1 | // Nsubjettiness Package
|
---|
2 | // Questions/Comments? jthaler@jthaler.net
|
---|
3 | //
|
---|
4 | // Copyright (c) 2011-14
|
---|
5 | // Jesse Thaler, Ken Van Tilburg, Christopher K. Vermilion, and TJ Wilkason
|
---|
6 | //
|
---|
7 | // $Id: MeasureDefinition.cc 946 2016-06-14 19:11:27Z jthaler $
|
---|
8 | //----------------------------------------------------------------------
|
---|
9 | // This file is part of FastJet contrib.
|
---|
10 | //
|
---|
11 | // It is free software; you can redistribute it and/or modify it under
|
---|
12 | // the terms of the GNU General Public License as published by the
|
---|
13 | // Free Software Foundation; either version 2 of the License, or (at
|
---|
14 | // your option) any later version.
|
---|
15 | //
|
---|
16 | // It is distributed in the hope that it will be useful, but WITHOUT
|
---|
17 | // ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
|
---|
18 | // or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
|
---|
19 | // License for more details.
|
---|
20 | //
|
---|
21 | // You should have received a copy of the GNU General Public License
|
---|
22 | // along with this code. If not, see <http://www.gnu.org/licenses/>.
|
---|
23 | //----------------------------------------------------------------------
|
---|
24 |
|
---|
25 |
|
---|
26 | // #include "AxesRefiner.hh"
|
---|
27 | #include "MeasureDefinition.hh"
|
---|
28 |
|
---|
29 | #include <iomanip>
|
---|
30 |
|
---|
31 |
|
---|
32 | FASTJET_BEGIN_NAMESPACE // defined in fastjet/internal/base.hh
|
---|
33 |
|
---|
34 | namespace contrib {
|
---|
35 |
|
---|
36 | ///////
|
---|
37 | //
|
---|
38 | // Measure Function
|
---|
39 | //
|
---|
40 | ///////
|
---|
41 |
|
---|
42 |
|
---|
43 | //descriptions updated to include measure type
|
---|
44 | std::string DefaultMeasure::description() const {
|
---|
45 | std::stringstream stream;
|
---|
46 | stream << std::fixed << std::setprecision(2)
|
---|
47 | << "Default Measure (should not be used directly)";
|
---|
48 | return stream.str();
|
---|
49 | };
|
---|
50 |
|
---|
51 | std::string NormalizedMeasure::description() const {
|
---|
52 | std::stringstream stream;
|
---|
53 | stream << std::fixed << std::setprecision(2)
|
---|
54 | << "Normalized Measure (beta = " << _beta << ", R0 = " << _R0 << ")";
|
---|
55 | return stream.str();
|
---|
56 | };
|
---|
57 |
|
---|
58 | std::string UnnormalizedMeasure::description() const {
|
---|
59 | std::stringstream stream;
|
---|
60 | stream << std::fixed << std::setprecision(2)
|
---|
61 | << "Unnormalized Measure (beta = " << _beta << ", in GeV)";
|
---|
62 | return stream.str();
|
---|
63 | };
|
---|
64 |
|
---|
65 |
|
---|
66 | std::string NormalizedCutoffMeasure::description() const {
|
---|
67 | std::stringstream stream;
|
---|
68 | stream << std::fixed << std::setprecision(2)
|
---|
69 | << "Normalized Cutoff Measure (beta = " << _beta << ", R0 = " << _R0 << ", Rcut = " << _Rcutoff << ")";
|
---|
70 | return stream.str();
|
---|
71 | };
|
---|
72 |
|
---|
73 | std::string UnnormalizedCutoffMeasure::description() const {
|
---|
74 | std::stringstream stream;
|
---|
75 | stream << std::fixed << std::setprecision(2)
|
---|
76 | << "Unnormalized Cutoff Measure (beta = " << _beta << ", Rcut = " << _Rcutoff << ", in GeV)";
|
---|
77 | return stream.str();
|
---|
78 | };
|
---|
79 |
|
---|
80 | //std::string DeprecatedGeometricMeasure::description() const {
|
---|
81 | // std::stringstream stream;
|
---|
82 | // stream << std::fixed << std::setprecision(2)
|
---|
83 | // << "Deprecated Geometric Measure (beta = " << _jet_beta << ", in GeV)";
|
---|
84 | // return stream.str();
|
---|
85 | //};
|
---|
86 |
|
---|
87 | //std::string DeprecatedGeometricCutoffMeasure::description() const {
|
---|
88 | // std::stringstream stream;
|
---|
89 | // stream << std::fixed << std::setprecision(2)
|
---|
90 | // << "Deprecated Geometric Cutoff Measure (beta = " << _jet_beta << ", Rcut = " << _Rcutoff << ", in GeV)";
