| 400 | if (css == 0){ ++i_parse; continue; }
|
---|
| 401 |
|
---|
| 402 | vector<PseudoJet> prongs = css->pieces(PseudoJet()); // argument irrelevant
|
---|
| 403 | assert(prongs.size() == 2);
|
---|
| 404 | for (unsigned int i_prong=0; i_prong<2; ++i_prong){
|
---|
| 405 | if (prongs[i_prong].has_structure_of<RecursiveSymmetryCutBase>()){
|
---|
| 406 | RecursiveSymmetryCutBase::StructureType* prong_structure
|
---|
| 407 | = (RecursiveSymmetryCutBase::StructureType*) prongs[i_prong].structure_ptr();
|
---|
| 408 | if (prong_structure->has_substructure())
|
---|
| 409 | to_parse.push_back(prong_structure);
|
---|
| 410 | }
|
---|
| 411 | }
|
---|
| 412 |
|
---|
| 413 | ++i_parse;
|
---|
| 414 | }
|
---|
| 415 | return count;
|
---|
| 416 | }
|
---|
| 417 |
|
---|
| 418 | // the delta_R of all the dropped subjets
|
---|
| 419 | vector<double> RecursiveSymmetryCutBase::StructureType::dropped_delta_R(bool global) const {
|
---|
| 420 | check_verbose("dropped_delta_R()");
|
---|
| 421 |
|
---|
| 422 | // if this jet has no substructure, just return an empty vector
|
---|
| 423 | if (!has_substructure()) return vector<double>();
|
---|
| 424 |
|
---|
| 425 | // deal with the non-global case
|
---|
| 426 | if (!global) return _dropped_delta_R;
|
---|
| 427 |
|
---|
| 428 | // for the global case, we've unfolded the recursion (likely more
|
---|
| 429 | // efficient as it requires less copying)
|
---|
| 430 | vector<double> all_dropped;
|
---|
| 431 | vector<const RecursiveSymmetryCutBase::StructureType*> to_parse;
|
---|
| 432 | to_parse.push_back(this);
|
---|
| 433 |
|
---|
| 434 | unsigned int i_parse = 0;
|
---|
| 435 | while (i_parse<to_parse.size()){
|
---|
| 436 | const RecursiveSymmetryCutBase::StructureType *current = to_parse[i_parse];
|
---|
| 437 | all_dropped.insert(all_dropped.end(), current->_dropped_delta_R.begin(), current->_dropped_delta_R.end());
|
---|
| 438 |
|
---|
| 439 | // check if we need to recurse deeper in the substructure
|
---|
| 440 | //
|
---|
| 441 | // we can have 2 situations here for the underlying structure (the
|
---|
| 442 | // one we've wrapped around):
|
---|
| 443 | // - it's of the clustering type
|
---|
| 444 | // - it's a composite jet
|
---|
| 445 | // only in the 2nd case do we have to recurse deeper
|
---|
| 446 | const CompositeJetStructure *css = dynamic_cast<const CompositeJetStructure*>(current->_structure.get());
|
---|
| 447 | if (css == 0){ ++i_parse; continue; }
|
---|
| 448 |
|
---|
| 449 | vector<PseudoJet> prongs = css->pieces(PseudoJet()); // argument irrelevant
|
---|
| 450 | assert(prongs.size() == 2);
|
---|
| 451 | for (unsigned int i_prong=0; i_prong<2; ++i_prong){
|
---|
| 452 | if (prongs[i_prong].has_structure_of<RecursiveSymmetryCutBase>()){
|
---|
| 453 | RecursiveSymmetryCutBase::StructureType* prong_structure
|
---|
| 454 | = (RecursiveSymmetryCutBase::StructureType*) prongs[i_prong].structure_ptr();
|
---|
| 455 | if (prong_structure->has_substructure())
|
---|
| 456 | to_parse.push_back(prong_structure);
|
---|
| 457 | }
|
---|
| 458 | }
|
---|
| 459 |
|
