[973b92a] | 1 | // Nsubjettiness Package
|
---|
| 2 | // Questions/Comments? jthaler@jthaler.net
|
---|
| 3 | //
|
---|
| 4 | // Copyright (c) 2011-14
|
---|
| 5 | // Jesse Thaler, Ken Van Tilburg, Christopher K. Vermilion, and TJ Wilkason
|
---|
| 6 | //
|
---|
[1d208a2] | 7 | // $Id: MeasureDefinition.cc 946 2016-06-14 19:11:27Z jthaler $
|
---|
[973b92a] | 8 | //----------------------------------------------------------------------
|
---|
| 9 | // This file is part of FastJet contrib.
|
---|
| 10 | //
|
---|
| 11 | // It is free software; you can redistribute it and/or modify it under
|
---|
| 12 | // the terms of the GNU General Public License as published by the
|
---|
| 13 | // Free Software Foundation; either version 2 of the License, or (at
|
---|
| 14 | // your option) any later version.
|
---|
| 15 | //
|
---|
| 16 | // It is distributed in the hope that it will be useful, but WITHOUT
|
---|
| 17 | // ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
|
---|
| 18 | // or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
|
---|
| 19 | // License for more details.
|
---|
| 20 | //
|
---|
| 21 | // You should have received a copy of the GNU General Public License
|
---|
| 22 | // along with this code. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 23 | //----------------------------------------------------------------------
|
---|
| 24 |
|
---|
| 25 |
|
---|
| 26 | // #include "AxesRefiner.hh"
|
---|
| 27 | #include "MeasureDefinition.hh"
|
---|
| 28 |
|
---|
| 29 | #include <iomanip>
|
---|
| 30 |
|
---|
| 31 |
|
---|
| 32 | FASTJET_BEGIN_NAMESPACE // defined in fastjet/internal/base.hh
|
---|
| 33 |
|
---|
| 34 | namespace contrib {
|
---|
| 35 |
|
---|
| 36 | ///////
|
---|
| 37 | //
|
---|
| 38 | // Measure Function
|
---|
| 39 | //
|
---|
| 40 | ///////
|
---|
| 41 |
|
---|
| 42 |
|
---|
| 43 | //descriptions updated to include measure type
|
---|
| 44 | std::string DefaultMeasure::description() const {
|
---|
| 45 | std::stringstream stream;
|
---|
| 46 | stream << std::fixed << std::setprecision(2)
|
---|
| 47 | << "Default Measure (should not be used directly)";
|
---|
| 48 | return stream.str();
|
---|
| 49 | };
|
---|
| 50 |
|
---|
| 51 | std::string NormalizedMeasure::description() const {
|
---|
| 52 | std::stringstream stream;
|
---|
| 53 | stream << std::fixed << std::setprecision(2)
|
---|
| 54 | << "Normalized Measure (beta = " << _beta << ", R0 = " << _R0 << ")";
|
---|
| 55 | return stream.str();
|
---|
| 56 | };
|
---|
| 57 |
|
---|
| 58 | std::string UnnormalizedMeasure::description() const {
|
---|
| 59 | std::stringstream stream;
|
---|
| 60 | stream << std::fixed << std::setprecision(2)
|
---|
| 61 | << "Unnormalized Measure (beta = " << _beta << ", in GeV)";
|
---|
| 62 | return stream.str();
|
---|
| 63 | };
|
---|
| 64 |
|
---|
| 65 |
|
---|
| 66 | std::string NormalizedCutoffMeasure::description() const {
|
---|
| 67 | std::stringstream stream;
|
---|
| 68 | stream << std::fixed << std::setprecision(2)
|
---|
| 69 | << "Normalized Cutoff Measure (beta = " << _beta << ", R0 = " << _R0 << ", Rcut = " << _Rcutoff << ")";
|
---|
| 70 | return stream.str();
|
---|
| 71 | };
|
---|
| 72 |
|
---|
| 73 | std::string UnnormalizedCutoffMeasure::description() const {
|
---|
| 74 | std::stringstream stream;
|
---|
| 75 | stream << std::fixed << std::setprecision(2)
|
---|
| 76 | << "Unnormalized Cutoff Measure (beta = " << _beta << ", Rcut = " << _Rcutoff << ", in GeV)";
|
---|
| 77 | return stream.str();
|
---|
| 78 | };
|
---|
| 79 |
|
---|
| 80 | //std::string DeprecatedGeometricMeasure::description() const {
|
---|
| 81 | // std::stringstream stream;
|
---|
| 82 | // stream << std::fixed << std::setprecision(2)
|
---|
| 83 | // << "Deprecated Geometric Measure (beta = " << _jet_beta << ", in GeV)";
|
---|
| 84 | // return stream.str();
|
---|
| 85 | //};
|
---|
| 86 |
|
---|
| 87 | //std::string DeprecatedGeometricCutoffMeasure::description() const {
|
---|
| 88 | // std::stringstream stream;
|
---|
| 89 | // stream << std::fixed << std::setprecision(2)
|
---|
| 90 | // << "Deprecated Geometric Cutoff Measure (beta = " << _jet_beta << ", Rcut = " << _Rcutoff << ", in GeV)";