|
---|
91 | // return stream.str();
|
---|
92 | //};
|
---|
93 |
|
---|
94 | std::string ConicalMeasure::description() const {
|
---|
95 | std::stringstream stream;
|
---|
96 | stream << std::fixed << std::setprecision(2)
|
---|
97 | << "Conical Measure (beta = " << _beta << ", Rcut = " << _Rcutoff << ", in GeV)";
|
---|
98 | return stream.str();
|
---|
99 | };
|
---|
100 |
|
---|
101 | std::string OriginalGeometricMeasure::description() const {
|
---|
102 | std::stringstream stream;
|
---|
103 | stream << std::fixed << std::setprecision(2)
|
---|
104 | << "Original Geometric Measure (Rcut = " << _Rcutoff << ", in GeV)";
|
---|
105 | return stream.str();
|
---|
106 | };
|
---|
107 |
|
---|
108 | std::string ModifiedGeometricMeasure::description() const {
|
---|
109 | std::stringstream stream;
|
---|
110 | stream << std::fixed << std::setprecision(2)
|
---|
111 | << "Modified Geometric Measure (Rcut = " << _Rcutoff << ", in GeV)";
|
---|
112 | return stream.str();
|
---|
113 | };
|
---|
114 |
|
---|
115 | std::string ConicalGeometricMeasure::description() const {
|
---|
116 | std::stringstream stream;
|
---|
117 | stream << std::fixed << std::setprecision(2)
|
---|
118 | << "Conical Geometric Measure (beta = " << _jet_beta << ", gamma = " << _beam_gamma << ", Rcut = " << _Rcutoff << ", in GeV)";
|
---|
119 | return stream.str();
|
---|
120 | };
|
---|
121 |
|
---|
122 |
|
---|
123 | std::string XConeMeasure::description() const {
|
---|
124 | std::stringstream stream;
|
---|
125 | stream << std::fixed << std::setprecision(2)
|
---|
126 | << "XCone Measure (beta = " << _jet_beta << ", Rcut = " << _Rcutoff << ", in GeV)";
|
---|
127 | return stream.str();
|
---|
128 | };
|
---|
129 |
|
---|
130 | // Return all of the necessary TauComponents for specific input particles and axes
|
---|
131 | TauComponents MeasureDefinition::component_result(const std::vector<fastjet::PseudoJet>& particles,
|
---|
132 | const std::vector<fastjet::PseudoJet>& axes) const {
|
---|
133 |
|
---|
134 | // first find partition
|
---|
135 | TauPartition partition = get_partition(particles,axes);
|
---|
136 |
|
---|
137 | // then return result calculated from partition
|
---|
138 | return component_result_from_partition(partition,axes);
|
---|
139 | }
|
---|
140 |
|
---|
141 | TauPartition MeasureDefinition::get_partition(const std::vector<fastjet::PseudoJet>& particles,
|
---|
142 | const std::vector<fastjet::PseudoJet>& axes) const {
|
---|
143 |
|
---|
144 | TauPartition myPartition(axes.size());
|
---|
145 |
|
---|
146 | // Figures out the partiting of the input particles into the various jet pieces
|
---|
147 | // Based on which axis the parition is closest to
|
---|
148 | for (unsigned i = 0; i < particles.size(); i++) {
|
---|
149 |
|
---|
150 | // find minimum distance; start with beam (-1) for reference
|
---|
151 | int j_min = -1;
|
---|
152 | double minRsq;
|
---|
153 | if (has_beam()) minRsq = beam_distance_squared(particles[i]);
|
---|
154 | else minRsq = std::numeric_limits<double>::max(); // make it large value
|
---|
155 |
|
---|
156 |
|
---|
157 | // check to see which axis the particle is closest to
|
---|
158 | for (unsigned j = 0; j < axes.size(); j++) {
|
---|
159 | double tempRsq = jet_distance_squared(particles[i],axes[j]); // delta R distance
|
---|
160 |
|
---|
161 | if (tempRsq < minRsq) {
|
---|
162 | minRsq = tempRsq;
|
---|
163 | j_min = j;
|
---|
164 | }
|
---|
165 | }
|
---|
166 |
|
---|
167 | if (j_min == -1) {
|
---|
168 | assert(has_beam()); // should have beam for this to make sense.
|
---|
169 | myPartition.push_back_beam(particles[i],i);
|
---|
170 | } else {
|
---|
171 | myPartition.push_back_jet(j_min,particles[i],i);
|
---|
172 | }
|
---|
173 | }
|
---|
174 |
|
---|
175 | return myPartition;
|
---|
176 | }
|
---|
177 |
|
---|
178 | // Uses existing partition and calculates result
|
---|
179 | // TODO: Can we cache this for speed up when doing area subtraction?
