[9687203] | 1 | // Nsubjettiness Package
|
---|
| 2 | // Questions/Comments? jthaler@jthaler.net
|
---|
| 3 | //
|
---|
| 4 | // Copyright (c) 2011-14
|
---|
| 5 | // Jesse Thaler, Ken Van Tilburg, Christopher K. Vermilion, and TJ Wilkason
|
---|
| 6 | //
|
---|
| 7 | //----------------------------------------------------------------------
|
---|
| 8 | // This file is part of FastJet contrib.
|
---|
| 9 | //
|
---|
| 10 | // It is free software; you can redistribute it and/or modify it under
|
---|
| 11 | // the terms of the GNU General Public License as published by the
|
---|
| 12 | // Free Software Foundation; either version 2 of the License, or (at
|
---|
| 13 | // your option) any later version.
|
---|
| 14 | //
|
---|
| 15 | // It is distributed in the hope that it will be useful, but WITHOUT
|
---|
| 16 | // ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
|
---|
| 17 | // or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
|
---|
| 18 | // License for more details.
|
---|
| 19 | //
|
---|
| 20 | // You should have received a copy of the GNU General Public License
|
---|
| 21 | // along with this code. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 22 | //----------------------------------------------------------------------
|
---|
| 23 |
|
---|
| 24 | #include "Njettiness.hh"
|
---|
| 25 |
|
---|
| 26 | FASTJET_BEGIN_NAMESPACE // defined in fastjet/internal/base.hh
|
---|
| 27 |
|
---|
| 28 | namespace contrib {
|
---|
| 29 |
|
---|
| 30 |
|
---|
| 31 | ///////
|
---|
| 32 | //
|
---|
| 33 | // Main Njettiness Class
|
---|
| 34 | //
|
---|
| 35 | ///////
|
---|
| 36 |
|
---|
| 37 | // Helper function to correlate one pass minimization with appropriate measure
|
---|
| 38 | void Njettiness::setOnePassAxesFinder(MeasureMode measure_mode, AxesFinder* startingFinder, double beta, double Rcutoff) {
|
---|
| 39 | if (measure_mode == normalized_measure || measure_mode == unnormalized_measure || measure_mode == normalized_cutoff_measure || measure_mode == unnormalized_cutoff_measure) {
|
---|
| 40 | _axesFinder = new AxesFinderFromOnePassMinimization(startingFinder, beta, Rcutoff);
|
---|
| 41 | }
|
---|
| 42 | else if (measure_mode == geometric_measure || measure_mode == geometric_cutoff_measure) {
|
---|
| 43 | _axesFinder = new AxesFinderFromGeometricMinimization(startingFinder, beta, Rcutoff);
|
---|
| 44 | }
|
---|
| 45 | else {
|
---|
| 46 | std::cerr << "Minimization only set up for normalized_measure, unnormalized_measure, normalized_cutoff_measure, unnormalized_cutoff_measure, geometric_measure, geometric_cutoff_measure" << std::endl;
|
---|
| 47 | exit(1); }
|
---|
| 48 | }
|
---|
| 49 |
|
---|
| 50 | // Parsing needed for constructor to set AxesFinder and MeasureFunction
|
---|
| 51 | // All of the parameter handling is here, and checking that number of parameters is correct.
|
---|
| 52 | void Njettiness::setMeasureFunctionandAxesFinder(AxesMode axes_mode, MeasureMode measure_mode, double para1, double para2, double para3, double para4) {
|
---|
| 53 |
|
---|
| 54 | // definition of maximum Rcutoff for non-cutoff measures, changed later by other measures
|
---|
| 55 | double Rcutoff = std::numeric_limits<double>::max(); //large number
|
---|
| 56 | // Most (but all measures have some kind of beta value)
|
---|
| 57 | double beta = NAN;
|
---|
| 58 | // The normalized measures have an R0 value.
|
---|
| 59 | double R0 = NAN;
|
---|
| 60 |
|
---|
| 61 | // Find the MeasureFunction and set the parameters.