|
---|
| 91 | // return stream.str();
|
---|
| 92 | //};
|
---|
| 93 |
|
---|
| 94 | std::string ConicalMeasure::description() const {
|
---|
| 95 | std::stringstream stream;
|
---|
| 96 | stream << std::fixed << std::setprecision(2)
|
---|
| 97 | << "Conical Measure (beta = " << _beta << ", Rcut = " << _Rcutoff << ", in GeV)";
|
---|
| 98 | return stream.str();
|
---|
| 99 | };
|
---|
| 100 |
|
---|
| 101 | std::string OriginalGeometricMeasure::description() const {
|
---|
| 102 | std::stringstream stream;
|
---|
| 103 | stream << std::fixed << std::setprecision(2)
|
---|
| 104 | << "Original Geometric Measure (Rcut = " << _Rcutoff << ", in GeV)";
|
---|
| 105 | return stream.str();
|
---|
| 106 | };
|
---|
| 107 |
|
---|
| 108 | std::string ModifiedGeometricMeasure::description() const {
|
---|
| 109 | std::stringstream stream;
|
---|
| 110 | stream << std::fixed << std::setprecision(2)
|
---|
| 111 | << "Modified Geometric Measure (Rcut = " << _Rcutoff << ", in GeV)";
|
---|
| 112 | return stream.str();
|
---|
| 113 | };
|
---|
| 114 |
|
---|
| 115 | std::string ConicalGeometricMeasure::description() const {
|
---|
| 116 | std::stringstream stream;
|
---|
| 117 | stream << std::fixed << std::setprecision(2)
|
---|
| 118 | << "Conical Geometric Measure (beta = " << _jet_beta << ", gamma = " << _beam_gamma << ", Rcut = " << _Rcutoff << ", in GeV)";
|
---|
| 119 | return stream.str();
|
---|
| 120 | };
|
---|
| 121 |
|
---|
| 122 |
|
---|
| 123 | std::string XConeMeasure::description() const {
|
---|
| 124 | std::stringstream stream;
|
---|
| 125 | stream << std::fixed << std::setprecision(2)
|
---|
| 126 | << "XCone Measure (beta = " << _jet_beta << ", Rcut = " << _Rcutoff << ", in GeV)";
|
---|
| 127 | return stream.str();
|
---|
| 128 | };
|
---|
| 129 |
|
---|
| 130 | // Return all of the necessary TauComponents for specific input particles and axes
|
---|
| 131 | TauComponents MeasureDefinition::component_result(const std::vector<fastjet::PseudoJet>& particles,
|
---|
| 132 | const std::vector<fastjet::PseudoJet>& axes) const {
|
---|
| 133 |
|
---|
| 134 | // first find partition
|
---|
| 135 | TauPartition partition = get_partition(particles,axes);
|
---|
| 136 |
|
---|
| 137 | // then return result calculated from partition
|
---|
| 138 | return component_result_from_partition(partition,axes);
|
---|
| 139 | }
|
---|
| 140 |
|
---|
| 141 | TauPartition MeasureDefinition::get_partition(const std::vector<fastjet::PseudoJet>& particles,
|
---|
| 142 | const std::vector<fastjet::PseudoJet>& axes) const {
|
---|
| 143 |
|
---|
| 144 | TauPartition myPartition(axes.size());
|
---|
| 145 |
|
---|
| 146 | // Figures out the partiting of the input particles into the various jet pieces
|
---|
| 147 | // Based on which axis the parition is closest to
|
---|
| 148 | for (unsigned i = 0; i < particles.size(); i++) {
|
---|
| 149 |
|
---|
| 150 | // find minimum distance; start with beam (-1) for reference
|
---|
| 151 | int j_min = -1;
|
---|
| 152 | double minRsq;
|
---|
| 153 | if (has_beam()) minRsq = beam_distance_squared(particles[i]);
|
---|
| 154 | else minRsq = std::numeric_limits<double>::max(); // make it large value
|
---|
| 155 |
|
---|
| 156 |
|
---|
| 157 | // check to see which axis the particle is closest to
|
---|
| 158 | for (unsigned j = 0; j < axes.size(); j++) {
|
---|
| 159 | double tempRsq = jet_distance_squared(particles[i],axes[j]); // delta R distance
|
---|
| 160 |
|
---|
| 161 | if (tempRsq < minRsq) {
|
---|
| 162 | minRsq = tempRsq;
|
---|
| 163 | j_min = j;
|
---|
| 164 | }
|
---|
| 165 | }
|
---|
| 166 |
|
---|
| 167 | if (j_min == -1) {
|
---|
| 168 | assert(has_beam()); // should have beam for this to make sense.
|
---|
| 169 | myPartition.push_back_beam(particles[i],i);
|
---|
| 170 | } else {
|
---|
| 171 | myPartition.push_back_jet(j_min,particles[i],i);
|
---|
| 172 | }
|
---|
| 173 | }
|
---|
| 174 |
|
---|
| 175 | return myPartition;
|
---|
| 176 | }
|
---|
| 177 |
|
---|
| 178 | // Uses existing partition and calculates result
|
---|
| 179 | // TODO: Can we cache this for speed up when doing area subtraction?