|
---|
180 | TauComponents MeasureDefinition::component_result_from_partition(const TauPartition& partition,
|
---|
181 | const std::vector<fastjet::PseudoJet>& axes) const {
|
---|
182 |
|
---|
183 | std::vector<double> jetPieces(axes.size(), 0.0);
|
---|
184 | double beamPiece = 0.0;
|
---|
185 |
|
---|
186 | double tauDen = 0.0;
|
---|
187 | if (!has_denominator()) tauDen = 1.0; // if no denominator, then 1.0 for no normalization factor
|
---|
188 |
|
---|
189 | // first find jet pieces
|
---|
190 | for (unsigned j = 0; j < axes.size(); j++) {
|
---|
191 | std::vector<PseudoJet> thisPartition = partition.jet(j).constituents();
|
---|
192 | for (unsigned i = 0; i < thisPartition.size(); i++) {
|
---|
193 | jetPieces[j] += jet_numerator(thisPartition[i],axes[j]); //numerator jet piece
|
---|
194 | if (has_denominator()) tauDen += denominator(thisPartition[i]); // denominator
|
---|
195 | }
|
---|
196 | }
|
---|
197 |
|
---|
198 | // then find beam piece
|
---|
199 | if (has_beam()) {
|
---|
200 | std::vector<PseudoJet> beamPartition = partition.beam().constituents();
|
---|
201 |
|
---|
202 | for (unsigned i = 0; i < beamPartition.size(); i++) {
|
---|
203 | beamPiece += beam_numerator(beamPartition[i]); //numerator beam piece
|
---|
204 | if (has_denominator()) tauDen += denominator(beamPartition[i]); // denominator
|
---|
205 | }
|
---|
206 | }
|
---|
207 |
|
---|
208 | // create jets for storage in TauComponents
|
---|
209 | std::vector<PseudoJet> jets = partition.jets();
|
---|
210 |
|
---|
211 | return TauComponents(_tau_mode, jetPieces, beamPiece, tauDen, jets, axes);
|
---|
212 | }
|
---|
213 |
|
---|
214 | // new methods added to generalize energy and angle squared for different measure types
|
---|
215 | double DefaultMeasure::energy(const PseudoJet& jet) const {
|
---|
216 | double energy;
|
---|
217 | switch (_measure_type) {
|
---|
218 | case pt_R :
|
---|
219 | case perp_lorentz_dot :
|
---|
220 | energy = jet.perp();
|
---|
221 | break;
|
---|
222 | case E_theta :
|
---|
223 | case lorentz_dot :
|
---|
224 | energy = jet.e();
|
---|
225 | break;
|
---|
226 | default : {
|
---|
227 | assert(_measure_type == pt_R || _measure_type == E_theta || _measure_type == lorentz_dot || _measure_type == perp_lorentz_dot);
|
---|
228 | energy = std::numeric_limits<double>::quiet_NaN();
|
---|
229 | break;
|
---|
230 | }
|
---|
231 | }
|
---|
232 | return energy;
|
---|
233 | }
|
---|
234 |
|
---|
235 | double DefaultMeasure::angleSquared(const PseudoJet& jet1, const PseudoJet& jet2) const {
|
---|
236 | double pseudoRsquared;
|
---|
237 | switch(_measure_type) {
|
---|
238 | case pt_R : {
|
---|
239 | pseudoRsquared = jet1.squared_distance(jet2);
|
---|
240 | break;
|
---|
241 | }
|
---|
242 | case E_theta : {
|
---|
243 | // doesn't seem to be a fastjet built in for this
|
---|
244 | double dot = jet1.px()*jet2.px() + jet1.py()*jet2.py() + jet1.pz()*jet2.pz();
|
---|
245 | double norm1 = sqrt(jet1.px()*jet1.px() + jet1.py()*jet1.py() + jet1.pz()*jet1.pz());
|
---|
246 | double norm2 = sqrt(jet2.px()*jet2.px() + jet2.py()*jet2.py() + jet2.pz()*jet2.pz());
|
---|
247 |
|
---|
248 | double costheta = dot/(norm1 * norm2);
|
---|
249 | if (costheta > 1.0) costheta = 1.0; // Need to handle case of numerical overflow
|
---|
250 | double theta = acos(costheta);
|
---|
251 | pseudoRsquared = theta*theta;
|
---|
252 | break;
|
---|
253 | }
|
---|
254 | case lorentz_dot : {
|
---|
255 | double dotproduct = dot_product(jet1,jet2);
|
---|
256 | pseudoRsquared = 2.0 * dotproduct / (jet1.e() * jet2.e());
|
---|
257 | break;
|
---|
258 | }
|
---|
259 | case perp_lorentz_dot : {
|
---|
260 | PseudoJet lightJet = lightFrom(jet2); // assuming jet2 is the axis
|
---|
261 | double dotproduct = dot_product(jet1,lightJet);
|
---|
262 | pseudoRsquared = 2.0 * dotproduct / (lightJet.pt() * jet1.pt());
|
---|
263 | break;
|
---|
264 | }
|
---|
265 | default : {
|
---|
266 | assert(_measure_type == pt_R || _measure_type == E_theta || _measure_type == lorentz_dot || _measure_type == perp_lorentz_dot);
|
---|
267 | pseudoRsquared = std::numeric_limits<double>::quiet_NaN();
|
---|
268 | break;
|
---|
269 | }
|
---|
270 | }
|
---|
271 |
|
---|
272 | return pseudoRsquared;
|
---|
273 |
|
---|
274 | }
|
---|
275 |
|
---|
276 |
|
---|
277 | ///////
|
---|
278 | //
|
---|
279 | // Axes Refining
|
---|
280 | //
|
---|
281 | ///////
|
---|
282 |
|
---|
283 | // uses minimization of N-jettiness to continually update axes until convergence.