---|
| 460 | ++i_parse;
|
---|
| 461 | }
|
---|
| 462 | return all_dropped;
|
---|
| 463 | }
|
---|
| 464 |
|
---|
| 465 | // the symmetry of all the dropped subjets
|
---|
| 466 | vector<double> RecursiveSymmetryCutBase::StructureType::dropped_symmetry(bool global) const {
|
---|
| 467 | check_verbose("dropped_symmetry()");
|
---|
| 468 |
|
---|
| 469 | // if this jet has no substructure, just return an empty vector
|
---|
| 470 | if (!has_substructure()) return vector<double>();
|
---|
| 471 |
|
---|
| 472 | // deal with the non-global case
|
---|
| 473 | if (!global) return _dropped_symmetry;
|
---|
| 474 |
|
---|
| 475 | // for the global case, we've unfolded the recursion (likely more
|
---|
| 476 | // efficient as it requires less copying)
|
---|
| 477 | vector<double> all_dropped;
|
---|
| 478 | vector<const RecursiveSymmetryCutBase::StructureType*> to_parse;
|
---|
| 479 | to_parse.push_back(this);
|
---|
| 480 |
|
---|
| 481 | unsigned int i_parse = 0;
|
---|
| 482 | while (i_parse<to_parse.size()){
|
---|
| 483 | const RecursiveSymmetryCutBase::StructureType *current = to_parse[i_parse];
|
---|
| 484 | all_dropped.insert(all_dropped.end(), current->_dropped_symmetry.begin(), current->_dropped_symmetry.end());
|
---|
| 485 |
|
---|
| 486 | // check if we need to recurse deeper in the substructure
|
---|
| 487 | //
|
---|
| 488 | // we can have 2 situations here for the underlying structure (the
|
---|
| 489 | // one we've wrapped around):
|
---|
| 490 | // - it's of the clustering type
|
---|
| 491 | // - it's a composite jet
|
---|
| 492 | // only in the 2nd case do we have to recurse deeper
|
---|
| 493 | const CompositeJetStructure *css = dynamic_cast<const CompositeJetStructure*>(current->_structure.get());
|
---|
| 494 | if (css == 0){ ++i_parse; continue; }
|
---|
| 495 |
|
---|
| 496 | vector<PseudoJet> prongs = css->pieces(PseudoJet()); // argument irrelevant
|
---|
| 497 | assert(prongs.size() == 2);
|
---|
| 498 | for (unsigned int i_prong=0; i_prong<2; ++i_prong){
|
---|
| 499 | if (prongs[i_prong].has_structure_of<RecursiveSymmetryCutBase>()){
|
---|
| 500 | RecursiveSymmetryCutBase::StructureType* prong_structure
|
---|
| 501 | = (RecursiveSymmetryCutBase::StructureType*) prongs[i_prong].structure_ptr();
|
---|
| 502 | if (prong_structure->has_substructure())
|
---|
| 503 | to_parse.push_back(prong_structure);
|
---|
| 504 | }
|
---|
| 505 | }
|
---|
| 506 |
|
---|
| 507 | ++i_parse;
|
---|
| 508 | }
|
---|
| 509 | return all_dropped;
|
---|
| 510 | }
|
---|
| 511 |
|
---|
| 512 | // the mu of all the dropped subjets
|
---|
| 513 | vector<double> RecursiveSymmetryCutBase::StructureType::dropped_mu(bool global) const {
|
---|
| 514 | check_verbose("dropped_mu()");
|
---|
| 515 |
|
---|
| 516 | // if this jet has no substructure, just return an empty vector
|
---|
| 517 | if (!has_substructure()) return vector<double>();
|
---|
| 518 |
|
---|
| 519 | // deal with the non-global case
|
---|
| 520 | if (!global) return _dropped_mu;
|
---|
| 521 |
|
---|
| 522 | // for the global case, we've unfolded the recursion (likely more