|
---|
| 180 | TauComponents MeasureDefinition::component_result_from_partition(const TauPartition& partition,
|
---|
| 181 | const std::vector<fastjet::PseudoJet>& axes) const {
|
---|
| 182 |
|
---|
| 183 | std::vector<double> jetPieces(axes.size(), 0.0);
|
---|
| 184 | double beamPiece = 0.0;
|
---|
| 185 |
|
---|
| 186 | double tauDen = 0.0;
|
---|
| 187 | if (!has_denominator()) tauDen = 1.0; // if no denominator, then 1.0 for no normalization factor
|
---|
| 188 |
|
---|
| 189 | // first find jet pieces
|
---|
| 190 | for (unsigned j = 0; j < axes.size(); j++) {
|
---|
| 191 | std::vector<PseudoJet> thisPartition = partition.jet(j).constituents();
|
---|
| 192 | for (unsigned i = 0; i < thisPartition.size(); i++) {
|
---|
| 193 | jetPieces[j] += jet_numerator(thisPartition[i],axes[j]); //numerator jet piece
|
---|
| 194 | if (has_denominator()) tauDen += denominator(thisPartition[i]); // denominator
|
---|
| 195 | }
|
---|
| 196 | }
|
---|
| 197 |
|
---|
| 198 | // then find beam piece
|
---|
| 199 | if (has_beam()) {
|
---|
| 200 | std::vector<PseudoJet> beamPartition = partition.beam().constituents();
|
---|
| 201 |
|
---|
| 202 | for (unsigned i = 0; i < beamPartition.size(); i++) {
|
---|
| 203 | beamPiece += beam_numerator(beamPartition[i]); //numerator beam piece
|
---|
| 204 | if (has_denominator()) tauDen += denominator(beamPartition[i]); // denominator
|
---|
| 205 | }
|
---|
| 206 | }
|
---|
| 207 |
|
---|
| 208 | // create jets for storage in TauComponents
|
---|
| 209 | std::vector<PseudoJet> jets = partition.jets();
|
---|
| 210 |
|
---|
| 211 | return TauComponents(_tau_mode, jetPieces, beamPiece, tauDen, jets, axes);
|
---|
| 212 | }
|
---|
| 213 |
|
---|
| 214 | // new methods added to generalize energy and angle squared for different measure types
|
---|
| 215 | double DefaultMeasure::energy(const PseudoJet& jet) const {
|
---|
| 216 | double energy;
|
---|
| 217 | switch (_measure_type) {
|
---|
| 218 | case pt_R :
|
---|
| 219 | case perp_lorentz_dot :
|
---|
| 220 | energy = jet.perp();
|
---|
| 221 | break;
|
---|
| 222 | case E_theta :
|
---|
| 223 | case lorentz_dot :
|
---|
| 224 | energy = jet.e();
|
---|
| 225 | break;
|
---|
| 226 | default : {
|
---|
| 227 | assert(_measure_type == pt_R || _measure_type == E_theta || _measure_type == lorentz_dot || _measure_type == perp_lorentz_dot);
|
---|
| 228 | energy = std::numeric_limits<double>::quiet_NaN();
|
---|
| 229 | break;
|
---|
| 230 | }
|
---|
| 231 | }
|
---|
| 232 | return energy;
|
---|
| 233 | }
|
---|
| 234 |
|
---|
| 235 | double DefaultMeasure::angleSquared(const PseudoJet& jet1, const PseudoJet& jet2) const {
|
---|
| 236 | double pseudoRsquared;
|
---|
| 237 | switch(_measure_type) {
|
---|
| 238 | case pt_R : {
|
---|
| 239 | pseudoRsquared = jet1.squared_distance(jet2);
|
---|
| 240 | break;
|
---|
| 241 | }
|
---|
| 242 | case E_theta : {
|
---|
| 243 | // doesn't seem to be a fastjet built in for this
|
---|
| 244 | double dot = jet1.px()*jet2.px() + jet1.py()*jet2.py() + jet1.pz()*jet2.pz();
|
---|
| 245 | double norm1 = sqrt(jet1.px()*jet1.px() + jet1.py()*jet1.py() + jet1.pz()*jet1.pz());
|
---|
| 246 | double norm2 = sqrt(jet2.px()*jet2.px() + jet2.py()*jet2.py() + jet2.pz()*jet2.pz());
|
---|
| 247 |
|
---|
| 248 | double costheta = dot/(norm1 * norm2);
|
---|
| 249 | if (costheta > 1.0) costheta = 1.0; // Need to handle case of numerical overflow
|
---|
| 250 | double theta = acos(costheta);
|
---|
| 251 | pseudoRsquared = theta*theta;
|
---|
| 252 | break;
|
---|
| 253 | }
|
---|