|
---|
284 | // The function returns the axes found at the (local) minimum
|
---|
285 | // This is the general axes refiner that can be used for a generic measure (but is
|
---|
286 | // overwritten in the case of the conical measure and the deprecated geometric measure)
|
---|
287 | std::vector<fastjet::PseudoJet> MeasureDefinition::get_one_pass_axes(int n_jets,
|
---|
288 | const std::vector <fastjet::PseudoJet> & particles,
|
---|
289 | const std::vector<fastjet::PseudoJet>& currentAxes,
|
---|
290 | int nAttempts,
|
---|
291 | double accuracy) const {
|
---|
292 |
|
---|
293 | assert(n_jets == (int)currentAxes.size());
|
---|
294 |
|
---|
295 | std::vector<fastjet::PseudoJet> seedAxes = currentAxes;
|
---|
296 |
|
---|
297 | std::vector<fastjet::PseudoJet> temp_axes(seedAxes.size(),fastjet::PseudoJet(0,0,0,0));
|
---|
298 | for (unsigned int k = 0; k < seedAxes.size(); k++) {
|
---|
299 | seedAxes[k] = lightFrom(seedAxes[k]) * seedAxes[k].E(); // making light-like, but keeping energy
|
---|
300 | }
|
---|
301 |
|
---|
302 | double seedTau = result(particles, seedAxes);
|
---|
303 |
|
---|
304 | std::vector<fastjet::PseudoJet> bestAxesSoFar = seedAxes;
|
---|
305 | double bestTauSoFar = seedTau;
|
---|
306 |
|
---|
307 | for (int i_att = 0; i_att < nAttempts; i_att++) {
|
---|
308 |
|
---|
309 | std::vector<fastjet::PseudoJet> newAxes(seedAxes.size(),fastjet::PseudoJet(0,0,0,0));
|
---|
310 | std::vector<fastjet::PseudoJet> summed_jets(seedAxes.size(), fastjet::PseudoJet(0,0,0,0));
|
---|
311 |
|
---|
312 | // find closest axis and assign to that
|
---|
313 | for (unsigned int i = 0; i < particles.size(); i++) {
|
---|
314 |
|
---|
315 | // start from unclustered beam measure
|
---|
316 | int minJ = -1;
|
---|
317 | double minDist = beam_distance_squared(particles[i]);
|
---|
318 |
|
---|
319 | // which axis am I closest to?
|
---|
320 | for (unsigned int j = 0; j < seedAxes.size(); j++) {
|
---|
321 | double tempDist = jet_distance_squared(particles[i],seedAxes[j]);
|
---|
322 | if (tempDist < minDist) {
|
---|
323 | minDist = tempDist;
|
---|
324 | minJ = j;
|
---|
325 | }
|
---|
326 | }
|
---|
327 |
|
---|
328 | // if not unclustered, then cluster
|
---|
329 | if (minJ != -1) {
|
---|
330 | summed_jets[minJ] += particles[i]; // keep track of energy to use later.
