1 | --------------------------------------------------------------------------------
|
---|
2 | Nsubjettiness Package
|
---|
3 | --------------------------------------------------------------------------------
|
---|
4 |
|
---|
5 | The Nsubjettiness package is based on the physics described in:
|
---|
6 |
|
---|
7 | Identifying Boosted Objects with N-subjettiness.
|
---|
8 | Jesse Thaler and Ken Van Tilburg.
|
---|
9 | JHEP 1103:015 (2011), arXiv:1011.2268.
|
---|
10 |
|
---|
11 | Maximizing Boosted Top Identification by Minimizing N-subjettiness.
|
---|
12 | Jesse Thaler and Ken Van Tilburg.
|
---|
13 | JHEP 1202:093 (2012), arXiv:1108.2701.
|
---|
14 |
|
---|
15 | New in v2.0 is the winner-take-all axis, which is described in:
|
---|
16 |
|
---|
17 | Jet Shapes with the Broadening Axis.
|
---|
18 | Andrew J. Larkoski, Duff Neill, and Jesse Thaler.
|
---|
19 | JHEP 1404:017 (2014), arXiv:1401.2158.
|
---|
20 |
|
---|
21 | as well as in unpublished work by Gavin Salam.
|
---|
22 |
|
---|
23 | --------------------------------------------------------------------------------
|
---|
24 | Core Classes
|
---|
25 | --------------------------------------------------------------------------------
|
---|
26 |
|
---|
27 | There are various ways to access N-(sub)jettiness variables, described
|
---|
28 | in more detail below:
|
---|
29 |
|
---|
30 | Nsubjettiness [Nsubjettiness.hh]:
|
---|
31 | A FunctionOfPseudoJet<double> interface to measure N-subjettiness
|
---|
32 | (Recommended for most users)
|
---|
33 | NsubjettinessRatio [Nsubjettiness.hh]:
|
---|
34 | A FunctionOfPseudoJet<double> interface to measure ratios of
|
---|
35 | two different N-subjettiness (i.e. tau3/tau2)
|
---|
36 | NjettinessPlugin [NjettinessPlugin.hh]:
|
---|
37 | A FastJet plugin for finding jets by minimizing N-jettiness
|
---|
38 | (Recommended for advanced users)
|
---|
39 | Njettiness [Njettiness.hh]:
|
---|
40 | Access to the core Njettiness code.
|
---|
41 | (Not recommended for users, since the interface might change)
|
---|
42 |
|
---|
43 | The code assumes that you have FastJet 3.
|
---|
44 |
|
---|
45 | --------------------------------------------------------------------------------
|
---|
46 | Basic Usage: Nsubjettiness and NsubjettinessRatio [Nsubjettiness.hh]
|
---|
47 | --------------------------------------------------------------------------------
|
---|
48 |
|
---|
49 | Most users will only need to use the Nsubjettiness class. The basic
|
---|
50 | functionality is given by:
|
---|
51 |
|
---|
52 | Nsubjettiness nSub(N, AxesDefinition, MeasureDefinition)
|
---|
53 | // N specifies the number of (sub) jets to measure
|
---|
54 | // AxesDefinition is WTA_KT_Axes, OnePass_KT_Axes, etc.
|
---|
55 | // MeasureDefinition is UnnormalizedMeasure(beta),
|
---|
56 | // NormalizedMeasure(beta,R0), etc.
|
---|
57 |
|
---|
58 | // get tau value
|
---|
59 | double tauN = nSub.result(PseudoJet);
|
---|
60 |
|
---|
61 | Also available are ratios of N-subjettiness values
|
---|
62 | NsubjettinessRatio nSubRatio(N, M, AxesDefinition,
|
---|
63 | MeasureDefinition)
|
---|
64 | // N and M give tau_N / tau_M, all other options the same
|
---|
65 |
|
---|
66 | --------------------------------------------------------------------------------
|
---|
67 | AxesDefinition [NjettinessDefinition.hh]
|
---|
68 | --------------------------------------------------------------------------------
|
---|
69 |
|
---|
70 | N-(sub)jettiness requires choosing axes as well as a measure (see below). There
|
---|
71 | are a number of axes choices available to the user, though modes with a (*) are
|
---|
72 | recommended. Arguments in parentheses are parameters that the user must set.