| 254 | case lorentz_dot : {
|
---|
| 255 | double dotproduct = dot_product(jet1,jet2);
|
---|
| 256 | pseudoRsquared = 2.0 * dotproduct / (jet1.e() * jet2.e());
|
---|
| 257 | break;
|
---|
| 258 | }
|
---|
| 259 | case perp_lorentz_dot : {
|
---|
| 260 | PseudoJet lightJet = lightFrom(jet2); // assuming jet2 is the axis
|
---|
| 261 | double dotproduct = dot_product(jet1,lightJet);
|
---|
| 262 | pseudoRsquared = 2.0 * dotproduct / (lightJet.pt() * jet1.pt());
|
---|
| 263 | break;
|
---|
| 264 | }
|
---|
| 265 | default : {
|
---|
| 266 | assert(_measure_type == pt_R || _measure_type == E_theta || _measure_type == lorentz_dot || _measure_type == perp_lorentz_dot);
|
---|
| 267 | pseudoRsquared = std::numeric_limits<double>::quiet_NaN();
|
---|
| 268 | break;
|
---|
| 269 | }
|
---|
| 270 | }
|
---|
| 271 |
|
---|
| 272 | return pseudoRsquared;
|
---|
| 273 |
|
---|
| 274 | }
|
---|
| 275 |
|
---|
| 276 |
|
---|
| 277 | ///////
|
---|
| 278 | //
|
---|
| 279 | // Axes Refining
|
---|
| 280 | //
|
---|
| 281 | ///////
|
---|
| 282 |
|
---|
| 283 | // uses minimization of N-jettiness to continually update axes until convergence.
|
---|
| 284 | // The function returns the axes found at the (local) minimum
|
---|
| 285 | // This is the general axes refiner that can be used for a generic measure (but is
|
---|
| 286 | // overwritten in the case of the conical measure and the deprecated geometric measure)
|
---|
| 287 | std::vector<fastjet::PseudoJet> MeasureDefinition::get_one_pass_axes(int n_jets,
|
---|
| 288 | const std::vector <fastjet::PseudoJet> & particles,
|
---|
| 289 | const std::vector<fastjet::PseudoJet>& currentAxes,
|
---|
| 290 | int nAttempts,
|
---|
| 291 | double accuracy) const {
|
---|
| 292 |
|
---|
| 293 | assert(n_jets == (int)currentAxes.size());
|
---|
| 294 |
|
---|
| 295 | std::vector<fastjet::PseudoJet> seedAxes = currentAxes;
|
---|
| 296 |
|
---|
| 297 | std::vector<fastjet::PseudoJet> temp_axes(seedAxes.size(),fastjet::PseudoJet(0,0,0,0));
|
---|
| 298 | for (unsigned int k = 0; k < seedAxes.size(); k++) {
|
---|
| 299 | seedAxes[k] = lightFrom(seedAxes[k]) * seedAxes[k].E(); // making light-like, but keeping energy
|
---|
| 300 | }
|
---|
| 301 |
|
---|
| 302 | double seedTau = result(particles, seedAxes);
|
---|
| 303 |
|
---|
| 304 | std::vector<fastjet::PseudoJet> bestAxesSoFar = seedAxes;
|
---|
| 305 | double bestTauSoFar = seedTau;
|
---|
| 306 |
|
---|
| 307 | for (int i_att = 0; i_att < nAttempts; i_att++) {
|
---|
| 308 |
|
---|
| 309 | std::vector<fastjet::PseudoJet> newAxes(seedAxes.size(),fastjet::PseudoJet(0,0,0,0));
|
---|
| 310 | std::vector<fastjet::PseudoJet> summed_jets(seedAxes.size(), fastjet::PseudoJet(0,0,0,0));
|
---|
| 311 |
|
---|
| 312 | // find closest axis and assign to that
|
---|
| 313 | for (unsigned int i = 0; i < particles.size(); i++) {
|
---|
| 314 |
|
---|
| 315 | // start from unclustered beam measure
|
---|
| 316 | int minJ = -1;
|
---|
| 317 | double minDist = beam_distance_squared(particles[i]);
|
---|
| 318 |
|
---|
| 319 | // which axis am I closest to?
|
---|
| 320 | for (unsigned int j = 0; j < seedAxes.size(); j++) {
|
---|
| 321 | double tempDist = jet_distance_squared(particles[i],seedAxes[j]);
|
---|
| 322 | if (tempDist < minDist) {
|
---|
| 323 | minDist = tempDist;
|
---|
| 324 | minJ = j;
|
---|
| 325 | }
|
---|
| 326 | }
|
---|
| 327 |
|
---|
| 328 | // if not unclustered, then cluster
|
---|
| 329 | if (minJ != -1) {
|
---|
| 330 | summed_jets[minJ] += particles[i]; // keep track of energy to use later.