|
---|
331 | if (_useAxisScaling) {
|
---|
332 | double pseudoMomentum = dot_product(lightFrom(seedAxes[minJ]),particles[i]) + accuracy; // need small offset to avoid potential divide by zero issues
|
---|
333 | double axis_scaling = (double)jet_numerator(particles[i], seedAxes[minJ])/pseudoMomentum;
|
---|
334 |
|
---|
335 | newAxes[minJ] += particles[i]*axis_scaling;
|
---|
336 | }
|
---|
337 | }
|
---|
338 | }
|
---|
339 | if (!_useAxisScaling) newAxes = summed_jets;
|
---|
340 |
|
---|
341 | // convert the axes to LightLike and then back to PseudoJet
|
---|
342 | for (unsigned int k = 0; k < newAxes.size(); k++) {
|
---|
343 | if (newAxes[k].perp() > 0) {
|
---|
344 | newAxes[k] = lightFrom(newAxes[k]);
|
---|
345 | newAxes[k] *= summed_jets[k].E(); // scale by energy to get sensible result
|
---|
346 | }
|
---|
347 | }
|
---|
348 |
|
---|
349 | // calculate tau on new axes
|
---|
350 | double newTau = result(particles, newAxes);
|
---|
351 |
|
---|
352 | // find the smallest value of tau (and the corresponding axes) so far
|
---|
353 | if (newTau < bestTauSoFar) {
|
---|
354 | bestAxesSoFar = newAxes;
|
---|
355 | bestTauSoFar = newTau;
|
---|
356 | }
|
---|
357 |
|
---|
358 | if (fabs(newTau - seedTau) < accuracy) {// close enough for jazz
|
---|
359 | seedAxes = newAxes;
|
---|
360 | seedTau = newTau;
|
---|
361 | break;
|
---|
362 | }
|
---|
363 |
|
---|
364 | seedAxes = newAxes;
|
---|
365 | seedTau = newTau;
|
---|
366 |
|
---|
367 | }
|
---|
368 |
|
---|
369 | // return the axes corresponding to the smallest tau found throughout all iterations
|
---|
370 | // this is to prevent the minimization from returning a non-minimized of tau due to potential oscillations around the minimum
|
---|
371 | return bestAxesSoFar;
|
---|
372 |
|
---|
373 | }
|
---|
374 |
|
---|
375 |
|
---|
376 | // One pass minimization for the DefaultMeasure
|
---|
377 |
|
---|
378 | // Given starting axes, update to find better axes by using Kmeans clustering around the old axes
|
---|
379 | template <int N>
|
---|
380 | std::vector<LightLikeAxis> DefaultMeasure::UpdateAxesFast(const std::vector <LightLikeAxis> & old_axes,
|
---|
381 | const std::vector <fastjet::PseudoJet> & inputJets,
|
---|
382 | double accuracy
|
---|
383 | ) const {
|
---|
384 | assert(old_axes.size() == N);
|
---|
385 |
|
---|
386 | // some storage, declared static to save allocation/re-allocation costs
|
---|
387 | static LightLikeAxis new_axes[N];
|
---|
388 | static fastjet::PseudoJet new_jets[N];
|
---|
389 | for (int n = 0; n < N; ++n) {
|
---|
390 | new_axes[n].reset(0.0,0.0,0.0,0.0);
|
---|
391 | new_jets[n].reset_momentum(0.0,0.0,0.0,0.0);
|
---|
392 | }
|
---|
393 |
|
---|
394 | double precision = accuracy; //TODO: actually cascade this in
|
---|
395 |
|
---|
396 | /////////////// Assignment Step //////////////////////////////////////////////////////////
|
---|
397 | std::vector<int> assignment_index(inputJets.size());
|
---|
398 | int k_assign = -1;
|
---|
399 |
|
---|
400 | for (unsigned i = 0; i < inputJets.size(); i++){
|
---|
401 | double smallestDist = std::numeric_limits<double>::max(); //large number
|
---|
402 | for (int k = 0; k < N; k++) {
|
---|
403 | double thisDist = old_axes[k].DistanceSq(inputJets[i]);
|
---|
404 | if (thisDist < smallestDist) {
|
---|
405 | smallestDist = thisDist;
|
---|
406 | k_assign = k;
|
---|
407 | }
