Fork me on GitHub

source: git/external/fastjet/contribs/Nsubjettiness/Njettiness.cc@ 5b5a56b

ImprovedOutputFile Timing dual_readout llp
Last change on this file since 5b5a56b was 9687203, checked in by mselvaggi <mselvaggi@…>, 11 years ago

added nsubjettiness

  • Property mode set to 100644
File size: 11.4 KB
Line 
1// Nsubjettiness Package
2// Questions/Comments? jthaler@jthaler.net
3//
4// Copyright (c) 2011-14
5// Jesse Thaler, Ken Van Tilburg, Christopher K. Vermilion, and TJ Wilkason
6//
7//----------------------------------------------------------------------
8// This file is part of FastJet contrib.
9//
10// It is free software; you can redistribute it and/or modify it under
11// the terms of the GNU General Public License as published by the
12// Free Software Foundation; either version 2 of the License, or (at
13// your option) any later version.
14//
15// It is distributed in the hope that it will be useful, but WITHOUT
16// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
17// or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
18// License for more details.
19//
20// You should have received a copy of the GNU General Public License
21// along with this code. If not, see <http://www.gnu.org/licenses/>.
22//----------------------------------------------------------------------
23
24#include "Njettiness.hh"
25
26FASTJET_BEGIN_NAMESPACE // defined in fastjet/internal/base.hh
27
28namespace contrib {
29
30
31///////
32//
33// Main Njettiness Class
34//
35///////
36
37// Helper function to correlate one pass minimization with appropriate measure
38void Njettiness::setOnePassAxesFinder(MeasureMode measure_mode, AxesFinder* startingFinder, double beta, double Rcutoff) {
39 if (measure_mode == normalized_measure || measure_mode == unnormalized_measure || measure_mode == normalized_cutoff_measure || measure_mode == unnormalized_cutoff_measure) {
40 _axesFinder = new AxesFinderFromOnePassMinimization(startingFinder, beta, Rcutoff);
41 }
42 else if (measure_mode == geometric_measure || measure_mode == geometric_cutoff_measure) {
43 _axesFinder = new AxesFinderFromGeometricMinimization(startingFinder, beta, Rcutoff);
44 }
45 else {
46 std::cerr << "Minimization only set up for normalized_measure, unnormalized_measure, normalized_cutoff_measure, unnormalized_cutoff_measure, geometric_measure, geometric_cutoff_measure" << std::endl;
47 exit(1); }
48}
49
50// Parsing needed for constructor to set AxesFinder and MeasureFunction
51// All of the parameter handling is here, and checking that number of parameters is correct.
52void Njettiness::setMeasureFunctionandAxesFinder(AxesMode axes_mode, MeasureMode measure_mode, double para1, double para2, double para3, double para4) {
53
54 // definition of maximum Rcutoff for non-cutoff measures, changed later by other measures
55 double Rcutoff = std::numeric_limits<double>::max(); //large number
56 // Most (but all measures have some kind of beta value)
57 double beta = NAN;
58 // The normalized measures have an R0 value.
59 double R0 = NAN;
60
61 // Find the MeasureFunction and set the parameters.