|
---|
| 331 | if (_useAxisScaling) {
|
---|
| 332 | double pseudoMomentum = dot_product(lightFrom(seedAxes[minJ]),particles[i]) + accuracy; // need small offset to avoid potential divide by zero issues
|
---|
| 333 | double axis_scaling = (double)jet_numerator(particles[i], seedAxes[minJ])/pseudoMomentum;
|
---|
| 334 |
|
---|
| 335 | newAxes[minJ] += particles[i]*axis_scaling;
|
---|
| 336 | }
|
---|
| 337 | }
|
---|
| 338 | }
|
---|
| 339 | if (!_useAxisScaling) newAxes = summed_jets;
|
---|
| 340 |
|
---|
| 341 | // convert the axes to LightLike and then back to PseudoJet
|
---|
| 342 | for (unsigned int k = 0; k < newAxes.size(); k++) {
|
---|
| 343 | if (newAxes[k].perp() > 0) {
|
---|
| 344 | newAxes[k] = lightFrom(newAxes[k]);
|
---|
| 345 | newAxes[k] *= summed_jets[k].E(); // scale by energy to get sensible result
|
---|
| 346 | }
|
---|
| 347 | }
|
---|
| 348 |
|
---|
| 349 | // calculate tau on new axes
|
---|
| 350 | double newTau = result(particles, newAxes);
|
---|
| 351 |
|
---|
| 352 | // find the smallest value of tau (and the corresponding axes) so far
|
---|
| 353 | if (newTau < bestTauSoFar) {
|
---|
| 354 | bestAxesSoFar = newAxes;
|
---|
| 355 | bestTauSoFar = newTau;
|
---|
| 356 | }
|
---|
| 357 |
|
---|
| 358 | if (fabs(newTau - seedTau) < accuracy) {// close enough for jazz
|
---|
| 359 | seedAxes = newAxes;
|
---|
| 360 | seedTau = newTau;
|
---|
| 361 | break;
|
---|
| 362 | }
|
---|
| 363 |
|
---|
| 364 | seedAxes = newAxes;
|
---|
| 365 | seedTau = newTau;
|
---|
| 366 |
|
---|
| 367 | }
|
---|
| 368 |
|
---|
| 369 | // return the axes corresponding to the smallest tau found throughout all iterations
|
---|
| 370 | // this is to prevent the minimization from returning a non-minimized of tau due to potential oscillations around the minimum
|
---|
| 371 | return bestAxesSoFar;
|
---|
| 372 |
|
---|
| 373 | }
|
---|
| 374 |
|
---|
| 375 |
|
---|
| 376 | // One pass minimization for the DefaultMeasure
|
---|
| 377 |
|
---|
| 378 | // Given starting axes, update to find better axes by using Kmeans clustering around the old axes
|
---|
| 379 | template <int N>
|
---|
| 380 | std::vector<LightLikeAxis> DefaultMeasure::UpdateAxesFast(const std::vector <LightLikeAxis> & old_axes,
|
---|
| 381 | const std::vector <fastjet::PseudoJet> & inputJets,
|
---|
| 382 | double accuracy
|
---|
| 383 | ) const {
|
---|
| 384 | assert(old_axes.size() == N);
|
---|
| 385 |
|
---|
| 386 | // some storage, declared static to save allocation/re-allocation costs
|
---|
| 387 | static LightLikeAxis new_axes[N];
|
---|
| 388 | static fastjet::PseudoJet new_jets[N];
|
---|
| 389 | for (int n = 0; n < N; ++n) {
|
---|
| 390 | new_axes[n].reset(0.0,0.0,0.0,0.0);
|
---|
| 391 | new_jets[n].reset_momentum(0.0,0.0,0.0,0.0);
|
---|
| 392 | }
|
---|
| 393 |
|
---|
| 394 | double precision = accuracy; //TODO: actually cascade this in
|
---|
| 395 |
|
---|
| 396 | /////////////// Assignment Step //////////////////////////////////////////////////////////
|
---|
| 397 | std::vector<int> assignment_index(inputJets.size());
|
---|
| 398 | int k_assign = -1;
|
---|
| 399 |
|
---|
| 400 | for (unsigned i = 0; i < inputJets.size(); i++){
|
---|
| 401 | double smallestDist = std::numeric_limits<double>::max(); //large number
|
---|
| 402 | for (int k = 0; k < N; k++) {
|
---|
| 403 | double thisDist = old_axes[k].DistanceSq(inputJets[i]);
|
---|
| 404 | if (thisDist < smallestDist) {
|
---|
| 405 | smallestDist = thisDist;
|
---|
| 406 | k_assign = k;
|
---|