|
---|
408 | }
|
---|
409 | if (smallestDist > sq(_Rcutoff)) {k_assign = -1;}
|
---|
410 | assignment_index[i] = k_assign;
|
---|
411 | }
|
---|
412 |
|
---|
413 | //////////////// Update Step /////////////////////////////////////////////////////////////
|
---|
414 | double distPhi, old_dist;
|
---|
415 | for (unsigned i = 0; i < inputJets.size(); i++) {
|
---|
416 | int old_jet_i = assignment_index[i];
|
---|
417 | if (old_jet_i == -1) {continue;}
|
---|
418 |
|
---|
419 | const fastjet::PseudoJet& inputJet_i = inputJets[i];
|
---|
420 | LightLikeAxis& new_axis_i = new_axes[old_jet_i];
|
---|
421 | double inputPhi_i = inputJet_i.phi();
|
---|
422 | double inputRap_i = inputJet_i.rap();
|
---|
423 |
|
---|
424 | // optimize pow() call
|
---|
425 | // add noise (the precision term) to make sure we don't divide by zero
|
---|
426 | if (_beta == 1.0) {
|
---|
427 | double DR = std::sqrt(sq(precision) + old_axes[old_jet_i].DistanceSq(inputJet_i));
|
---|
428 | old_dist = 1.0/DR;
|
---|
429 | } else if (_beta == 2.0) {
|
---|
430 | old_dist = 1.0;
|
---|
431 | } else if (_beta == 0.0) {
|
---|
432 | double DRSq = sq(precision) + old_axes[old_jet_i].DistanceSq(inputJet_i);
|
---|
433 | old_dist = 1.0/DRSq;
|
---|
434 | } else {
|
---|
435 | old_dist = sq(precision) + old_axes[old_jet_i].DistanceSq(inputJet_i);
|
---|
436 | old_dist = std::pow(old_dist, (0.5*_beta-1.0));
|
---|
437 | }
|
---|
438 |
|
---|
439 | // TODO: Put some of these addition functions into light-like axes
|
---|
440 | // rapidity sum
|
---|
441 | new_axis_i.set_rap(new_axis_i.rap() + inputJet_i.perp() * inputRap_i * old_dist);
|
---|
442 | // phi sum
|
---|
443 | distPhi = inputPhi_i - old_axes[old_jet_i].phi();
|
---|
444 | if (fabs(distPhi) <= M_PI){
|
---|
445 | new_axis_i.set_phi( new_axis_i.phi() + inputJet_i.perp() * inputPhi_i * old_dist );
|
---|
446 | } else if (distPhi > M_PI) {
|
---|
447 | new_axis_i.set_phi( new_axis_i.phi() + inputJet_i.perp() * (-2*M_PI + inputPhi_i) * old_dist );
|
---|
448 | } else if (distPhi < -M_PI) {
|
---|
449 | new_axis_i.set_phi( new_axis_i.phi() + inputJet_i.perp() * (+2*M_PI + inputPhi_i) * old_dist );
|
---|
450 | }
|
---|
451 | // weights sum
|
---|
452 | new_axis_i.set_weight( new_axis_i.weight() + inputJet_i.perp() * old_dist );
|
---|
453 | // momentum magnitude sum
|
---|
454 | new_jets[old_jet_i] += inputJet_i;
|
---|
455 | }
|
---|
456 | // normalize sums
|
---|
457 | for (int k = 0; k < N; k++) {
|
---|
458 | if (new_axes[k].weight() == 0) {
|
---|
459 | // no particles were closest to this axis! Return to old axis instead of (0,0,0,0)
|
---|
460 | new_axes[k] = old_axes[k];
|
---|
461 | } else {
|
---|
462 | new_axes[k].set_rap( new_axes[k].rap() / new_axes[k].weight() );
|
---|
463 | new_axes[k].set_phi( new_axes[k].phi() / new_axes[k].weight() );
|
---|
464 | new_axes[k].set_phi( std::fmod(new_axes[k].phi() + 2*M_PI, 2*M_PI) );
|
---|
465 | new_axes[k].set_mom( std::sqrt(new_jets[k].modp2()) );
|
---|
466 | }
|
---|
467 | }
|
---|
468 | std::vector<LightLikeAxis> new_axes_vec(N);
|
---|
469 | for (unsigned k = 0; k < N; ++k) new_axes_vec[k] = new_axes[k];
|
---|
470 | return new_axes_vec;
|
---|
471 | }
|
---|
472 |
|
---|
473 | // Given N starting axes, this function updates all axes to find N better axes.
|
---|
474 | // (This is just a wrapper for the templated version above.)