62 switch (measure_mode) {
63 case normalized_measure:
64 beta = para1;
65 R0 = para2;
66 if(correctParameterCount(2, para1, para2, para3, para4))
67 _measureFunction = new DefaultNormalizedMeasure(beta, R0, Rcutoff); //normalized_measure requires 2 parameters, beta and R0
68 else {
69 std::cerr << "normalized_measure needs 2 parameters (beta and R0)" << std::endl;
70 exit(1); }
71 break;
72 case unnormalized_measure:
73 beta = para1;
74 if(correctParameterCount(1, para1, para2, para3, para4))
75 _measureFunction = new DefaultUnnormalizedMeasure(beta, Rcutoff); //unnormalized_measure requires 1 parameter, beta
76 else {
77 std::cerr << "unnormalized_measure needs 1 parameter (beta)" << std::endl;
78 exit(1); }
79 break;
80 case geometric_measure:
81 beta = para1;
82 if(correctParameterCount(1, para1, para2, para3, para4))
83 _measureFunction = new GeometricMeasure(beta,Rcutoff); //geometric_measure requires 1 parameter, beta
84 else {
85 std::cerr << "geometric_measure needs 1 parameter (beta)" << std::endl;
86 exit(1); }
87 break;
88 case normalized_cutoff_measure:
89 beta = para1;
90 R0 = para2;
91 Rcutoff = para3; //Rcutoff parameter is 3rd parameter in normalized_cutoff_measure
92 if(correctParameterCount(3, para1, para2, para3, para4))
93 _measureFunction = new DefaultNormalizedMeasure(beta, R0, Rcutoff); //normalized_cutoff_measure requires 3 parameters, beta, R0, and Rcutoff
94 else {
95 std::cerr << "normalized_cutoff_measure has 3 parameters (beta, R0, Rcutoff)" << std::endl;
96 exit(1); }
97 break;
98 case unnormalized_cutoff_measure:
99 beta = para1;
100 Rcutoff = para2; //Rcutoff parameter is 2nd parameter in normalized_cutoff_measure
101 if (correctParameterCount(2, para1, para2, para3, para4))
102 _measureFunction = new DefaultUnnormalizedMeasure(beta, Rcutoff); //unnormalized_cutoff_measure requires 2 parameters, beta and Rcutoff
103 else {
104 std::cerr << "unnormalized_cutoff_measure has 2 parameters (beta, Rcutoff)" << std::endl;
105 exit(1); }
106 break;
107 case geometric_cutoff_measure:
108 beta = para1;
109 Rcutoff = para2; //Rcutoff parameter is 2nd parameter in geometric_cutoff_measure
110 if(correctParameterCount(2, para1, para2, para3, para4))
111 _measureFunction = new GeometricMeasure(beta,Rcutoff); //geometric_cutoff_measure requires 2 parameters, beta and Rcutoff
112 else {
113 std::cerr << "geometric_cutoff_measure has 2 parameters (beta,Rcutoff)" << std::endl;
114 exit(1); }
115 break;
116 default:
117 assert(false);
118 break;
119 }
120
121 // Choose which AxesFinder from user input.
122 // Uses setOnePassAxesFinder helpful function to use beta and Rcutoff values about (if needed)
123 switch (axes_mode) {
124 case wta_kt_axes:
125 _axesFinder = new AxesFinderFromWTA_KT();
126 break;
127 case wta_ca_axes:
128 _axesFinder = new AxesFinderFromWTA_CA();
129 break;
130 case kt_axes:
131 _axesFinder = new AxesFinderFromKT();
132 break;
133 case ca_axes:
134 _axesFinder = new AxesFinderFromCA();
135 break;
136 case antikt_0p2_axes:
137 _axesFinder = new AxesFinderFromAntiKT(0.2);
138 break;
139 case onepass_wta_kt_axes:
140 setOnePassAxesFinder(measure_mode, new AxesFinderFromWTA_KT(), beta, Rcutoff);
141 break;
142 case onepass_wta_ca_axes:
143 setOnePassAxesFinder(measure_mode, new AxesFinderFromWTA_CA(), beta, Rcutoff);
144 break;
145 case onepass_kt_axes:
146 setOnePassAxesFinder(measure_mode, new AxesFinderFromKT(), beta, Rcutoff);
147 break;
148 case onepass_ca_axes:
149 setOnePassAxesFinder(measure_mode, new AxesFinderFromCA(), beta, Rcutoff);
150 break;
151 case onepass_antikt_0p2_axes:
152 setOnePassAxesFinder(measure_mode, new AxesFinderFromAntiKT(0.2), beta, Rcutoff);
153 break;
154 case onepass_manual_axes:
155 setOnePassAxesFinder(measure_mode, new AxesFinderFromUserInput(), beta, Rcutoff);
156 break;
157 case min_axes: //full minimization is not defined for geometric_measure.