|
---|
| 62 | switch (measure_mode) {
|
---|
| 63 | case normalized_measure:
|
---|
| 64 | beta = para1;
|
---|
| 65 | R0 = para2;
|
---|
| 66 | if(correctParameterCount(2, para1, para2, para3, para4))
|
---|
| 67 | _measureFunction = new DefaultNormalizedMeasure(beta, R0, Rcutoff); //normalized_measure requires 2 parameters, beta and R0
|
---|
| 68 | else {
|
---|
| 69 | std::cerr << "normalized_measure needs 2 parameters (beta and R0)" << std::endl;
|
---|
| 70 | exit(1); }
|
---|
| 71 | break;
|
---|
| 72 | case unnormalized_measure:
|
---|
| 73 | beta = para1;
|
---|
| 74 | if(correctParameterCount(1, para1, para2, para3, para4))
|
---|
| 75 | _measureFunction = new DefaultUnnormalizedMeasure(beta, Rcutoff); //unnormalized_measure requires 1 parameter, beta
|
---|
| 76 | else {
|
---|
| 77 | std::cerr << "unnormalized_measure needs 1 parameter (beta)" << std::endl;
|
---|
| 78 | exit(1); }
|
---|
| 79 | break;
|
---|
| 80 | case geometric_measure:
|
---|
| 81 | beta = para1;
|
---|
| 82 | if(correctParameterCount(1, para1, para2, para3, para4))
|
---|
| 83 | _measureFunction = new GeometricMeasure(beta,Rcutoff); //geometric_measure requires 1 parameter, beta
|
---|
| 84 | else {
|
---|
| 85 | std::cerr << "geometric_measure needs 1 parameter (beta)" << std::endl;
|
---|
| 86 | exit(1); }
|
---|
| 87 | break;
|
---|
| 88 | case normalized_cutoff_measure:
|
---|
| 89 | beta = para1;
|
---|
| 90 | R0 = para2;
|
---|
| 91 | Rcutoff = para3; //Rcutoff parameter is 3rd parameter in normalized_cutoff_measure
|
---|
| 92 | if(correctParameterCount(3, para1, para2, para3, para4))
|
---|
| 93 | _measureFunction = new DefaultNormalizedMeasure(beta, R0, Rcutoff); //normalized_cutoff_measure requires 3 parameters, beta, R0, and Rcutoff
|
---|
| 94 | else {
|
---|
| 95 | std::cerr << "normalized_cutoff_measure has 3 parameters (beta, R0, Rcutoff)" << std::endl;
|
---|
| 96 | exit(1); }
|
---|
| 97 | break;
|
---|
| 98 | case unnormalized_cutoff_measure:
|
---|
| 99 | beta = para1;
|
---|
| 100 | Rcutoff = para2; //Rcutoff parameter is 2nd parameter in normalized_cutoff_measure
|
---|
| 101 | if (correctParameterCount(2, para1, para2, para3, para4))
|
---|
| 102 | _measureFunction = new DefaultUnnormalizedMeasure(beta, Rcutoff); //unnormalized_cutoff_measure requires 2 parameters, beta and Rcutoff
|
---|
| 103 | else {
|
---|
| 104 | std::cerr << "unnormalized_cutoff_measure has 2 parameters (beta, Rcutoff)" << std::endl;
|
---|
| 105 | exit(1); }
|
---|
| 106 | break;
|
---|
| 107 | case geometric_cutoff_measure:
|
---|
| 108 | beta = para1;
|
---|
| 109 | Rcutoff = para2; //Rcutoff parameter is 2nd parameter in geometric_cutoff_measure
|
---|
| 110 | if(correctParameterCount(2, para1, para2, para3, para4))
|
---|
| 111 | _measureFunction = new GeometricMeasure(beta,Rcutoff); //geometric_cutoff_measure requires 2 parameters, beta and Rcutoff
|
---|
| 112 | else {
|
---|
| 113 | std::cerr << "geometric_cutoff_measure has 2 parameters (beta,Rcutoff)" << std::endl;
|
---|
| 114 | exit(1); }
|
---|
| 115 | break;
|
---|
| 116 | default:
|
---|
| 117 | assert(false);
|
---|
| 118 | break;
|
---|
| 119 | }
|
---|
| 120 |
|
---|
| 121 | // Choose which AxesFinder from user input.