| 407 | }
|
---|
| 408 | }
|
---|
| 409 | if (smallestDist > sq(_Rcutoff)) {k_assign = -1;}
|
---|
| 410 | assignment_index[i] = k_assign;
|
---|
| 411 | }
|
---|
| 412 |
|
---|
| 413 | //////////////// Update Step /////////////////////////////////////////////////////////////
|
---|
| 414 | double distPhi, old_dist;
|
---|
| 415 | for (unsigned i = 0; i < inputJets.size(); i++) {
|
---|
| 416 | int old_jet_i = assignment_index[i];
|
---|
| 417 | if (old_jet_i == -1) {continue;}
|
---|
| 418 |
|
---|
| 419 | const fastjet::PseudoJet& inputJet_i = inputJets[i];
|
---|
| 420 | LightLikeAxis& new_axis_i = new_axes[old_jet_i];
|
---|
| 421 | double inputPhi_i = inputJet_i.phi();
|
---|
| 422 | double inputRap_i = inputJet_i.rap();
|
---|
| 423 |
|
---|
| 424 | // optimize pow() call
|
---|
| 425 | // add noise (the precision term) to make sure we don't divide by zero
|
---|
| 426 | if (_beta == 1.0) {
|
---|
| 427 | double DR = std::sqrt(sq(precision) + old_axes[old_jet_i].DistanceSq(inputJet_i));
|
---|
| 428 | old_dist = 1.0/DR;
|
---|
| 429 | } else if (_beta == 2.0) {
|
---|
| 430 | old_dist = 1.0;
|
---|
| 431 | } else if (_beta == 0.0) {
|
---|
| 432 | double DRSq = sq(precision) + old_axes[old_jet_i].DistanceSq(inputJet_i);
|
---|
| 433 | old_dist = 1.0/DRSq;
|
---|
| 434 | } else {
|
---|
| 435 | old_dist = sq(precision) + old_axes[old_jet_i].DistanceSq(inputJet_i);
|
---|
| 436 | old_dist = std::pow(old_dist, (0.5*_beta-1.0));
|
---|
| 437 | }
|
---|
| 438 |
|
---|
| 439 | // TODO: Put some of these addition functions into light-like axes
|
---|
| 440 | // rapidity sum
|
---|
| 441 | new_axis_i.set_rap(new_axis_i.rap() + inputJet_i.perp() * inputRap_i * old_dist);
|
---|
| 442 | // phi sum
|
---|
| 443 | distPhi = inputPhi_i - old_axes[old_jet_i].phi();
|
---|
| 444 | if (fabs(distPhi) <= M_PI){
|
---|
| 445 | new_axis_i.set_phi( new_axis_i.phi() + inputJet_i.perp() * inputPhi_i * old_dist );
|
---|
| 446 | } else if (distPhi > M_PI) {
|
---|
| 447 | new_axis_i.set_phi( new_axis_i.phi() + inputJet_i.perp() * (-2*M_PI + inputPhi_i) * old_dist );
|
---|
| 448 | } else if (distPhi < -M_PI) {
|
---|
| 449 | new_axis_i.set_phi( new_axis_i.phi() + inputJet_i.perp() * (+2*M_PI + inputPhi_i) * old_dist );
|
---|
| 450 | }
|
---|
| 451 | // weights sum
|
---|
| 452 | new_axis_i.set_weight( new_axis_i.weight() + inputJet_i.perp() * old_dist );
|
---|
| 453 | // momentum magnitude sum
|
---|
| 454 | new_jets[old_jet_i] += inputJet_i;
|
---|
| 455 | }
|
---|
| 456 | // normalize sums
|
---|
| 457 | for (int k = 0; k < N; k++) {
|
---|
| 458 | if (new_axes[k].weight() == 0) {
|
---|
| 459 | // no particles were closest to this axis! Return to old axis instead of (0,0,0,0)
|
---|
| 460 | new_axes[k] = old_axes[k];
|
---|
| 461 | } else {
|
---|
| 462 | new_axes[k].set_rap( new_axes[k].rap() / new_axes[k].weight() );
|
---|
| 463 | new_axes[k].set_phi( new_axes[k].phi() / new_axes[k].weight() );
|
---|
| 464 | new_axes[k].set_phi( std::fmod(new_axes[k].phi() + 2*M_PI, 2*M_PI) );
|
---|
| 465 | new_axes[k].set_mom( std::sqrt(new_jets[k].modp2()) );
|
---|
| 466 | }
|
---|
| 467 | }
|
---|
| 468 | std::vector<LightLikeAxis> new_axes_vec(N);
|
---|
| 469 | for (unsigned k = 0; k < N; ++k) new_axes_vec[k] = new_axes[k];
|
---|
| 470 | return new_axes_vec;
|
---|
| 471 | }
|
---|
| 472 |
|
---|
| 473 | // Given N starting axes, this function updates all axes to find N better axes.
|
---|
| 474 | // (This is just a wrapper for the templated version above.)