|
---|
475 | // TODO: Consider removing this in a future version
|
---|
476 | std::vector<LightLikeAxis> DefaultMeasure::UpdateAxes(const std::vector <LightLikeAxis> & old_axes,
|
---|
477 | const std::vector <fastjet::PseudoJet> & inputJets,
|
---|
478 | double accuracy) const {
|
---|
479 | int N = old_axes.size();
|
---|
480 | switch (N) {
|
---|
481 | case 1: return UpdateAxesFast<1>(old_axes, inputJets, accuracy);
|
---|
482 | case 2: return UpdateAxesFast<2>(old_axes, inputJets, accuracy);
|
---|
483 | case 3: return UpdateAxesFast<3>(old_axes, inputJets, accuracy);
|
---|
484 | case 4: return UpdateAxesFast<4>(old_axes, inputJets, accuracy);
|
---|
485 | case 5: return UpdateAxesFast<5>(old_axes, inputJets, accuracy);
|
---|
486 | case 6: return UpdateAxesFast<6>(old_axes, inputJets, accuracy);
|
---|
487 | case 7: return UpdateAxesFast<7>(old_axes, inputJets, accuracy);
|
---|
488 | case 8: return UpdateAxesFast<8>(old_axes, inputJets, accuracy);
|
---|
489 | case 9: return UpdateAxesFast<9>(old_axes, inputJets, accuracy);
|
---|
490 | case 10: return UpdateAxesFast<10>(old_axes, inputJets, accuracy);
|
---|
491 | case 11: return UpdateAxesFast<11>(old_axes, inputJets, accuracy);
|
---|
492 | case 12: return UpdateAxesFast<12>(old_axes, inputJets, accuracy);
|
---|
493 | case 13: return UpdateAxesFast<13>(old_axes, inputJets, accuracy);
|
---|
494 | case 14: return UpdateAxesFast<14>(old_axes, inputJets, accuracy);
|
---|
495 | case 15: return UpdateAxesFast<15>(old_axes, inputJets, accuracy);
|
---|
496 | case 16: return UpdateAxesFast<16>(old_axes, inputJets, accuracy);
|
---|
497 | case 17: return UpdateAxesFast<17>(old_axes, inputJets, accuracy);
|
---|
498 | case 18: return UpdateAxesFast<18>(old_axes, inputJets, accuracy);
|
---|
499 | case 19: return UpdateAxesFast<19>(old_axes, inputJets, accuracy);
|
---|
500 | case 20: return UpdateAxesFast<20>(old_axes, inputJets, accuracy);
|
---|
501 | default: std::cout << "N-jettiness is hard-coded to only allow up to 20 jets!" << std::endl;
|
---|
502 | return std::vector<LightLikeAxis>();
|
---|
503 | }
|
---|
504 |
|
---|
505 | }
|
---|
506 |
|
---|
507 | // uses minimization of N-jettiness to continually update axes until convergence.
|
---|
508 | // The function returns the axes found at the (local) minimum
|
---|
509 | std::vector<fastjet::PseudoJet> DefaultMeasure::get_one_pass_axes(int n_jets,
|
---|
510 | const std::vector <fastjet::PseudoJet> & inputJets,
|
---|
511 | const std::vector<fastjet::PseudoJet>& seedAxes,
|
---|
512 | int nAttempts,
|
---|
513 | double accuracy
|
---|
514 | ) const {
|
---|
515 |
|
---|
516 | // if the measure type doesn't use the pt_R metric, then the standard minimization scheme should be used
|
---|
517 | if (_measure_type != pt_R) {
|
---|
518 | return MeasureDefinition::get_one_pass_axes(n_jets, inputJets, seedAxes, nAttempts, accuracy);
|
---|
519 | }
|
---|
520 |
|
---|
521 | // convert from PseudoJets to LightLikeAxes
|
---|
522 | std::vector< LightLikeAxis > old_axes(n_jets, LightLikeAxis(0,0,0,0));
|
---|
523 | for (int k = 0; k < n_jets; k++) {
|
---|
524 | old_axes[k].set_rap( seedAxes[k].rap() );
|
---|
525 | old_axes[k].set_phi( seedAxes[k].phi() );
|
---|
526 | old_axes[k].set_mom( seedAxes[k].modp() );
|
---|
527 | }
|
---|
528 |
|
---|
529 | // Find new axes by iterating (only one pass here)
|
---|
530 | std::vector< LightLikeAxis > new_axes(n_jets, LightLikeAxis(0,0,0,0));
|
---|
531 | double cmp = std::numeric_limits<double>::max(); //large number
|
---|
532 | int h = 0;
|
---|
533 |
|
---|
534 | while (cmp > accuracy && h < nAttempts) { // Keep updating axes until near-convergence or too many update steps
|
---|
535 | cmp = 0.0;
|
---|
536 | h++;
|
---|
537 | new_axes = UpdateAxes(old_axes, inputJets,accuracy); // Update axes
|
---|
538 | for (int k = 0; k < n_jets; k++) {
|
---|
539 | cmp += old_axes[k].Distance(new_axes[k]);
|
---|
540 | }
|
---|
541 | cmp = cmp / ((double) n_jets);
|
---|
542 | old_axes = new_axes;
|
---|
543 | }
|
---|
544 |
|
---|
545 | // Convert from internal LightLikeAxes to PseudoJet
|
---|
546 | std::vector<fastjet::PseudoJet> outputAxes;
|
---|
547 | for (int k = 0; k < n_jets; k++) {
|
---|
548 | fastjet::PseudoJet temp = old_axes[k].ConvertToPseudoJet();
|
---|
549 | outputAxes.push_back(temp);
|
---|
550 | }
|
---|
551 |
|
---|
552 | // this is used to debug the minimization routine to make sure that it works.