|
---|
| 523 | // efficient as it requires less copying)
|
---|
| 524 | vector<double> all_dropped;
|
---|
| 525 | vector<const RecursiveSymmetryCutBase::StructureType*> to_parse;
|
---|
| 526 | to_parse.push_back(this);
|
---|
| 527 |
|
---|
| 528 | unsigned int i_parse = 0;
|
---|
| 529 | while (i_parse<to_parse.size()){
|
---|
| 530 | const RecursiveSymmetryCutBase::StructureType *current = to_parse[i_parse];
|
---|
| 531 | all_dropped.insert(all_dropped.end(), current->_dropped_mu.begin(), current->_dropped_mu.end());
|
---|
| 532 |
|
---|
| 533 | // check if we need to recurse deeper in the substructure
|
---|
| 534 | //
|
---|
| 535 | // we can have 2 situations here for the underlying structure (the
|
---|
| 536 | // one we've wrapped around):
|
---|
| 537 | // - it's of the clustering type
|
---|
| 538 | // - it's a composite jet
|
---|
| 539 | // only in the 2nd case do we have to recurse deeper
|
---|
| 540 | const CompositeJetStructure *css = dynamic_cast<const CompositeJetStructure*>(current->_structure.get());
|
---|
| 541 | if (css == 0){ ++i_parse; continue; }
|
---|
| 542 |
|
---|
| 543 | vector<PseudoJet> prongs = css->pieces(PseudoJet()); // argument irrelevant
|
---|
| 544 | assert(prongs.size() == 2);
|
---|
| 545 | for (unsigned int i_prong=0; i_prong<2; ++i_prong){
|
---|
| 546 | if (prongs[i_prong].has_structure_of<RecursiveSymmetryCutBase>()){
|
---|
| 547 | RecursiveSymmetryCutBase::StructureType* prong_structure
|
---|
| 548 | = (RecursiveSymmetryCutBase::StructureType*) prongs[i_prong].structure_ptr();
|
---|
| 549 | if (prong_structure->has_substructure())
|
---|
| 550 | to_parse.push_back(prong_structure);
|
---|
| 551 | }
|
---|
| 552 | }
|
---|
| 553 |
|
---|
| 554 | ++i_parse;
|
---|
| 555 | }
|
---|
| 556 | return all_dropped;
|
---|
| 557 | }
|
---|
| 558 |
|
---|
| 559 | // the maximum of the symmetry over the dropped subjets
|
---|
| 560 | double RecursiveSymmetryCutBase::StructureType::max_dropped_symmetry(bool global) const {
|
---|
| 561 | check_verbose("max_dropped_symmetry()");
|
---|
| 562 |
|
---|
| 563 | // if there is no substructure, just exit
|
---|
| 564 | if (!has_substructure()){ return 0.0; }
|
---|
| 565 |
|
---|
| 566 | // local value of the max_dropped_symmetry
|
---|
| 567 | double local_max = (_dropped_symmetry.size() == 0)
|
---|
| 568 | ? 0.0 : *max_element(_dropped_symmetry.begin(),_dropped_symmetry.end());
|
---|
| 569 |
|
---|
| 570 | // recurse down the structure if instructed to do so
|
---|
| 571 | if (global){
|
---|
| 572 | // we can have 2 situations here for the underlying structure (the
|
---|
| 573 | // one we've wrapped around):
|
---|
| 574 | // - it's of the clustering type
|
---|
| 575 | // - it's a composite jet
|
---|
| 576 | // only in the 2nd case do we have to recurse deeper
|
---|
| 577 | const CompositeJetStructure *css = dynamic_cast<const CompositeJetStructure*>(_structure.get());
|
---|
| 578 | if (css == 0) return local_max;
|
---|
| 579 |
|
---|
| 580 | vector<PseudoJet> prongs = css->pieces(PseudoJet()); // argument irrelevant
|