|
---|
| 475 | // TODO: Consider removing this in a future version
|
---|
| 476 | std::vector<LightLikeAxis> DefaultMeasure::UpdateAxes(const std::vector <LightLikeAxis> & old_axes,
|
---|
| 477 | const std::vector <fastjet::PseudoJet> & inputJets,
|
---|
| 478 | double accuracy) const {
|
---|
| 479 | int N = old_axes.size();
|
---|
| 480 | switch (N) {
|
---|
| 481 | case 1: return UpdateAxesFast<1>(old_axes, inputJets, accuracy);
|
---|
| 482 | case 2: return UpdateAxesFast<2>(old_axes, inputJets, accuracy);
|
---|
| 483 | case 3: return UpdateAxesFast<3>(old_axes, inputJets, accuracy);
|
---|
| 484 | case 4: return UpdateAxesFast<4>(old_axes, inputJets, accuracy);
|
---|
| 485 | case 5: return UpdateAxesFast<5>(old_axes, inputJets, accuracy);
|
---|
| 486 | case 6: return UpdateAxesFast<6>(old_axes, inputJets, accuracy);
|
---|
| 487 | case 7: return UpdateAxesFast<7>(old_axes, inputJets, accuracy);
|
---|
| 488 | case 8: return UpdateAxesFast<8>(old_axes, inputJets, accuracy);
|
---|
| 489 | case 9: return UpdateAxesFast<9>(old_axes, inputJets, accuracy);
|
---|
| 490 | case 10: return UpdateAxesFast<10>(old_axes, inputJets, accuracy);
|
---|
| 491 | case 11: return UpdateAxesFast<11>(old_axes, inputJets, accuracy);
|
---|
| 492 | case 12: return UpdateAxesFast<12>(old_axes, inputJets, accuracy);
|
---|
| 493 | case 13: return UpdateAxesFast<13>(old_axes, inputJets, accuracy);
|
---|
| 494 | case 14: return UpdateAxesFast<14>(old_axes, inputJets, accuracy);
|
---|
| 495 | case 15: return UpdateAxesFast<15>(old_axes, inputJets, accuracy);
|
---|
| 496 | case 16: return UpdateAxesFast<16>(old_axes, inputJets, accuracy);
|
---|
| 497 | case 17: return UpdateAxesFast<17>(old_axes, inputJets, accuracy);
|
---|
| 498 | case 18: return UpdateAxesFast<18>(old_axes, inputJets, accuracy);
|
---|
| 499 | case 19: return UpdateAxesFast<19>(old_axes, inputJets, accuracy);
|
---|
| 500 | case 20: return UpdateAxesFast<20>(old_axes, inputJets, accuracy);
|
---|
| 501 | default: std::cout << "N-jettiness is hard-coded to only allow up to 20 jets!" << std::endl;
|
---|
| 502 | return std::vector<LightLikeAxis>();
|
---|
| 503 | }
|
---|
| 504 |
|
---|
| 505 | }
|
---|
| 506 |
|
---|
| 507 | // uses minimization of N-jettiness to continually update axes until convergence.
|
---|
| 508 | // The function returns the axes found at the (local) minimum
|
---|
| 509 | std::vector<fastjet::PseudoJet> DefaultMeasure::get_one_pass_axes(int n_jets,
|
---|
| 510 | const std::vector <fastjet::PseudoJet> & inputJets,
|
---|
| 511 | const std::vector<fastjet::PseudoJet>& seedAxes,
|
---|
| 512 | int nAttempts,
|
---|
| 513 | double accuracy
|
---|
| 514 | ) const {
|
---|
| 515 |
|
---|
| 516 | // if the measure type doesn't use the pt_R metric, then the standard minimization scheme should be used
|
---|
| 517 | if (_measure_type != pt_R) {
|
---|
| 518 | return MeasureDefinition::get_one_pass_axes(n_jets, inputJets, seedAxes, nAttempts, accuracy);
|
---|
| 519 | }
|
---|
| 520 |
|
---|
| 521 | // convert from PseudoJets to LightLikeAxes
|
---|
| 522 | std::vector< LightLikeAxis > old_axes(n_jets, LightLikeAxis(0,0,0,0));
|
---|
| 523 | for (int k = 0; k < n_jets; k++) {
|
---|
| 524 | old_axes[k].set_rap( seedAxes[k].rap() );
|
---|
| 525 | old_axes[k].set_phi( seedAxes[k].phi() );
|
---|
[1d208a2] | 526 | old_axes[k].set_mom( seedAxes[k].modp() );
|
---|
[973b92a] | 527 | }
|
---|
| 528 |
|
---|
| 529 | // Find new axes by iterating (only one pass here)
|
---|
| 530 | std::vector< LightLikeAxis > new_axes(n_jets, LightLikeAxis(0,0,0,0));
|
---|
| 531 | double cmp = std::numeric_limits<double>::max(); //large number
|
---|
| 532 | int h = 0;
|
---|
| 533 |
|
---|
| 534 | while (cmp > accuracy && h < nAttempts) { // Keep updating axes until near-convergence or too many update steps
|
---|
| 535 | cmp = 0.0;
|
---|
| 536 | h++;
|
---|
| 537 | new_axes = UpdateAxes(old_axes, inputJets,accuracy); // Update axes
|
---|
| 538 | for (int k = 0; k < n_jets; k++) {
|
---|
| 539 | cmp += old_axes[k].Distance(new_axes[k]);
|
---|
| 540 | }
|
---|
| 541 | cmp = cmp / ((double) n_jets);
|
---|
| 542 | old_axes = new_axes;
|
---|
| 543 | }
|
---|
| 544 |
|
---|
| 545 | // Convert from internal LightLikeAxes to PseudoJet
|
---|
| 546 | std::vector<fastjet::PseudoJet> outputAxes;
|
---|
| 547 | for (int k = 0; k < n_jets; k++) {
|
---|
| 548 | fastjet::PseudoJet temp = old_axes[k].ConvertToPseudoJet();
|
---|
| 549 | outputAxes.push_back(temp);
|
---|
| 550 | }
|
---|
| 551 |
|
---|
| 552 | // this is used to debug the minimization routine to make sure that it works.