|
---|
73 |
|
---|
74 | Axes can be found using standard recursive clustering procedures. New is the
|
---|
75 | option to use the "winner-take-all" recombination scheme:
|
---|
76 | (*) KT_Axes // exclusive kt axes
|
---|
77 | CA_Axes // exclusive ca axes
|
---|
78 | AntiKT_Axes(R0) // inclusive hardest axes with antikt, R0 = radius
|
---|
79 | (*) WTA_KT_Axes // exclusive kt with winner-take-all recombination
|
---|
80 | WTA_CA_Axes // exclusive ca with winner-take-all recombination
|
---|
81 |
|
---|
82 | One can also run a minimization routine to find a (local) minimum of
|
---|
83 | N-(sub)jettiness:
|
---|
84 | (*) OnePass_KT_Axes // one-pass minimization from kt starting point
|
---|
85 | OnePass_CA_Axes // one-pass min. from ca starting point
|
---|
86 | OnePass_AntiKT(R0) // one-pass min. from antikt starting point,R0=rad
|
---|
87 | (*) OnePass_WTA_KT_Axes // one-pass min. from wta_kt starting point
|
---|
88 | OnePass_WTA_CA_Axes // one-pass min. from wta_ca starting point
|
---|
89 |
|
---|
90 | In general, it is difficult to finding the global minimum, but this mode
|
---|
91 | attempts to do so
|
---|
92 | MultiPass_Axes(Npass) // axes that (attempt to) minimize N-subjettiness
|
---|
93 | // (NPass = 100 is typical)
|
---|
94 |
|
---|
95 | Finally, one can set manual axes:
|
---|
96 | Manual_Axes // set your own axes with setAxes()
|
---|
97 | OnePass_Manual_Axes // one-pass minimization from manual starting point
|
---|
98 |
|
---|
99 | For most cases, running with OnePass_KT_Axes or OnePass_WTA_KT_Axes gives
|
---|
100 | reasonable results (and the results are IRC safe). Because it uses random
|
---|
101 | number seeds, MultiPass_Axes is not IRC safe (and the code is rather slow). Note
|
---|
102 | that for the minimization routines, beta = 1.1 is faster than beta = 1, with
|
---|
103 | comparable performance.
|
---|
104 |
|
---|
105 | --------------------------------------------------------------------------------
|
---|
106 | MeasureDefinition [NjettinessDefinition.hh]
|
---|
107 | --------------------------------------------------------------------------------
|
---|
108 |
|
---|
109 | At the moment, there are only a few measures. Note that each one has a
|
---|
110 | different number of parameters. The one indicated by (*)
|
---|
111 | is the one recommended for use by users new to Nsubjettiness.
|
---|
112 |
|
---|
113 | The original N-subjettiness measures are:
|
---|
114 | NormalizedMeasure(beta,R0) //default normalized measure with
|
---|
115 | //parameters beta and R0 (dimensionless)
|
---|
116 | (*) UnnormalizedMeasure(beta) //default unnormalized measure with just
|
---|
117 | //parameter beta (dimensionful)
|
---|
118 |
|
---|
119 | There are also measures that incorporate a radial cutoff:
|
---|
120 | NormalizedCutoffMeasure(beta,R0,Rcutoff) //normalized measure with
|
---|
121 | //additional Rcutoff
|
---|
122 | UnnormalizedCutoffMeasure(beta,Rcutoff) //unnormalized measure with
|
---|
123 | //additional Rcutoff
|
---|
124 |
|
---|
125 | In beta testing are "geometric" measures where distances are measured using the
|
---|
126 | Lorentz dot product (N.B. the formula for the geometric measure is likely to
|
---|
127 | change since there should be separate beam and jet beta factors.)
|
---|
128 | GeometricMeasure(beta) //geometric measure with exponent beta
|
---|
129 | GeometricCutoffMeasure(beta,Rcutoff) //geometric measure with Rcutoff
|
---|
130 |
|
---|
131 | --------------------------------------------------------------------------------
|
---|
132 | A note on beta dependence
|
---|
133 | --------------------------------------------------------------------------------
|
---|
134 |
|
---|
135 | The angular exponent in N-subjettiness is called beta. The original
|
---|
136 | N-subjettiness paper advocated beta = 1, but it is now understood that different
|
---|
137 | beta values can be useful in different contexts. The two main choices are:
|
---|
138 |
|
---|
139 | beta = 1: aka broadening/girth/width measure
|
---|
140 | wta_kt_axes are approximately the same as minimizing beta = 1 measure
|
---|
141 |
|
---|
142 | beta = 2: aka thrust/mass measure
|
---|
143 | kt_axes are approximately the same as minimizing beta = 2 measure
|
---|
144 |
|
---|
145 | N.B. The minimization routines are only valid for 1 < beta < 3.
|
---|
146 |
|
---|
147 | For quark/gluon discrimination with N = 1, beta~0.2 with wta_kt_axes appears
|
---|
148 | to be a good choice.
|
---|
149 |
|
---|
150 | --------------------------------------------------------------------------------
|
---|
151 | TauComponents [MeasureFunction.hh]
|
---|
152 | --------------------------------------------------------------------------------
|
---|
153 |
|
---|
154 | For most users, they will only need the value of N-subjettiness (i.e. tau)
|
---|
155 | itself. For advanced users, they can access individual tau components (i.e.
|
---|
156 | the individual numerator pieces, the denominator, etc.)