---|
| 581 | assert(prongs.size() == 2);
|
---|
| 582 | for (unsigned int i_prong=0; i_prong<2; ++i_prong){
|
---|
| 583 | // check if the prong has further substructure
|
---|
| 584 | if (prongs[i_prong].has_structure_of<RecursiveSymmetryCutBase>()){
|
---|
| 585 | RecursiveSymmetryCutBase::StructureType* prong_structure
|
---|
| 586 | = (RecursiveSymmetryCutBase::StructureType*) prongs[i_prong].structure_ptr();
|
---|
| 587 | local_max = max(local_max, prong_structure->max_dropped_symmetry(true));
|
---|
| 588 | }
|
---|
| 589 | }
|
---|
| 590 | }
|
---|
| 591 |
|
---|
| 592 | return local_max;
|
---|
| 593 | }
|
---|
| 594 |
|
---|
| 595 | //------------------------------------------------------------------------
|
---|
| 596 | // helper class to sort by decreasing thetag
|
---|
| 597 | class SortRecursiveSoftDropStructureZgThetagPair{
|
---|
| 598 | public:
|
---|
| 599 | bool operator()(const pair<double, double> &p1, const pair<double, double> &p2) const{
|
---|
| 600 | return p1.second > p2.second;
|
---|
| 601 | }
|
---|
| 602 | };
|
---|
| 603 | //------------------------------------------------------------------------
|
---|
| 604 |
|
---|
| 605 | // the (zg,thetag) pairs of all the splitting that were found and passed the SD condition
|
---|
| 606 | vector<pair<double,double> > RecursiveSymmetryCutBase::StructureType::sorted_zg_and_thetag() const {
|
---|
| 607 | //check_verbose("sorted_zg_and_thetag()");
|
---|
| 608 |
|
---|
| 609 | // if this jet has no substructure, just return an empty vector
|
---|
| 610 | if (!has_substructure()) return vector<pair<double,double> >();
|
---|
| 611 |
|
---|
| 612 | // otherwise fill a vector with all the prongs (no specific ordering)
|
---|
| 613 | vector<pair<double,double> > all;
|
---|
| 614 | vector<const RecursiveSymmetryCutBase::StructureType*> to_parse;
|
---|
| 615 | to_parse.push_back(this);
|
---|
| 616 |
|
---|
| 617 | unsigned int i_parse = 0;
|
---|
| 618 | while (i_parse<to_parse.size()){
|
---|
| 619 | const RecursiveSymmetryCutBase::StructureType *current = to_parse[i_parse];
|
---|
| 620 | all.push_back(pair<double,double>(current->_symmetry, current->_delta_R));
|
---|
| 621 |
|
---|
| 622 | vector<PseudoJet> prongs = current->pieces(PseudoJet());
|
---|
| 623 | assert(prongs.size() == 2);
|
---|
| 624 | for (unsigned int i_prong=0; i_prong<2; ++i_prong){
|
---|
| 625 | if (prongs[i_prong].has_structure_of<RecursiveSymmetryCutBase>()){
|
---|
| 626 | RecursiveSymmetryCutBase::StructureType* prong_structure
|
---|
| 627 | = (RecursiveSymmetryCutBase::StructureType*) prongs[i_prong].structure_ptr();
|
---|
| 628 | if (prong_structure->has_substructure())
|
---|
| 629 | to_parse.push_back(prong_structure);
|
---|
| 630 | }
|
---|
| 631 | }
|
---|
| 632 |
|
---|
| 633 | ++i_parse;
|
---|
| 634 | }
|
---|
| 635 |
|
---|
| 636 | sort(all.begin(), all.end(), SortRecursiveSoftDropStructureZgThetagPair());
|
---|
| 637 | return all;
|
---|
| 638 | }
|
---|
| 639 |
|
---|
[1f1f858] | 640 | } // namespace contrib
|
---|
| 641 |
|
---|
| 642 | FASTJET_END_NAMESPACE
|
---|