158 if (measure_mode == normalized_measure || measure_mode == unnormalized_measure || measure_mode == normalized_cutoff_measure || measure_mode == unnormalized_cutoff_measure)
159 //Defaults to 100 iteration to find minimum
160 _axesFinder = new AxesFinderFromKmeansMinimization(new AxesFinderFromKT(), beta, Rcutoff, 100);
161 else {
162 std::cerr << "Multi-pass minimization only set up for normalized_measure, unnormalized_measure, normalized_cutoff_measure, unnormalized_cutoff_measure." << std::endl;
163 exit(1);
164 }
165 break;
166 case manual_axes:
167 _axesFinder = new AxesFinderFromUserInput();
168 break;
169// These options have been commented out because they have not been fully tested
170// case wta2_kt_axes: // option for alpha = 2 added
171// _axesFinder = new AxesFinderFromWTA2_KT();
172// break;
173// case wta2_ca_axes: // option for alpha = 2 added
174// _axesFinder = new AxesFinderFromWTA2_CA();
175// break;
176// case onepass_wta2_kt_axes: // option for alpha = 2 added
177// setOnePassAxesFinder(measure_mode, new AxesFinderFromWTA2_KT(), beta, Rcutoff);
178// break;
179// case onepass_wta2_ca_axes: // option for alpha = 2 added
180// setOnePassAxesFinder(measure_mode, new AxesFinderFromWTA2_CA(), beta, Rcutoff);
181// break;
182 default:
183 assert(false);
184 break;
185 }
186
187}
188
189// setAxes for Manual mode
190void Njettiness::setAxes(std::vector<fastjet::PseudoJet> myAxes) {
191 if (_current_axes_mode == manual_axes || _current_axes_mode == onepass_manual_axes) {
192 _currentAxes = myAxes;
193 }
194 else {
195 std::cerr << "You can only use setAxes if using manual_axes or onepass_manual_axes measure mode" << std::endl;
196 exit(1);
197 }
198}
199
200// Calculates and returns all TauComponents that user would want.
201// This information is stored in _current_tau_components for later access as well.
202TauComponents Njettiness::getTauComponents(unsigned n_jets, const std::vector<fastjet::PseudoJet> & inputJets) {
203 if (inputJets.size() <= n_jets) { //if not enough particles, return zero
204 _currentAxes = inputJets;
205 _currentAxes.resize(n_jets,fastjet::PseudoJet(0.0,0.0,0.0,0.0));
206 _current_tau_components = TauComponents();
207 _seedAxes = _currentAxes;
208 } else {
209 _currentAxes = _axesFinder->getAxes(n_jets,inputJets,_currentAxes); // sets current Axes
210 _seedAxes = _axesFinder->seedAxes(); // sets seed Axes (if one pass minimization was used)
211 _current_tau_components = _measureFunction->result(inputJets, _currentAxes); // sets current Tau Values
212 }
213 return _current_tau_components;
214}
215
216
217// Partition a list of particles according to which N-jettiness axis they are closest to.
218// Return a vector of length _currentAxes.size() (which should be N).
219// Each vector element is a list of ints corresponding to the indices in
220// particles of the particles belonging to that jet.
221// TODO: Consider moving to MeasureFunction
222std::vector<std::list<int> > Njettiness::getPartition(const std::vector<fastjet::PseudoJet> & particles) {
223 std::vector<std::list<int> > partitions(_currentAxes.size());
224
225 for (unsigned i = 0; i < particles.size(); i++) {
226
227 int j_min = -1;
228 // find minimum distance
229 double minR = std::numeric_limits<double>::max(); //large number
230 for (unsigned j = 0; j < _currentAxes.size(); j++) {
231 double tempR = _measureFunction->jet_distance_squared(particles[i],_currentAxes[j]); // delta R distance
232 if (tempR < minR) {
233 minR = tempR;
234 j_min = j;
235 }
236 }
237 if (_measureFunction->do_cluster(particles[i],_currentAxes[j_min])) partitions[j_min].push_back(i);
238 }
239 return partitions;
240}
241
242// Having found axes, assign each particle in particles to an axis, and return a set of jets.
243// Each jet is the sum of particles closest to an axis (Njet = Naxes).
244// TODO: Consider moving to MeasureFunction
245std::vector<fastjet::PseudoJet> Njettiness::getJets(const std::vector<fastjet::PseudoJet> & particles) {
246
247 std::vector<fastjet::PseudoJet> jets(_currentAxes.size());
248
249 std::vector<std::list<int> > partition = getPartition(particles);
250 for (unsigned j = 0; j < partition.size(); ++j) {
251 std::list<int>::const_iterator it, itE;
252 for (it = partition[j].begin(), itE = partition[j].end(); it != itE; ++it) {
253 jets[j] += particles[*it];
254 }
255 }
256 return jets;
257}
258
259} // namespace contrib
260
261FASTJET_END_NAMESPACE
Note: See TracBrowser for help on using the repository browser.