|
---|
157 |
|
---|
158 | TauComponents tauComp = nSub.component_result(jet);
|
---|
159 | vector<double> numer = tauComp.jet_pieces_numerator(); //tau for each subjet
|
---|
160 | double denom = tauComp.denominator(); //normalization factor
|
---|
161 |
|
---|
162 | --------------------------------------------------------------------------------
|
---|
163 | WinnerTakeAllRecombiner [WinnerTakeAllRecombiner.hh]
|
---|
164 | --------------------------------------------------------------------------------
|
---|
165 |
|
---|
166 | New for version 2.0 of Nsubjettiness are winner-take-all axes. They are found
|
---|
167 | with the help of the WinnerTakeAllRecombiner. This class defines a new
|
---|
168 | recombination scheme for clustering particles. This scheme recombines two
|
---|
169 | PseudoJets into a PseudoJet with pT of the sum of the two input PseudoJet pTs
|
---|
170 | and direction of the harder PseudoJet. This is a "recoil-free" recombination
|
---|
171 | scheme that guarantees that the axes is aligned with one of the input particles.
|
---|
172 | It is IRC safe. Axes found with the standard E-scheme recombiner at similar to
|
---|
173 | the beta = 2 minimization, while winner-take-all is similar to the beta = 1
|
---|
174 | measure.
|
---|
175 |
|
---|
176 | Note that the WinnerTakeAllRecombiner can be used outside of Nsubjettiness
|
---|
177 | itself for jet finding. For example, the direction of anti-kT jets found
|
---|
178 | with the WinnerTakeAllRecombiner is particularly robust against soft jet
|
---|
179 | contamination.
|
---|
180 |
|
---|
181 | --------------------------------------------------------------------------------
|
---|
182 | Advanced Usage: NjettinessPlugin [NjettinessPlugin.hh]
|
---|
183 | --------------------------------------------------------------------------------
|
---|
184 |
|
---|
185 | The Njettiness FastJet plugin represents an exclusive jet finder (yielding a
|
---|
186 | fixed N number of jets). The algorithm finds N axes, and jets are simply the sum
|
---|
187 | of particles closest to a given axis (or unclustered if they are closest to the
|
---|
188 | beam). The axes finding methods and measures are the same as for Nsubjettiness.
|
---|
189 |
|
---|
190 | NjettinessPlugin plugin(N, AxesDefinition, MeasureDefinition);
|
---|
191 | JetDefinition def(&plugin);
|
---|
192 | ClusterSequence cs(vector<PseudoJet>,def);
|
---|
193 | vector<PseudoJet> jets = cs.inclusive_jets();
|
---|
194 |
|
---|
195 | Note that despite being an exclusive jet algorithm, one finds the jets using the
|
---|
196 | inclusive_jets() call.
|
---|
197 |
|
---|
198 | --------------------------------------------------------------------------------
|
---|
199 | Very Advanced Usage: Njettiness [Njettiness.hh]
|
---|
200 | --------------------------------------------------------------------------------
|
---|
201 |
|
---|
202 | Most users will want to use the Nsubjettiness or NjettinessPlugin classes to
|
---|
203 | access N-(sub)jettiness information. For direct access to the Njettiness class,
|
---|
204 | one can use Njettiness.hh directly. This class is still evolving, so users who
|
---|
205 | wish to extend its functionality should contact the authors first.
|
---|
206 |
|
---|
207 | --------------------------------------------------------------------------------
|
---|
208 | Technical Details
|
---|
209 | --------------------------------------------------------------------------------
|
---|
210 |
|
---|
211 | In general, the user will never need access to these header files. Here is a
|
---|
212 | brief description about how they are used to help the calculation of
|
---|
213 | N-(sub)jettiness:
|
---|
214 |
|
---|
215 | AxesFinder.hh:
|
---|
216 |
|
---|
217 | The AxesFinder class (and derived classes) defines the axes used in the
|
---|
218 | calculation of N-(sub)jettiness. These axes can be defined from the exclusive
|
---|
219 | jets from a kT or CA algorithm, the hardest jets from an anti-kT algorithm,
|
---|
220 | manually, or from minimization of N-jettiness. In the future, the user will be
|
---|
221 | able to write their own axes finder, though currently the interface is still
|
---|
222 | evolving. At the moment, the user should stick to the options allowed by
|
---|
223 | AxesDefinition.
|
---|
224 |
|
---|
225 | MeasureFunction.hh:
|
---|
226 |
|
---|
227 | The MeasureFunction class (and derived classes) defines the measure by which
|
---|
228 | N-(sub)jettiness is calculated. This measure is calculated between each
|
---|
229 | particle and its corresponding axis, and then summed and normalized to
|
---|
230 | produce N-(sub)jettiness. The default measure for this calculation is
|
---|
231 | pT*dR^beta, where dR is the rapidity-azimuth distance between the particle
|
---|
232 | and its axis, and beta is the angular exponent. Again, in the future the user
|
---|
233 | will be able to write their own measures, but for the time being, only the
|
---|
234 | predefined MeasureDefinition values should be used.
|
---|
235 |
|
---|
236 | --------------------------------------------------------------------------------
|
---|
237 | Known Issues
|
---|
238 | --------------------------------------------------------------------------------
|
---|
239 |
|
---|
240 | -- The MultiPass_Axes mode gives different answers on different runs, since
|
---|
241 | random numbers are used.
|
---|
242 | -- In rare cases, one pass minimization can give a larger value of Njettiness
|
---|
243 | than without minimization.
|
---|
244 | -- Nsubjettiness is not thread safe, since there are mutables in Njettiness.
|
---|