|
---|
| 122 | // Uses setOnePassAxesFinder helpful function to use beta and Rcutoff values about (if needed)
|
---|
| 123 | switch (axes_mode) {
|
---|
| 124 | case wta_kt_axes:
|
---|
| 125 | _axesFinder = new AxesFinderFromWTA_KT();
|
---|
| 126 | break;
|
---|
| 127 | case wta_ca_axes:
|
---|
| 128 | _axesFinder = new AxesFinderFromWTA_CA();
|
---|
| 129 | break;
|
---|
| 130 | case kt_axes:
|
---|
| 131 | _axesFinder = new AxesFinderFromKT();
|
---|
| 132 | break;
|
---|
| 133 | case ca_axes:
|
---|
| 134 | _axesFinder = new AxesFinderFromCA();
|
---|
| 135 | break;
|
---|
| 136 | case antikt_0p2_axes:
|
---|
| 137 | _axesFinder = new AxesFinderFromAntiKT(0.2);
|
---|
| 138 | break;
|
---|
| 139 | case onepass_wta_kt_axes:
|
---|
| 140 | setOnePassAxesFinder(measure_mode, new AxesFinderFromWTA_KT(), beta, Rcutoff);
|
---|
| 141 | break;
|
---|
| 142 | case onepass_wta_ca_axes:
|
---|
| 143 | setOnePassAxesFinder(measure_mode, new AxesFinderFromWTA_CA(), beta, Rcutoff);
|
---|
| 144 | break;
|
---|
| 145 | case onepass_kt_axes:
|
---|
| 146 | setOnePassAxesFinder(measure_mode, new AxesFinderFromKT(), beta, Rcutoff);
|
---|
| 147 | break;
|
---|
| 148 | case onepass_ca_axes:
|
---|
| 149 | setOnePassAxesFinder(measure_mode, new AxesFinderFromCA(), beta, Rcutoff);
|
---|
| 150 | break;
|
---|
| 151 | case onepass_antikt_0p2_axes:
|
---|
| 152 | setOnePassAxesFinder(measure_mode, new AxesFinderFromAntiKT(0.2), beta, Rcutoff);
|
---|
| 153 | break;
|
---|
| 154 | case onepass_manual_axes:
|
---|
| 155 | setOnePassAxesFinder(measure_mode, new AxesFinderFromUserInput(), beta, Rcutoff);
|
---|
| 156 | break;
|
---|
| 157 | case min_axes: //full minimization is not defined for geometric_measure.
|
---|
| 158 | if (measure_mode == normalized_measure || measure_mode == unnormalized_measure || measure_mode == normalized_cutoff_measure || measure_mode == unnormalized_cutoff_measure)
|
---|
| 159 | //Defaults to 100 iteration to find minimum
|
---|
| 160 | _axesFinder = new AxesFinderFromKmeansMinimization(new AxesFinderFromKT(), beta, Rcutoff, 100);
|
---|
| 161 | else {
|
---|
| 162 | std::cerr << "Multi-pass minimization only set up for normalized_measure, unnormalized_measure, normalized_cutoff_measure, unnormalized_cutoff_measure." << std::endl;
|
---|
| 163 | exit(1);
|
---|
| 164 | }
|
---|
| 165 | break;
|
---|
| 166 | case manual_axes:
|
---|
| 167 | _axesFinder = new AxesFinderFromUserInput();
|
---|
| 168 | break;
|
---|
| 169 | // These options have been commented out because they have not been fully tested
|
---|
| 170 | // case wta2_kt_axes: // option for alpha = 2 added
|
---|
| 171 | // _axesFinder = new AxesFinderFromWTA2_KT();
|
---|
| 172 | // break;
|
---|
| 173 | // case wta2_ca_axes: // option for alpha = 2 added
|
---|
| 174 | // _axesFinder = new AxesFinderFromWTA2_CA();
|
---|
| 175 | // break;
|
---|
| 176 | // case onepass_wta2_kt_axes: // option for alpha = 2 added
|
---|
| 177 | // setOnePassAxesFinder(measure_mode, new AxesFinderFromWTA2_KT(), beta, Rcutoff);
|
---|
| 178 | // break;
|
---|
| 179 | // case onepass_wta2_ca_axes: // option for alpha = 2 added
|
---|
| 180 | // setOnePassAxesFinder(measure_mode, new AxesFinderFromWTA2_CA(), beta, Rcutoff);
|
---|
| 181 | // break;
|
---|
| 182 | default:
|
---|
| 183 | assert(false);
|
---|
| 184 | break;
|
---|
| 185 | }
|
---|
| 186 |
|
---|
| 187 | }
|
---|
| 188 |
|
---|
| 189 | // setAxes for Manual mode
|
---|
| 190 | void Njettiness::setAxes(std::vector<fastjet::PseudoJet> myAxes) {
|
---|
| 191 | if (_current_axes_mode == manual_axes || _current_axes_mode == onepass_manual_axes) {
|
---|
| 192 | _currentAxes = myAxes;
|
---|
| 193 | }
|
---|
| 194 | else {
|
---|
| 195 | std::cerr << "You can only use setAxes if using manual_axes or onepass_manual_axes measure mode" << std::endl;
|
---|
| 196 | exit(1);
|
---|
| 197 | }
|
---|
| 198 | }
|
---|
| 199 |
|
---|
| 200 | // Calculates and returns all TauComponents that user would want.