|
---|
| 553 | bool do_debug = false;
|
---|
| 554 | if (do_debug) {
|
---|
| 555 | // get this information to make sure that minimization is working properly
|
---|
| 556 | double seed_tau = result(inputJets, seedAxes);
|
---|
| 557 | double outputTau = result(inputJets, outputAxes);
|
---|
| 558 | assert(outputTau <= seed_tau);
|
---|
| 559 | }
|
---|
| 560 |
|
---|
| 561 | return outputAxes;
|
---|
| 562 | }
|
---|
| 563 |
|
---|
| 564 | //// One-pass minimization for the Deprecated Geometric Measure
|
---|
| 565 | //// Uses minimization of the geometric distance in order to find the minimum axes.
|
---|
| 566 | //// It continually updates until it reaches convergence or it reaches the maximum number of attempts.
|
---|
| 567 | //// This is essentially the same as a stable cone finder.
|
---|
| 568 | //std::vector<fastjet::PseudoJet> DeprecatedGeometricCutoffMeasure::get_one_pass_axes(int n_jets,
|
---|
| 569 | // const std::vector <fastjet::PseudoJet> & particles,
|
---|
| 570 | // const std::vector<fastjet::PseudoJet>& currentAxes,
|
---|
| 571 | // int nAttempts,
|
---|
| 572 | // double accuracy) const {
|
---|
| 573 | //
|
---|
| 574 | // assert(n_jets == (int)currentAxes.size()); //added int casting to get rid of compiler warning
|
---|
| 575 | //
|
---|
| 576 | // std::vector<fastjet::PseudoJet> seedAxes = currentAxes;
|
---|
| 577 | // double seedTau = result(particles, seedAxes);
|
---|
| 578 | //
|
---|
| 579 | // for (int i = 0; i < nAttempts; i++) {
|
---|
| 580 | //
|
---|
| 581 | // std::vector<fastjet::PseudoJet> newAxes(seedAxes.size(),fastjet::PseudoJet(0,0,0,0));
|
---|
| 582 | //
|
---|
| 583 | // // find closest axis and assign to that
|
---|
| 584 | // for (unsigned int i = 0; i < particles.size(); i++) {
|
---|
| 585 | //
|
---|
| 586 | // // start from unclustered beam measure
|
---|
| 587 | // int minJ = -1;
|
---|
| 588 | // double minDist = beam_distance_squared(particles[i]);
|
---|
| 589 | //
|
---|
| 590 | // // which axis am I closest to?
|
---|
| 591 | // for (unsigned int j = 0; j < seedAxes.size(); j++) {
|
---|
| 592 | // double tempDist = jet_distance_squared(particles[i],seedAxes[j]);
|
---|
| 593 | // if (tempDist < minDist) {
|
---|
| 594 | // minDist = tempDist;
|
---|
| 595 | // minJ = j;
|
---|
| 596 | // }
|
---|
| 597 | // }
|
---|
| 598 | //
|
---|
| 599 | // // if not unclustered, then cluster
|
---|
| 600 | // if (minJ != -1) newAxes[minJ] += particles[i];
|
---|
| 601 | // }
|
---|
| 602 | //
|
---|
| 603 | // // calculate tau on new axes
|
---|
| 604 | // seedAxes = newAxes;
|
---|
| 605 | // double tempTau = result(particles, newAxes);
|
---|
| 606 | //
|
---|
| 607 | // // close enough to stop?
|
---|
| 608 | // if (fabs(tempTau - seedTau) < accuracy) break;
|
---|
| 609 | // seedTau = tempTau;
|
---|
| 610 | // }
|
---|
| 611 | //
|
---|
| 612 | // return seedAxes;
|
---|
| 613 | //}
|
---|
| 614 |
|
---|
| 615 |
|
---|
| 616 | // Go from internal LightLikeAxis to PseudoJet
|
---|
| 617 | fastjet::PseudoJet LightLikeAxis::ConvertToPseudoJet() {
|
---|
| 618 | double px, py, pz, E;
|
---|
| 619 | E = _mom;
|
---|
| 620 | pz = (std::exp(2.0*_rap) - 1.0) / (std::exp(2.0*_rap) + 1.0) * E;
|
---|
| 621 | px = std::cos(_phi) * std::sqrt( std::pow(E,2) - std::pow(pz,2) );
|
---|
| 622 | py = std::sin(_phi) * std::sqrt( std::pow(E,2) - std::pow(pz,2) );
|
---|
| 623 | return fastjet::PseudoJet(px,py,pz,E);
|
---|
| 624 | }
|
---|
| 625 |
|
---|
| 626 | } //namespace contrib
|
---|
| 627 |
|
---|
| 628 | FASTJET_END_NAMESPACE
|
---|