|
---|
553 | bool do_debug = false;
|
---|
554 | if (do_debug) {
|
---|
555 | // get this information to make sure that minimization is working properly
|
---|
556 | double seed_tau = result(inputJets, seedAxes);
|
---|
557 | double outputTau = result(inputJets, outputAxes);
|
---|
558 | assert(outputTau <= seed_tau);
|
---|
559 | }
|
---|
560 |
|
---|
561 | return outputAxes;
|
---|
562 | }
|
---|
563 |
|
---|
564 | //// One-pass minimization for the Deprecated Geometric Measure
|
---|
565 | //// Uses minimization of the geometric distance in order to find the minimum axes.
|
---|
566 | //// It continually updates until it reaches convergence or it reaches the maximum number of attempts.
|
---|
567 | //// This is essentially the same as a stable cone finder.
|
---|
568 | //std::vector<fastjet::PseudoJet> DeprecatedGeometricCutoffMeasure::get_one_pass_axes(int n_jets,
|
---|
569 | // const std::vector <fastjet::PseudoJet> & particles,
|
---|
570 | // const std::vector<fastjet::PseudoJet>& currentAxes,
|
---|
571 | // int nAttempts,
|
---|
572 | // double accuracy) const {
|
---|
573 | //
|
---|
574 | // assert(n_jets == (int)currentAxes.size()); //added int casting to get rid of compiler warning
|
---|
575 | //
|
---|
576 | // std::vector<fastjet::PseudoJet> seedAxes = currentAxes;
|
---|
577 | // double seedTau = result(particles, seedAxes);
|
---|
578 | //
|
---|
579 | // for (int i = 0; i < nAttempts; i++) {
|
---|
580 | //
|
---|
581 | // std::vector<fastjet::PseudoJet> newAxes(seedAxes.size(),fastjet::PseudoJet(0,0,0,0));
|
---|
582 | //
|
---|
583 | // // find closest axis and assign to that
|
---|
584 | // for (unsigned int i = 0; i < particles.size(); i++) {
|
---|
585 | //
|
---|
586 | // // start from unclustered beam measure
|
---|
587 | // int minJ = -1;
|
---|
588 | // double minDist = beam_distance_squared(particles[i]);
|
---|
589 | //
|
---|
590 | // // which axis am I closest to?
|
---|
591 | // for (unsigned int j = 0; j < seedAxes.size(); j++) {
|
---|
592 | // double tempDist = jet_distance_squared(particles[i],seedAxes[j]);
|
---|
593 | // if (tempDist < minDist) {
|
---|
594 | // minDist = tempDist;
|
---|
595 | // minJ = j;
|
---|
596 | // }
|
---|
597 | // }
|
---|
598 | //
|
---|
599 | // // if not unclustered, then cluster
|
---|
600 | // if (minJ != -1) newAxes[minJ] += particles[i];
|
---|
601 | // }
|
---|
602 | //
|
---|
603 | // // calculate tau on new axes
|
---|
604 | // seedAxes = newAxes;
|
---|
605 | // double tempTau = result(particles, newAxes);
|
---|
606 | //
|
---|
607 | // // close enough to stop?
|
---|
608 | // if (fabs(tempTau - seedTau) < accuracy) break;
|
---|
609 | // seedTau = tempTau;
|
---|
610 | // }
|
---|
611 | //
|
---|
612 | // return seedAxes;
|
---|
613 | //}
|
---|
614 |
|
---|
615 |
|
---|
616 | // Go from internal LightLikeAxis to PseudoJet
|
---|
617 | fastjet::PseudoJet LightLikeAxis::ConvertToPseudoJet() {
|
---|
618 | double px, py, pz, E;
|
---|
619 | E = _mom;
|
---|
620 | pz = (std::exp(2.0*_rap) - 1.0) / (std::exp(2.0*_rap) + 1.0) * E;
|
---|
621 | px = std::cos(_phi) * std::sqrt( std::pow(E,2) - std::pow(pz,2) );
|
---|
622 | py = std::sin(_phi) * std::sqrt( std::pow(E,2) - std::pow(pz,2) );
|
---|
623 | return fastjet::PseudoJet(px,py,pz,E);
|
---|
624 | }
|
---|
625 |
|
---|
626 | } //namespace contrib
|
---|
627 |
|
---|
628 | FASTJET_END_NAMESPACE
|
---|