|
---|
| 201 | // This information is stored in _current_tau_components for later access as well.
|
---|
| 202 | TauComponents Njettiness::getTauComponents(unsigned n_jets, const std::vector<fastjet::PseudoJet> & inputJets) {
|
---|
| 203 | if (inputJets.size() <= n_jets) { //if not enough particles, return zero
|
---|
| 204 | _currentAxes = inputJets;
|
---|
| 205 | _currentAxes.resize(n_jets,fastjet::PseudoJet(0.0,0.0,0.0,0.0));
|
---|
| 206 | _current_tau_components = TauComponents();
|
---|
| 207 | _seedAxes = _currentAxes;
|
---|
| 208 | } else {
|
---|
| 209 | _currentAxes = _axesFinder->getAxes(n_jets,inputJets,_currentAxes); // sets current Axes
|
---|
| 210 | _seedAxes = _axesFinder->seedAxes(); // sets seed Axes (if one pass minimization was used)
|
---|
| 211 | _current_tau_components = _measureFunction->result(inputJets, _currentAxes); // sets current Tau Values
|
---|
| 212 | }
|
---|
| 213 | return _current_tau_components;
|
---|
| 214 | }
|
---|
| 215 |
|
---|
| 216 |
|
---|
| 217 | // Partition a list of particles according to which N-jettiness axis they are closest to.
|
---|
| 218 | // Return a vector of length _currentAxes.size() (which should be N).
|
---|
| 219 | // Each vector element is a list of ints corresponding to the indices in
|
---|
| 220 | // particles of the particles belonging to that jet.
|
---|
| 221 | // TODO: Consider moving to MeasureFunction
|
---|
| 222 | std::vector<std::list<int> > Njettiness::getPartition(const std::vector<fastjet::PseudoJet> & particles) {
|
---|
| 223 | std::vector<std::list<int> > partitions(_currentAxes.size());
|
---|
| 224 |
|
---|
| 225 | for (unsigned i = 0; i < particles.size(); i++) {
|
---|
| 226 |
|
---|
| 227 | int j_min = -1;
|
---|
| 228 | // find minimum distance
|
---|
| 229 | double minR = std::numeric_limits<double>::max(); //large number
|
---|
| 230 | for (unsigned j = 0; j < _currentAxes.size(); j++) {
|
---|
| 231 | double tempR = _measureFunction->jet_distance_squared(particles[i],_currentAxes[j]); // delta R distance
|
---|
| 232 | if (tempR < minR) {
|
---|
| 233 | minR = tempR;
|
---|
| 234 | j_min = j;
|
---|
| 235 | }
|
---|
| 236 | }
|
---|
| 237 | if (_measureFunction->do_cluster(particles[i],_currentAxes[j_min])) partitions[j_min].push_back(i);
|
---|
| 238 | }
|
---|
| 239 | return partitions;
|
---|
| 240 | }
|
---|
| 241 |
|
---|
| 242 | // Having found axes, assign each particle in particles to an axis, and return a set of jets.
|
---|
| 243 | // Each jet is the sum of particles closest to an axis (Njet = Naxes).
|
---|
| 244 | // TODO: Consider moving to MeasureFunction
|
---|
| 245 | std::vector<fastjet::PseudoJet> Njettiness::getJets(const std::vector<fastjet::PseudoJet> & particles) {
|
---|
| 246 |
|
---|
| 247 | std::vector<fastjet::PseudoJet> jets(_currentAxes.size());
|
---|
| 248 |
|
---|
| 249 | std::vector<std::list<int> > partition = getPartition(particles);
|
---|
| 250 | for (unsigned j = 0; j < partition.size(); ++j) {
|
---|
| 251 | std::list<int>::const_iterator it, itE;
|
---|
| 252 | for (it = partition[j].begin(), itE = partition[j].end(); it != itE; ++it) {
|
---|
| 253 | jets[j] += particles[*it];
|
---|
| 254 | }
|
---|
| 255 | }
|
---|
| 256 | return jets;
|
---|
| 257 | }
|
---|
| 258 |
|
---|
| 259 | } // namespace contrib
|
---|
| 260 |
|
---|
| 261 | FASTJET_END_NAMESPACE
|
---|